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Abstract

Path finding is a well-studied problem in AI, which is often
framed as graph search. Any-angle path finding is a tech-
nique that augments the initial graph with additional edges
to build shorter paths to the goal. Indeed, optimal algorithms
for any-angle path finding in static environments exist. How-
ever, when dynamic obstacles are present and time is the ob-
jective to be minimized, these algorithms can no longer guar-
antee optimality. In this work, we elaborate on why this is
the case and what techniques can be used to solve the prob-
lem optimally. We present two algorithms, grounded in the
same idea, that can obtain provably optimal solutions to the
considered problem. One of them is a naive algorithm and
the other one is much more involved. We conduct a thorough
empirical evaluation showing that, in certain setups, the latter
algorithm might be as fast as the previously-known greedy
non-optimal solver while providing solutions of better qual-
ity. In some (rare) cases, the difference in cost is up to 76%,
while on average it is lower than one percent (the same cost
difference is typically observed between optimal and greedy
any-angle solvers in static environments).

Introduction
Planning a path for an agent operating in 2D environment
is a well-studied problem that is often solved by, first, in-
troducing a graph that represents the environment and the
ways the agent can move (e.g. 4-connected grid) and, sec-
ond, by finding a path on this graph. When the environment
is static, A* (Hart, Nilsson, and Raphael 1968) or one of its
numerous modifications can be used to find an optimal so-
lution to the problem. Yet even an optimal solution is often
only an approximation of the true shortest path in 2D due
to the discretization of the workspace imposed by a graph.
To mitigate this issue the idea of any-angle path finding has
been proposed. Any-angle planners, e.g. Theta* (Nash et al.
2007), ANYA (Harabor et al. 2016), allow moving from one
graph vertex to the other even if there is no correspondent
edge in the given graph but the move is valid, i.e. the straight
line segment connecting the vertices does not intersect any
obstacle.

In this work, we are interested in any-angle path planning
when dynamic obstacles are present in the environment and
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Figure 1: Different any-angle paths for an agent (white disk)
on a grid with a dynamic obstacle (black disk). The shortest
any-angle path is depicted in red, the time-optimal path – in
green. The radius of the agent/obstacle is 0.4, their moving
speed is 1.0. It is beneficial to take a spatial detour to reach
the goal as early as possible.

the objective to be minimized is the time to reach the goal.
In this problem setting, we have to take the time dimension
into account, which poses the first challenge. The second
challenge is that there is no guarantee anymore that reaching
the goal or any other vertex by a geometrically shortest path
will lead to or contribute to finding an optimal solution.

Consider an example shown in Figure 1. An agent has
to navigate from A2 to J1 on a grid, avoiding a dynamic
obstacle, that moves from J2 to A3 via C2. The speed of
the agent and the obstacle is the same (1 cell per 1 time unit).
The shortest any-angle path from A2 to J1 is shown in red.
If the agent starts moving immediately, this path can not be
safely followed as a collision happens in the vicinity of E2,
so the agent has to wait. Moreover, the time of that wait plus
the time needed to traverse the path is greater than the time
needed to execute the detour path shown in green, which is
the time-optimal solution in this setting.

Indeed, there exist planners that are capable of handling
both dynamic obstacles and any-angle moves, e.g. (Yakovlev
and Andreychuk 2017), but to the best of our knowledge one
that guarantees to find time-optimal solutions is absent. This
work aims at filling this gap.

Proceedings of the Thirty-First International Conference on Automated Planning and Scheduling (ICAPS 2021)

405



Problem Statement
Consider an agent that navigates the environment discretized
to a graph G = (V,E). Vertices correspond to distinct loca-
tions and edges – to the transitions between them. The ac-
tion set of an agent is composed of actions of two types:
wait at the current vertex or move from one vertex to the
other. When moving, the agent follows a straight-line seg-
ment, connecting source, and target vertices, with constant
speed and with inertial effects neglected. The cost of an ac-
tion is its duration. For a move action, its duration equals the
length of the corresponding segment divided by the speed of
an agent. The duration of a wait action can be any positive
number, i.e. the agent can wait in a vertex for any amount of
time.

Two types of moves are distinguished: i) regular – when
the agent moves from vertex u to vertex v and the corre-
sponding edge (u, v) is in G; and ii) any-angle – when the
agent moves from one vertex to the other even though there
is no correspondent edge in the graph. To identify whether
an any-angle move is valid a dedicated function is given:
los : V × V → {true, false}. It returns true in case a line
segment connecting u and v does not intersect any obstacle
in the environment w.r.t. agent’s size and shape.

A plan is an ordered sequence of time-action pairs: π =
(a1, t1), (a2, t2), ...., (an, tn), where ai stands for actions,
and ti – for the time moments the agent starts executing
them. For a plan to be valid each action should start exactly
when the previous one ends. The cost of the plan is the sum
of the durations of the constituent actions.

Besides the agent, a fixed number of dynamic obstacles
populate the environment and navigate it in the same way
the agent does. Their plans, π1, π2, ..., πk, are known. We
assume that the dynamic obstacles (as well as the agent) do
not disappear after accomplishing their plans but rather stay
in their target vertices forever.

Plans for an agent and an obstacle are said to be conflict
free if no collision happens between them when they follow
these plans. We assume that a collision detection mechanism
is given. A plan for an agent, π, is feasible if it does not
conflict with any of π1, π2, ..., πk. The problem is to find
the least-cost, i.e. time-optimal, feasible plan from a given
start to a given goal.

Naı̈ve Time-Optimal Any-Angle Safe-Interval
Path Planning (nTO-AA-SIPP)

Overview of SIPP Safe Interval Path Planning (Phillips
and Likhachev 2011) is an algorithm for finding time-
optimal paths in environments with dynamic obstacles,
whose trajectories are known. It is essentially an A* al-
gorithm that searches through a state-space induced by
configuration-interval pairs. The configuration in the con-
sidered domain is a graph vertex and the interval is the max-
imal period of time the vertex can be safely occupied by the
agent. Consider the setting depicted in Figure 1 and assume
that the obstacle starts executing its plan at t = 0. In that
case, it passes through I2 and prohibits an agent to occupy
the graph vertex which is in the center of that cell from time
moment 0.2 to time moment 1.8 (not from 0 to 2 because

of the size of the agent and the obstacle, which is 0.4 in
this example). Thus, SIPP acknowledges two safe intervals
and two search nodes are introduced: n1 = (I2, [0; 0.2]) and
n2 = (I2, [1.8;+∞)).

The notion of safe intervals is beneficial for several rea-
sons. First, this makes the search space more compact. Sec-
ond, SIPP naturally allows planning in continuous time.
Third, utilizing safe-intervals allows to enumerate all states
of the search-space beforehand. We will rely on the latter
property later on.

Search SIPP explores the search space in a conventional
A* fashion: in each step, the most promising node, n, from
the frontier is chosen and its successors are generated, thus
the node becomes expanded. The most promising node is the
one with the minimal f -value, which is the sum of g(n) and
h(n). g(n) is the time the agent safely reaches n and h(n) is
a consistent estimate of time to reach the goal from n.

Generating successors To generate the successors of n =
(v, [t1, t2]) SIPP iterates through the vertices of the graph
that are adjacent to v. In the simplest case when any-angle
moves are not allowed, successors are generated by consid-
ering the transitions defined by the graph edges (v, v′). If
any-angle moves are allowed and one does not aim at pro-
viding optimality guarantees, such moves can be handled by
the greedy strategy introduced in (Nash et al. 2007). First,
immediate successors, i.e. the ones corresponding to the out-
going graph edges, are generated. Let n′ = (v′, [t′1, t

′
2]) be

one of them. Then one checks if the transition to v′ is pos-
sible from p(n).vertex, where p(n) is the predecessor of n.
If it is and the time moment the agent arrives to v′ following
this move belongs to the safe interval of n′ and it is smaller
compared to arriving to v′ using (v, v′) edge, then the prede-
cessor of n′ is reset to p(n) and g(n) is altered appropriately.

This strategy is known to lead to non-optimal solutions
even in static environments. Obviously, when dynamic ob-
stacles are present this also holds (see Figure 1, where the
plan found by the reset-parent approach is shown in yellow).
The ANYA algorithm (Harabor et al. 2016) mitigates the is-
sue (for static environments) by reasoning over the sets of
geometrically close vertices that are combined together and
represent a single search node, characterized by a single f -
value. Straightforward application of this technique is not
possible in the considered domain as being geometrically
close for the vertices does not mean that their g-values –
earliest arrival times – are close.

nTO-AA-SIPP To avoid missing any valid any-angle
move the following approach to successors generation is
proposed. When expanding a node n, all states of the search
space, for which a valid transition from n exists, should
be considered as potential successors. More formally, the
set of potential successors is defined as: PSUCC(n) =
{n′ = (v′, [t′1, t

′
2]) | los(v, v′) = true}. Please note, that

not all successors in PSUCC(n) might be valid w.r.t. time
intervals and dynamic obstacles. Indeed, invalid successors
should be discarded.
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Figure 2: Potential any-angle successors for a node. Cells
reachable from D4, I3 w.r.t. agent’s size (r = 0.4) are
shown in green. Arrows symbolize the los function.

We call the algorithm that straightforwardly implements
this approach (of generating all possible successors for every
node under expansion) – Naı̈ve Time-Optimal Any-Angle
SIPP (nTO-AA-SIPP). Its pseudocode (which is very sim-
ilar to the regular A*/SIPP) is shown in Algorithm 1. Ob-
viously, considering all possible valid moves between the
nodes makes nTO-AA-SIPP complete and optimal. More
formally:

Statement 1. nTO-AA-SIPP always finds a solution if it ex-
ists (and if it does not nTO-AA-SIPP correctly terminates
returning ‘failure’) and this solution is optimal, i.e. the re-
sultant plan is time optimal.

This statement follows from the completeness/optimality
of the original SIPP (Phillips and Likhachev 2011).

Time-Optimal Any-Angle SIPP With Inverted
Expansions (iTO-AA-SIPP)

Generating all possible successors at each expansion as in
nTO-AA-SIPP might lead to great computational expenses
due to the colossal branching factor as the number of poten-
tial successors is proportional to all vertices in the graph. In-
deed, in some cases, this number is not large as many moves
are pruned via the los function, but in general, one can not
anticipate this (see Fig. 2). Moreover, considering each po-
tential successor is a costly procedure in SIPP that relies on
non-trivial reasoning about the time intervals and validity of
the move w.r.t. dynamic obstacles. To this end, we suggest
“inverting” the expansion procedure when not the succes-
sors are generated, but rather the predecessors are estimated
during the search.

Idea Assume, that all search nodes are generated before-
hand (this is possible due to the use of safe-intervals). The
g-values of all nodes are initially set to ∞. Consider now
that after a number of search iterations the g-values of some
nodes are equal to the true costs of the time-optimal paths
from the start. We will refer to such nodes as to the con-
sistent ones, bearing the terminology from the LPA* algo-
rithm (Koenig, Likhachev, and Furcy 2004). Their parents
are, obviously, consistent as well. Think now of the remain-
ing inconsistent nodes. The true costs of the time-optimal

Algorithm 1: Naive TO-AA-SIPP
1 OPEN:= {start}; CLOSED:= �;
2 while OPEN 6= � do
3 n := argminn∈OPEN f(n);
4 move n from OPEN into CLOSED;
5 if n = goal then
6 return ReconstructPathFromParents(n);
7 PSUCC(n) := generate all potential successors

of n;
8 for each node n’ in PSUCC(n) do
9 if n′ in CLOSED then

10 continue;
11 g new = ValidateTransition(n′, n);
12 if g new < g(n′) then
13 g(n′) := g new;
14 f(n′) := g new + h(n′);
15 parent(n′) := n;
16 insert or update n′ in OPEN;

17 return path not found;

paths to them are not known, as well as their parents, but
it’s evident that these true costs might be achieved only by
considering transitions from the consistent nodes and that
the latter might be thought of as being potential parents to
them. So, the idea is to consider transitions from the poten-
tial parents in a systematic fashion, with the aim of turning
inconsistent nodes to consistent ones. When the goal node
becomes consistent, the time-optimal solution can be recon-
structed by tracing the pointers to the parent nodes.

Implementation (high-level) To implement this idea the
following high-level steps should be performed instead of
expansion at each iteration of the search:

1. Identify the best inconsistent node n and the best potential
parent – bpp(n)

2. Try to decrease g(n) by considering a transition
bpp(n)→ n

3. Estimate whether n became consistent. If it did, move it
to the set of potential parents

Step 1 chooses the best inconsistent state. It’s analo-
gous to choosing the best node in A* (SIPP) for the ex-
pansion. As in A* we suggest choosing the node that is
likely to belong to the least-cost path from start to goal,
i.e. the node with the minimal f -value. What is different
is that we compute f -value as f(n) = glow(n) + h(n),
where glow(n) = g(bpp(n)) + h(bpp(n), n). By h(n, n′)
we denote an estimate of time needed to reach n′ from
n. We assume that h satisfies triangle inequality not only
w.r.t. the goal node but w.r.t. any node in the search space:
∀n, n′, n′′ : h(n, n′′) ≥ h(n, n′) + h(n′, n′′).

Please note, that so far two types of g-values are intro-
duced: g(n) which is as an (over)estimate of the cost of
the shortest path from start to n (the same as in A*) and
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glow(n), which is, conceptually, a “second-order” estimate
of such cost used to compute f(n). The difference is that
glow(n) is computed without taking the true cost of the tran-
sition from the predecessor into account but rather relying on
the consistent estimate of that cost, i.e. h(bpp(n), n), while
g(n) is computed based on the complete sequence of feasi-
ble transitions from start to n. We need a glow-value as we
do not generate and validate successors as in vanilla A*. Ini-
tially, glow(n) = h(start, n) if los(start, n) = true and
g(n) = ∞ for every n except start. For the start node it is:
glow(start) = g(start) = 0.

Step 2 is dedicated to validating the transition to n from
its best potential parent, bpp(n). This includes performing
all the costly checks that regular SIPP would have done
while expanding bpp(n) and generating n as a successor, i.e.
checking for the collisions with the dynamic obstacles, com-
puting the earliest arrival time to a destination that avoids
collision with the latter etc. This is conceptually similar
to performing lazy expansions like in Lazy Theta* (Nash,
Koenig, and Tovey 2010). If the transition is valid and
g(bpp(n)) + c(bpp(n), n) < g(n), where c denotes the cost
of a transition, then g(n) is set to the left-hand value (as in
A*/SIPP).

Step 3 checks whether after Steps 1 and 2 the node n be-
came consistent, i.e. whether its g-value (possibly altered at
Step 2) is the cost of the time-optimal plan from the start. To
verify this, one needs to establish that there exists no other
node in the search space (recall, that initially all the search
nodes have already been generated) that being set as the par-
ent of n results in arriving at n earlier. We will explain how
to implement this (non-trivial) check further when describ-
ing the pseudo-code.

Pseudo-code First, all search nodes are generated and
their g, glow, f -values are set appropriately – see Algo-
rithm 2. For every node n, we choose to explicitly maintain
a list of potential parents – PARENTS(n). This list contains
consistent nodes from which n is reachable w.r.t. static ob-
stacles (we check this via the given los-function). Initially,
the only node that is added to this list for every n is start
(Line 7, Algorithm 2). parent(n) is assumed to be the node
that was used to compute g(n) and this node is not a part
of PARENTS(n). It is set to null initially for every node
except start. The latter is deemed consistent and is added
to CLOSED. All other nodes of the search space are put in
OPEN.

The following steps form the main loop of iTO-AA-SIPP–
Algorithm 4. The best inconsistent node, n, is retrieved
from OPEN. If its best potential parent, bpp(n), resides in
PARENTS(n) it is removed from this list. Then a transition
from bpp(n) to n is validated (Line 5). At this stage, we
perform all the checks the regular SIPP would do when ex-
panding bpp(n) and generating n. The outcome is the g new
which is the time by which n is reached via bpp(n). If the
transition is invalid g new =∞. If g new is less than g(n)
then we set g(n) to this value and set bpp(n) to be the parent
of n (Lines 6-7). By now we know that there exists a valid
plan from start to n via parent(n) and the agent will reach

n by time moment g(n). The rest of the code (Lines 8-24) is
dedicated to selecting the new best potential parent for n (in-
side NewBestPotentialParentExists) and checking whether n
became consistent or not.

To find the new best potential parent we first set bpp of
n to parent(n) (i.e. the node which was used to compute
the g-value of n) at Line 1, Algorithm 3, and then iterate
through all the nodes in PARENTS(n) to identify the one
which might decrease g(n). In case such node is absent in
PARENTS(n) we keep bpp(n) equal to parent(n). That ex-
plains why we need to perform the check at Line 3 of the
main loop. It might be the case that bpp(n) = parent(n)
and it is not in PARENTS(n) so the removal operation at
Line 4, Algorithm 4 is invalid.

Checking whether n became consistent is split into two
parts. First, we check whether there exists a node in
CLOSED that might decrease g(n). This is done by invok-
ing NewBestPotentialParentExists function at line 8. If such
a node exists we re-insert n back to OPEN (Line 9). If no
consistent node might be used to decrease g(n), we check
the same for the inconsistent nodes (Line 11). We will prove
further that the introduced checks allow to verify whether
the current node has become consistent or not. If it has, we
put it in CLOSED and add it to the set of potential parents
for each node n′ residing in OPEN s.t. los(n, n′) = true –
Lines 15-22.

Finally, a case, when g(n) can not be decreased by a tran-
sition from a consistent node, but, at the same time, might
be decreased by a transition from an inconsistent node, is
handled at Lines 23-24. n is kept in OPEN in that case.

There are two stop criteria for the algorithm. First, if we
identify that the goal node became consistent (Line 13) we
terminate and return the plan reconstructed using the parent-
pointers. Second, if all nodes in OPEN have their f -values
set to∞ (while condition at Line 1) we terminate inferring
that no feasible plan exists (Line 25).

Similarity to LPA* An informed reader is likely to get
an impression that the proposed algorithm resembles much
the seminal LPA* algorithm (Koenig, Likhachev, and Furcy
2004). Indeed, iTO-AA-SIPP and LPA* share similarities,
e.g. LPA* also has two “g-values” for every node: the
g-value itself and the rhs-value (right-hand-side-value),
corresponding to glow of iTO-AA-SIPP. The formula for
glow(n)/rhs(n) looks the same (however it is not, as rhs(n)
relies on the actual cost of the transition from the best pre-
decessor, while glow(n) relies on the heuristic estimate of
such cost). Nonetheless, the key idea of iTO-AA-SIPP – in-
verting the expansions – is different from the key idea of
LPA* – re-using the parts of the search-tree to speed up con-
sequent search iterations. Moreover, there are many techni-
cal differences between the algorithms. E.g. the rhs-value
in LPA* can be greater than the g-value, while the glow-
value in iTO-AA-SIPP – can not (and this is crucial to the
behavior of iTO-AA-SIPP as we will show further on). In
LPA* a node n is consistent iff g(n) = rhs(n), however
in iTO-AA-SIPP g(n) = glow(n) does not necessarily infer
that n is consistent.
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Algorithm 2: TO-AA-SIPP Initialization
1 OPEN=�; CLOSED=�;
2 Generate all the search nodes;
3 for each node n = (v, [t1, t2]) do
4 if los(n, start) = true then
5 glow(n) := max(t1, h(start, n));
6 bpp(n) := start;
7 PARENTS(n) := {start};
8 else
9 glow(n) :=∞;

10 bpp(n) := null;
11 PARENTS(n) := �;
12 f(n) := glow(n) + h(n);
13 g(n) :=∞;
14 parent(n) := null;
15 insert n into OPEN;
16 g(start) = 0;
17 remove start from OPEN and add it CLOSED;

Algorithm 3: NewBestPotentialParentExists(n)
1 glow(n) := g(n); bpp(n) := parent(n);
2 f(n) := glow(n) + h(n);
3 NewBPPFound:=false;
4 for each n′ ∈ PARENTS(n) do
5 if g(n′) + h(n, n′) < glow(n) then
6 glow(n) = g(n′) + h(n, n′);
7 bpp(n) = n′;
8 f(n) := glow(n) + h(n);
9 NewBPPFound:=true;

10 return NewBPPFound;

Theoretical Properties of iTO-AA-SIPP
Next we establish that iTO-AA-SIPP is complete and opti-
mal.

Lemma 1. For any node n it always holds that glow(n) ≤
g(n).

Proof. After the initialization (Algorithm 2) this relation
holds for all nodes. At each iteration of the main loop
(Algorithm 4), the g-value of the current node n can be
altered only at Line 7. It is set to g new which equals
g(bpp(n)) + c, where c is the cost of the collision-free tran-
sition from bpp(n) to n (computed at Line 5). Note that
c ≥ h(bpp(n), n) due to admissible and consistent heuris-
tic. At the same time glow(n) = g(bpp(n)) + h(bpp(n), n),
thus glow(n) ≤ g(n) after updating g(n) at Line 7. Next,
glow(n) might be altered at Line 8 inside the NewBestPoten-
tialParentExists function. When it is called glow(n) is first
set to g(n) (Line 1, Algorithm 3) and then might only de-
crease (Line 5, Algorithm 3), while g(n) stays unaltered.
Thus after Line 8 of the main loop glow(n) ≤ g(n). In no
subsequent line of code, the g/glow-value of the currently ex-
plored node n is updated. Thus for node n the statement of

Algorithm 4: iTO-AA-SIPP Main Loop
1 while minn∈OPEN f(n) <∞ do
2 n := argminn∈OPEN f(n); remove n from OPEN;
3 if bpp(n) ∈ PARENTS(n) then
4 remove bpp(n) from PARENTS(n);
5 g new := ValidateTransition(n, bpp(n));
6 if g new < g(n) then
7 g(n) := g new; parent(n) := bpp(n);
8 if NewBestPotentialParentExists(n) then
9 insert n into OPEN;

10 continue;
11 if g(n)+h(n) ≤ min f-value in OPEN then
12 insert n into CLOSED;
13 if n = goal then
14 return ReconstructPathFromParents(n);
15 for each n′ ∈ OPEN do
16 if los(n, n′) = true then
17 insert n into PARENTS(n′);
18 if g(n) + h(n, n′) < glow(n

′) then
19 glow(n

′) := g(n) + h(n, n′);
20 bpp(n′) := n;
21 f(n′) := glow(n

′) + h(n′);
22 update n′ in OPEN;

23 else
24 insert n into OPEN;

25 return path not found;

the Lemma holds.
One may also note that at Line 19 of the main loop the

glow-value of some other node, n′ is updated. Observe, how-
ever, that its glow-value might only decrease, while its g-
value stays unaltered. This infers that for that node the state-
ment of the Lemma also holds.

Lemma 2. For any i: gilow(n) ≤ glow(n), where gilow(n)
is the glow-value of the node n extracted from OPEN at the
beginning of the i-th iteration of the iTO-AA-SIPP main loop
and glow(n) is the glow-value of n at the end of the iteration.

Proof. Consider a node n which is extracted from OPEN
with the glow-value equal to gilow(n). The only place where
the glow-value is altered is inside the NewBestPotentialPar-
entExists function. It first is set to be equal to g(n) (Line 1,
Algorithm 3) which is greater or equal to gilow(n) (Lemma
1). Thus, if the condition at Line 5 of Algorithm 3 is never
met further on (meaning that the glow-value does not change
anymore), the claim holds.

Suppose that the condition at Line 5 is met, and glow is
decreased at Line 6 to some value that we denote here as
g′low(n). Moreover, suppose that g′low(n) < gilow(n). This
means that at the current iteration of the main loop there
exists a node in PARENTS(n), n′, which delivers a better
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f -value to n. But the only place in the code where a node is
added to PARENTS is Line 17 of Algorithm 4 and in case
the new parent is better than the existing ones (i.e. it can be
used to achieve minimal glow) it is set to be bpp(n) and the
f -value is updated accordingly (Lines 18-21, Algorithm 4).
Thus n with that f -value, equal to g′low(n) + h(n), which is
lower than gilow(n)+h(n), should have been extracted from
OPEN either at the beginning of the current iteration (which
leads to contradiction) or at some previous iteration. In the
latter case n′ should have been removed from PARENTS(n)
before iteration i. This contradiction concludes the proof.

Lemma 3. The sequence {f1min, f
2
min, ..., f

K
min}, where

f imin is the f -value of the node extracted from OPEN at the
i-th iteration of the search, is non-decreasing.

Proof. First, recall that all nodes of the search space are
generated during the initialization (Algorithm 2) so no new
nodes can be encountered during the search. Next, observe
that at any iteration of the main loop, denote it i, a single
node is extracted from OPEN – the one with the minimum
f -value equal to f imin, and can be put either back to OPEN
(lines 9 and 24 of the Algorithm 4) or to CLOSED (with
the possibly updated f -value). Let’s consider first the cases
when n is put back to OPEN.

Case 1 (Lines 8-10). In this case, NewBestPotentialPar-
ent(n) returned true. This means that the glow-value of nwas
altered. However, due to (Lemma 2) this updated glow-value
can not be less than gilow, i.e. the glow-value that was used for
computing f imin. This infers that n was put back to OPEN
with the larger (or equal) f -value and now OPEN contains
nodes whose f -values are greater or equal f imin.

Case 2 (Line 24). In this case, NewBestPotentialParent(n)
returned false which means that there exists no node in
CLOSED that can be used as a parent for n to potentially
decrease g(n). Moreover, the check at line 11 returned false,
which means that g(n)+h(n) > fmin ≥ f imin, where fmin

is the lowest f -value in OPEN currently. As Algorithm 3 has
set the glow-value of n to be g(n) before this check we can
infer that now (at line 24) glow(n) + h(n) > fmin, thus n is
inserted back to OPEN with the f -value strictly exceeding
fmin. Thus at the next iteration, a node with an f -value that
is greater or equal to f imin will be extracted.

Finally, let’s consider the case when n was retrieved from
OPEN and put to CLOSED (lines 11-22). In that case the
f -values of some nodes residing in OPEN might be updated
(line 22). Let n′ be such a node. Its f -value now equals (see
lines 19 and 21) f(n′) = g(n) + h(n, n′) + h(n′). Due to
the consistency of h we infer that f(n′) ≥ g(n) + h(n).
Moreover, as Lemma 1 prescribes g(n)+h(n) ≥ glow(n)+
h(n) = f imin. Overall f(n′) ≥ f imin. Thus no updated node
in OPEN has an f -value that is lower than f imin.

This concludes the proof, as we have shown that no matter
whether we put the node n back to OPEN or to CLOSED,
at the end of the iteration the minimum f -value in OPEN is
greater or equal to f imin.

Lemma 4. CLOSED contains nodes for which the time-
optimal path from the start node is known.

Proof. We prove by induction that before each iteration of
the main loop CLOSED contains nodes for which the time-
optimal path from the start is known.

k=1. Base case. Before the first iteration CLOSED con-
tains only one node, start, for which the statement obvi-
ously holds.

k=m. Induction hypothesis. Assume that before the m-th
iteration of the main loop the statement holds.

k=m+1. Induction step. We prove now that after the m-th
iteration of the main loop (i.e. before the (m+1)-th iteration)
for all nodes in CLOSED the time-optimal paths from the
start are known.

Observe that only a single node might be added to
CLOSED at a single iteration of the main loop – the one
extracted from OPEN. If this node was not added at the m-
th iteration, the claim holds due to the induction hypothe-
sis. Assume now that the node n was extracted from OPEN
and added to CLOSED at the m-th iteration. We need to
show that the time-optimal path from start to n is known,
which is equivalent to showing that no other node in the en-
tire search space can be used as a parent of n to decrease the
cost of the path from start to n, which is g(n).

Note first that if n was inserted to CLOSED then
NewBestPotentialParentExisits(n) function returned false
(otherwise the algorithm won’t reach Line 12 due to
continue at Line 10). In order to return false this function
has to iterate through all nodes n′ in PARENTS(n) and for
each such node verify that g(n′) + h(n, n′) ≥ glow(n) =
g(n). Recall now that i) the g-values of all nodes resid-
ing in PARENTS(n), can not be decreased due to the in-
duction hypothesis, and ii) h is a consistent heuristic. This
means that no node from PARENTS(n), which is a subset
of CLOSED, can be used to decrease g(n). Transitioning to
n from any other node n′ in CLOSED, which is not part of
PARENTS(n), can not provide a better value for g(n) than it
is at the considered iteration, because the transitions n′ → n
have already been considered at previous iterations (due to
we always add a node that became consistent to the list of
potential parents of all other reachable nodes in OPEN).

We will show now that no node from the OPEN part of the
state-space can be used to decrease g(n) as well. Observe
that if n was inserted to CLOSED then the check at Line 11
was true, which means that g(n) + h(n) ≤ glow(nbest) +
h(nbest), where nbest is the node with the lowest f -value
in OPEN. For any other node n′ residing in OPEN it, obvi-
ously, holds that glow(nbest)+h(nbest) ≤ glow(n′)+h(n′).
Due to the consistency of h we have: glow(n′) + h(n′) ≤
glow(n

′) + h(n, n′) + h(n). Thus, for any node n′ in OPEN
it holds that: g(n) + h(n) ≤ glow(n

′) + h(n, n′) + h(n)
which is equivalent to g(n) ≤ glow(n′)+h(n, n′). The latter
guarantees that no node from OPEN can be used to decrease
g(n) at the current iteration of the main loop. Moreover, as
the f -value of the best element in OPEN is not decreasing
from iteration to iteration (Lemma 3), we infer that g(n) can
not be lowered down anymore at any future iteration as well.
This concludes the proof.
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Lemma 5. When a node n, s.t. bpp(n) = parent(n), is
extracted from OPEN then it will be added to CLOSED at
the current iteration.

Proof. Let n be such a node. It holds at the beginning of
the iteration that g(n) = glow(n) (as bpp(n) = parent(n)).
g new computed at Line 5 will be equal to g(n) thus the lat-
ter will be unaltered (and will stay equal to glow). NewBest-
PotentialParentExists will return false as otherwise glow(n)
would have been decreased which contradicts Lemma 2.
Consequently, we proceed to the check at Line 11 which
will be passed as g(n) was not altered at this iteration. Thus,
n will be added to CLOSED.

Lemma 6. Every reachable node in the search-space will
be eventually added to CLOSED in case the goal detection
block is omitted (i.e. Lines 13-14 are removed from the Al-
gorithm 4) and after the finite number of iterations the algo-
rithm will terminate.

Proof. We first show that the algorithm terminates after the
finite number of iterations. Recall that all nodes in the search
space are generated during initialization. Each node may be
added to CLOSED only once. Hence, it may be added to the
PARENT-list of any other node only once. Thus, the number
of potential parents for node n is limited by N − 1, where
N is the total number of nodes. Every time n extracted from
OPEN one of the nodes from PARENTS(n) is removed, ex-
cept the case when n is extracted with bpp(n) = parent(n).
However, in this case, such iteration leads to removing n
from OPEN and adding it to CLOSED (Lemma 5). Thus,
the number of the iterations of the main loop at which n was
extracted with non-empty PARENTS(n) is finite. Therefore,
the maximum number of extractions of a single node from
OPEN is finite.

We now show that after the finite number of extractions
of n from OPEN it is either kept in OPEN with f(n) = ∞
or is put in CLOSED. To show that we consider separately
two possibilities.

Case 1. g(n) is not set to a finite value every time n is ex-
tracted from OPEN (meaning that the transition from bpp(n)
is not valid). Think of the iteration when PARENTS(n) be-
comes empty for good (this will, indeed, happen as shown
above). At this iteration glow(n) is set to g(n) which is infi-
nite (at Line 1, Algorithm 3). It infers that n is put to OPEN
with f(n) =∞.

Case 2. g(n) becomes finite at some iteration. It means
that parent(n) has been identified. It guarantees that bpp(n)
may not become null at any further iteration. Thus, even
if PARENTS(n) becomes empty (or contains only the nodes
that can not decrease the g-value anymore) n will be ex-
tracted from OPEN with bpp(n) = parent(n) and added to
CLOSED (Lemma 5).

Thus, every node n after the finite number of iterations
will be either in CLOSED or in OPEN with f(n) = ∞. In
both considered cases the algorithm will terminate due to the
while condition at Line 1 of the main loop (assuming that
min of the empty set returns∞).

Assume now that after the termination of the algorithm
some reachable node n was not added to CLOSED, mean-
ing it still resides in OPEN. In case its f -value is finite this
is impossible as it contradicts with the while condition at
Line 1, Algorithm 4. Assume now that f(n) is infinite. The
only reason n may reside in OPEN, in that case, is that no
suitable parent was identified that delivers a finite g-value
for n. However, we know that at least one such node exists
(the one that proceeds n in a valid path from start which
we assume is existent). Denote such node n′. The only rea-
son n′ has not become a parent for n maybe that n′ was
not added to CLOSED (as otherwise n′ would have been
added to PARENTS(n) and the transition n′ → n would
have been considered at some iteration). Recursively apply-
ing the same reasoning to n′ we will find that start is not
added to CLOSED which leads to the contradiction as start
is added to CLOSED during the initialization (Line 17, Al-
gorithm 2).

Theorem 1. iTO-AA-SIPP is complete and optimal.

Proof. Completeness. To prove completeness we need to
show that: 1) if a solution exists iTO-AA-SIPP will find it;
2) if there is no solution it will correctly terminate returning
‘path not found’.

Case 1. If a solution exists then goal is reachable and
will be eventually added to CLOSED in accordance with
Lemma 6. When this occurs, iTO-AA-SIPP will stop due to
the check at Line 13, Algorithm 4. A valid path to goal ob-
tained from tracing back the parent-pointers will be returned
(Line 14).

Case 2. If no solution exists then goal is not reachable and
the stop criterion at Line 13 will never be met. Thus the be-
havior of iTO-AA-SIPP is analogous to the one established
by Lemma 6. I.e. the main loop will be executed a finite
number of times and the algorithm will terminate returning
‘path not found’ (Line 25).

Optimality is a direct corollary of Lemma 4.

Empirical Evaluation
Setup We implemented nTO-AA-SIPP and iTO-AA-SIPP
and evaluated them on a range of different grid-maps with
a varying number of dynamic obstacles1. Non-optimal any-
angle SIPP planner, AA-SIPP, which is a part of the priori-
tized multi-agent solver AA-SIPP(m) (Yakovlev and Andr-
eychuk 2017), was also evaluated. The agent and the dy-
namic obstacles were represented as disks of radius 0.5 (of
a grid cell) and their movement speed was 1.0.

Three different maps from MovingAI benchmark (Sturte-
vant 2012; Stern et al. 2019) were used: Arena – a 49× 49
map composed of a small number of static obstacles and
large open areas; 32x32 20 – a 32 × 32 map with 20%
of randomly blocked cells; Warehouse – a 170 × 84 map

1Our implementation and the experimental data are available at
github.com/PathPlanning/TO-AA-SIPP.
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Figure 3: Median runtime of the algorithms (the scale is logarithmic).

Euclid H Perfect H
# of
obs.

AA-SIPP
Iterations

AA-SIPP
VT-calls

Inverted
Iterations

Naı̈ve
Iterations

Naı̈ve
VT-calls

AA-SIPP
Iterations

AA-SIPP
VT-calls

Inverted
Iterations

Naı̈ve
Iterations

Naı̈ve
VT-calls

32 885 7 357 7 348 856 391 845 183 1 764 1 377 18 13 019
64 883 8 704 11 953 871 461 357 218 2 345 1 998 84 53 488
96 945 9 626 16 884 908 484 819 275 2 977 3 015 154 92 125
128 991 10 299 24 088 931 535 076 325 3 616 4 283 222 129 981

Table 1: Median number of iterations and ValidateTransition calls on the warehouse map.

from a logistics domain. We chose these maps as they repre-
sent different types of environments and differ in size.

500 scenarios were generated for each map. Each scenario
contained the randomly chosen start and goal locations for
the agent as well as 128 trajectories of the dynamic obsta-
cles, that are collision-free and contain any-angle moves.
These trajectories were obtained by invoking the prioritized
multi-agent planner from (Yakovlev and Andreychuk 2017).
During the evaluation, we used the scenarios as follows. We
took the start-goal location pair for the agent from a scenario
as well as the trajectories of the first 32-62-96-128 dynamic
obstacles. Next, we ran all algorithms on such an instance
and proceeded to the next scenario.

We ran the algorithms with two heuristics: Euclidean dis-
tance and a pre-computed perfect heuristic that takes static
obstacles into account (denoted as Perfect H). To com-
pute it we ran Dijkstra’s algorithm backward from the goal
node and at each iteration generated all possible any-angle
successors (like in nTO-AA-SIPP).

Results Median runtimes of the algorithms are presented
in Figure 3 (the Y-axis of the plots is logarithmic).
As expected, the runtime of nTO-AA-SIPP is the worst
in all cases. The difference between nTO-AA-SIPP and
iTO-AA-SIPP is less pronounced for 32x32 20 map but
for the two other maps iTO-AA-SIPP is faster by one or-
der of magnitude. Noteworthy that in certain setups, e.g.
the 32x32 20 map with the perfect heuristic and the small
number of dynamic obstacles, the runtime of iTO-AA-SIPP
is comparable of that of AA-SIPP, however, in general, the
latter is evidently faster.

The impact of using the perfect heuristic depends largely
on the topology of the map. A significant boost in perfor-
mance (for all algorithms) is observed on the map with
randomly blocked cells and the Warehouse map. On the
Arena map Euclidean distance is a rather accurate and in-
formative heuristic thus the advantage of Perfect H is

less pronounced.
Table 1 shows the median number of iterations and Vali-

dateTransition calls for the Warehouse map (for the other
maps we observed similar trends so we present a single table
here for the sake of brevity). For iTO-AA-SIPP the number
of iterations equals the number of VT-calls so no dedicated
column for this is present. As one can note, the number of it-
erations for nTO-AA-SIPP is quite similar to the one of AA-
SIPP and is much less compared to iTO-AA-SIPP, however,
the number of VT-Calls, which are quite computationally ex-
pensive, for nTO-AA-SIPP exceeds hundreds of thousands.
iTO-AA-SIPP uses one order of magnitude fewer VT-calls
to find optimal solutions. The number of VT-calls for AA-
SIPP is only slightly lower in most cases. However, recall
that iTO-AA-SIPP performs, aside from validating the tran-
sition, such operations as finding the new best potential par-
ent, adding a new parent for the nodes in OPEN when we
add a node to CLOSED, etc. That is why the overall runtime
of iTO-AA-SIPP is higher.

One can also note that the number of iterations for
nTO-AA-SIPP and AA-SIPP algorithms using Euclidean
heuristic grows slowly with the number of dynamic obsta-
cles. We believe that the main reason for this is that on the
warehouse map Euclidean distance provides largely in-
accurate cost-to-go estimates in most cases due to the pro-
longed static obstacles. Thus the algorithm has to expand
lots of states no matter how many dynamic obstacles are
present in the environment.

Indeed, both nTO-AA-SIPP and iTO-AA-SIPP always
found solutions of the same cost (being time-optimal solu-
tions) which was less than or equal to the cost of the AA-
SIPP solutions. The averaged difference between the costs
is shown in Figure 4. It is known that in static environments
the difference in cost between the solutions found by greedy
any-angle algorithms (e.g. Theta*) and optimal ones (e.g.
ANYA) is less than a percent on average (Harabor et al.
2016). Here we observe similar figures. It is also notewor-
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Figure 4: The ratio between optimal costs and costs of tra-
jectories found by greedy AA-SIPP algorithm.

thy, that for some instances the cost-difference is much more
pronounced. For example, the maximum differences on the
32x32 20, Arena and Warehouse maps were 73.9%,
16.3% and 5.2% respectively. An example of two solutions
of largely varying costs is shown in Figure 5 (the animation
is available at https://youtu.be/k245e3CMUO4).
AA-SIPP was not able to discover the transition framed in
yellow, as to find it the algorithm had to first move from
the source cell to one of the adjacent cells (shown with red
crosses), but these moves were invalid due to the dynamic
obstacles (not shown in the figure). iTO-AA-SIPP indeed
discovered this move and used it to build an optimal plan.

Related Works
Two lines of research are the most relevant to this work. The
first one deals with any-angle path finding in static environ-
ments and the second one – with graph-based path planning
in environments with dynamic obstacles.

The most widely known algorithm for (sub-optimal) any-
angle path finding in a static environment (represented as
a grid) is apparently Theta* (Nash et al. 2007). This algo-
rithm was modified and enhanced in numerous works (Nash,
Koenig, and Tovey 2010; Oh and Leong 2016), etc. Other
prominent algorithms of that kind are Block A*(Yap et al.
2011) and Field D* (Ferguson and Stentz 2006). Closely
related are the ones that rely on 2k-connectivity of the
grid (Rivera et al. 2020).

The first provably optimal any-angle path planner for
static grids is ANYA (Harabor et al. 2016). Another opti-
mal planner was introduced in (Šišlák, Volf, and Pechoucek
2009) but only a conjecture was made regarding its optimal-
ity. It is noteworthy that iTO-AA-SIPP shares some similar-
ities with the planner introduced in that paper as the latter
also reasons about the potential parents represented as the
subset of the grid cells encountered during the search.

The other line of research, related to this work, is graph-
based path planning in environments with dynamic obsta-
cles. In (Likhachev and Ferguson 2009) it was suggested
to treat the dynamic obstacles as static and re-plan at high
rate. In (Silver 2005) it was suggested to run A* with time-
reservation table when one agent needs to avoid the trajec-
tories of the other agents (which can be viewed as dynamic
obstacles). The idea of grouping distinct time steps into the
intervals – safe interval path planning (SIPP) – was pro-

Figure 5: An instance for which the cost of AA-SIPP
solution equals 173% of the optimal cost (achieved by
iTO-AA-SIPP). Dynamic obstacles are not shown.

posed in (Phillips and Likhachev 2011). SIPP was enhanced
to handle any-angle moves in (Yakovlev and Andreychuk
2017) but the resulting algorithm is not optimal w.r.t. such
moves. The algorithms suggested in this work indeed belong
to the SIPP family and provide provably optimal solutions
for any-angle path planning with dynamic obstacles.

Finally, one might trace the similarities between
iTO-AA-SIPP and LPA* (Koenig, Likhachev, and Furcy
2004). Nonetheless, these algorithms are quite different as
we explained earlier in the paper. R* algorithm (Likhachev
and Stentz 2008) might also be noted in that context as it
also reasons over the set of potential parents for a search
node and uses the term glow(n) in a similar sense as we
do. Still, the idea behind R* (randomizing the search to
avoid local minima) is fundamentally different from that of
iTO-AA-SIPP.

Summary
In this paper, we have considered the problem of finding
time-optimal any-angle paths in the presence of moving ob-
stacles and proposed two algorithms that can obtain prov-
ably optimal solutions. A prominent direction of future re-
search is developing more efficient optimal solvers as we
believe that the considered problem demands more elegant
solutions.

The presented algorithms might also be of a certain
value to the multi-agent path finding (MAPF). E.g. the
suggested iTO-AA-SIPP planner can be used as the low-
level solver for the MAPF algorithms of the conflict-based
search (CBS) family that support non-uniform cost moves
into arbitrary (any-angle) directions: ECBS-CT (Cohen et al.
2019), CCBS (Andreychuk et al. 2019), CBS+TAB (Walker,
Sturtevant, and Felner 2020), etc. Note, however, that in
these algorithms the low-level planner is invoked thousands
of times so its efficiency should be high. We believe that
iTO-AA-SIPP in its current form is not fast enough to be
straightforwardly used in CBS-solvers. This, again, moti-
vates the development of more advanced algorithms that
can find time-optimal any-angle paths in the presence of dy-
namic obstacles.
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