Iterative-deepening Bidirectional Heuristic Search with Restricted Memory

Shahaf S. Shperberg¹, Steven Danishevski², Ariel Felner², Nathan R. Sturtevant³

¹ CS Department, Ben-Gurion University, Be’er-Sheva, Israel
² ISE Department, Ben-Gurion University, Be’er-Sheva, Israel
³ Department of Computing Science, Alberta Machine Intelligence Institute (Amii), University of Alberta, Canada
shperbsh@post.bgu.ac.il, stiven@post.bgu.ac.il, felner@bgu.ac.il, nathanst@ualberta.ca

Abstract

The field of bidirectional heuristic search has recently seen great advances. However, the subject of memory-restricted bidirectional search has not received recent attention. In this paper we introduce a general iterative deepening bidirectional heuristic search algorithm (IDBiHS) that searches simultaneously in both directions while controlling the meeting point of the search frontiers. First, we present the basic variant of IDBiHS, whose memory is linear in the search depth. We then add improvements that exploit consistency and front-to-front heuristics. Next, we move to the case where a fixed amount of memory is available to store nodes during the search and develop two variants of IDBiHS: (1) A*+IDBiHS, that starts with A* and moves to IDBiHS as soon as memory is exhausted. (2) A variant that stores partial forward frontiers until memory is exhausted and then tries to match each of them from the backward side. Finally, we experimentally compare the new algorithms to existing unidirectional and bidirectional ones. In many cases our new algorithms outperform previous ones in both node expansions and time.

1 Introduction and Overview

Search algorithms can be classified into three main categories with regards to the amount of memory they consume.

1. Linear memory (LM). An algorithm may only store a single branch of the search tree (a path), and its memory consumption is $O(d)$ where d is the depth of the search.

2. Fixed memory (FM). An algorithm is given a fixed amount of memory M (on top of the memory required for storing a single path) and must never exceed it. Cases 1 and 2 are denoted hereafter as Restricted Memory (RM).

3. Unrestricted memory (UM). Such algorithms are not restricted and usually use memory proportional to the size of the search tree that they explored. For example, A* (Hart, Nilsson, and Raphael 1968) stores all the nodes it generates in memory (either in OPEN or in CLOSED), which could grow polynomially or exponentially with the search depth. UM algorithms enable duplicate detection, which can potentially accelerate the search, but they cannot solve problems when memory is exhausted. Therefore, numerous RM algorithms have been developed for unidirectional heuristic search (UniHS).

In bidirectional heuristic search (BiHS) the search is performed simultaneously from the start and from the goal until the two search frontiers meet. Significant advances in BiHS were (recently) achieved in the UM category. A novel line of research was initiated with MM (Holte et al. 2016), a BiHS algorithm that meets in the middle, i.e. it will never expand a node whose g-value exceeds $C^*/2$ (where C^* is the optimal solution cost). Fractional MM (fMM) (Shaham et al. 2017) is a generalization of MM. Given a fraction $p (0 < p < 1)$, fMM(p) is guaranteed not to expand nodes in the forward side whose g-value exceeds $p \cdot C^*$, and nodes in the backward side whose g-value exceeds $(1 - p) \cdot C^*$ (MM is fMM with $p = 1/2$). General Breath-first Heuristic Search (GBFHS) (Barley et al. 2018) is a similar algorithm that sets the meeting points between the frontiers using a parameterized split function that limits which nodes are expanded from each side.

Nevertheless, unlike UniHS, the work on RM bidirectional search (RMBiS) is very limited (see Section 3.2). The aim of this paper is to start closing this gap. The main challenge for RMBiS is connecting the two frontiers, as they cannot both be fully stored without external memory (Sturtevant and Chen 2016). In an attempt to overcome this challenge, we propose several methods, all of which adapt the flexible meeting-point approach of fMM and GBFHS.

We introduce a general iterative deepening bidirectional heuristic search algorithm (IDBiHS) that searches simultaneously from both directions while controlling the meeting point of the search frontiers. The basic variant of IDBiHS only stores a single path in memory (LM). It generalizes IDA* (Korf 1985) by running DFS from both search directions. For every forward frontier node n_f, a DFS is executed from the backward side in an attempt to find an optimal path to n_f. Next, we introduce two new fixed-memory BiHS algorithms (FM). Our first FM BiHS algorithm generalizes A*+IDA* (Bu and Korf 2019) by first running A* until M is exhausted. Then, it moves to IDBiHS, where the forward direction DFS starts from OPEN; this algorithm is therefore called A*+IDBiHS. Our second algorithm is called IDBiHS-Trans. It stores a partial set of forward fron-
tier nodes based on the memory available and tries to match the entire set with a backward DFS. We study variants and add improvements to all these algorithms.

Finally, we empirically evaluate all algorithms on several domains and compare them to existing ones. We show that IDBiHS outperforms IDA* in runtime and node expansions by up to a factor of 5.3. Furthermore, both A*+IDBiHS and IDBiHS-Trans improve upon IDBiHS and outperform existing FM methods by up to a factor of 3.

2 Definitions and Terminology

A shortest-path problem instance, \(I \), is defined as a n-tuple \((G = (V, E), \text{start}, \text{goal}, h_F, h_B)\), where \(G \) is a graph, and \(\text{start, goal} \in V \). In the shortest-path problem the aim is to find the least-cost path (with cost \(C^* \)) between \(\text{start} \) and \(\text{goal} \). UniHS algorithms search forward from \(\text{start} \) to \(\text{goal} \), while BiHS algorithms interleave two separate searches, a forward search from \(\text{start} \) and a search backward from \(\text{goal} \) until the search frontiers meet.

IDBiHS improves upon IDBiHS and outperforms existing BM algorithms by up to a factor of 3.

3 Background

3.1 Restricted Memory UniHS Algorithms

IDA* (Korf 1985) is a benchmark LM UniHS algorithm. IDA* iterates on a threshold \(T \), which is a lower-bound on \(C^* \) (initialized to be \(f_F(\text{start}) \)). At each iteration, IDA* performs a DFS from \(\text{start} \) and prune nodes with \(f > T \). The minimum \(f \)-value of the pruned nodes becomes the \(T \) value of the next iteration. The process repeats until \(T = C^* \) and IDA* finds an optimal solution.

Many enhancements have been proposed for IDA* (Sarkar et al. 1991; Wah and Shang 1994; Burns and Rumel 2013; Stern et al. 2010; Bu et al. 2014; Sharon, Felner, and Sturtevant 2014; Hatem, Burns, and Rumel 2018), as well as other LM algorithms such as Dual IDA* (Zahavi et al. 2008), and IBEX (Helmert et al. 2019). These algorithms only store a single path and do not utilize the available memory.

To better utilize the available memory, many FM UniHS algorithms have been developed. A non-exhaustive list includes MREC (Sen and Bagchi 1989; Reinefeld and Marsland 1994), MA* (Chakrabarti et al. 1989), SMA* (Russell 1992), DBIDA* (Eckerle and Schuierer 1995), FPS (Schütz, Döbbelin, and Reinefeld 2013), breath-first heuristic search (Zhou and Hansen 2004) and A*+IDA* (Bu and Korf 2019).

3.2 Restricted Memory BiHS Algorithms

SFBDS. A notable LM BiHS algorithm is the IDA* variant of SFBDS (Felner et al. 2010; Lipi, Ermanedes, and Felner 2016). A node in SFBDS is composed of two states, a forward state and a backward state, and a solution is found when both states are identical. When expanding a node either the forward state is forward expanded or the backward state is backward expanded. The decision of which state to expand is determined by a jumping policy. Given a fixed jumping policy, a tree is induced which can be searched using any admissible search algorithm. The IDA* variant of SFBDS applies IDA* on the induced tree to search for solutions. Since in SFBDS a search tree is induced by a jumping policy, when comparing to SFBDS, one should compare to specific existing jumping policies. The most promising jumping policy reported (Felner et al. 2010; Lipi, Ermanedes, and Felner 2016) was the jump if larger policy (JIL(K)) that calculates the forward and backward heuristics after performing a lookahead to depth \(k \). Then, JIL(k) chooses to expand the side with the larger \(h \)-value.

Perimeter Search Algorithms. Perimeter search (Dillenburg and Nelderson 1994) is a class of FM BiHS algorithms. First, a perimeter around \(\text{start} \) or \(\text{goal} \) is constructed. Then, a DFS is executed from the opposite direction until the perimeter is reached. Two variants of perimeter search are BIDA* and BAI which are covered next.

BIDA* (Manzini 1995), assumes a consistent F2F heuristic \(h(u, v) \) between any two states and builds a perimeter \(P_d \) with a depth of \(d \) around the goal. BIDA* runs IDA* towards \(P_d \) and as a heuristic for a node \(n \) it uses \(h_d(n) = \min_{m \in P_d} (h(n, m) + d(m, goal)) \). Due to the consistency of the heuristic, BIDA* matches against a relevant nodes list within the perimeter. When a node \(n \) is explored by BIDA*, nodes \(m \) within the perimeter for which \(d(\text{start}, n) + h(n, m) + d(m, goal) > T \) are removed from the perimeter when exploring any of \(n \)’s children. Therefore, BIDA* performs fewer heuristic evaluations as the depth of the search grows.

BAI (Kaindl et al. 1995) builds the perimeter by running reversed A* from the goal and searches towards the perimeter by a forward IDA*. BAI-Trans is a variant of BAI that allocates some memory to IDA* as well, to be used as a transposition table, as done by Reinefeld and Marsland (1994). Finally, if the heuristic is consistent, BAI can be enhanced with the KMax method from Kaindl and Kainz (1997). Let \(f_{\text{min}} \) be the minimum \(f \)-value among all nodes in the perimeter. Nodes \(n \) with \(f_{\text{g}}(n) - h_B(n) + f_{\text{min}} > T \) are pruned by IDA*. This enhancement results in Max-BAI and Max-BAI-Trans.²

Finally, Wilt and Rumel (2013) proposed a perimeter-based algorithm that dynamically maintains a perimeter from the backward side and runs IDA* from the forward side using the KKAID method from Kaindl and Kainz (1997).

²Kaindl and Kainz (1997) also introduced Max-IDA*, which runs IDA*(without a perimeter) and switch the search direction every time \(T \) is increased, to apply the Max method. However, Max-IDA* was not significantly better than IDA*.
However, this algorithm increases the size of the perimeter during the search and is therefore not an RM algorithm.

3.3 The GBFHS Algorithm

General breadth-first heuristic search (GBFHS, Barley et al. (2018)) is a UM bidirectional heuristic search algorithm that iteratively increases the depth of the search. For each depth, denoted by f_{Lim}, GBFHS uses a split function (given as a parameter) that determines how deep to search on each side. The split function splits f_{Lim} to $gLim_F$ and $gLim_B$, such that $f_{Lim} = gLim_F + gLim_B + \epsilon - 1$, where ϵ is the minimum edge cost (in unit edge cost domains $\epsilon = 1$). For a given iteration (i.e., a given value of f_{Lim}) all nodes with $f_D(n) \leq f_{Lim}$ and $g_B(n) < g_{Lim_B}$ are called expandable. GBFHS expands all the expandable nodes from both directions. GBFHS terminates if there exists a node n in both open lists with $g_F(n) + g_B(n) \leq f_{Lim}$. Otherwise, f_{Lim} is incremented (a new iteration begins) and the split function updates either g_{Lim_F} or g_{Lim_B}. The frontiers of GBFHS can be controlled to meet anywhere using a proper split function. FMM shares this property, as the two algorithms are often equivalent (Shperberg and Felner 2020). Our algorithms below adapt this principle of controlling the meeting points.

4 Linear Memory BiHS

We now introduce our new algorithm, iterative-deepening bidirectional heuristic search, or IDBiHS. We first present the LM variant and then proceed to FM variants.

IDBiHS uses thresholds similar to those of GBFHS, but IDBiHS is based on DFS iterations rather than using a best-first search mechanism through the use of open lists (as in GBFHS), thus it uses memory linear in the depth (LM).

The pseudo-code of IDBiHS is given in Algorithm 1. First, fT (the current iteration threshold, identical to f_{Lim} in GBFHS) is initialized as h(start, goal) (line 2). Then, an iterative process repeats until a solution is found, where each iteration corresponds to a new fT value (lines 4-8).

In each iteration the task is to find a solution of cost fT. If such a solution is not found, fT is incremented (using $nextT$ as described below), and a new iteration begins. Given fT, the meeting point of the current iteration is obtained by calling the split function which is given to the algorithm as a parameter. The split function determines the meeting point of the current iteration by setting a forward g-threshold (gT_F). The split function must be monotonically non-decreasing over successive iterations and must never return values greater than fT. Specific split functions that were used in our experiments are described in Section 7.

4.1 Forward DFS

Once gT_F is obtained, a forward DFS procedure (F_DFS) is called from start (lines 9-24). When F_DFS encounters a node n_F, it has three cases (line numbers in parentheses):

1. Expand (20-24). If $f_F(n_F) \leq fT$ and $g_F(n_F) \leq gT_F$, then expand n_F and move to one of its children.
2. Prune (10-12). If $f_F(n_F) > fT$, prune n_F and backtrack.

Algorithm 1: pseudo-code for IDBiHS

```
1 IDBiHS (s,g,h,split,\epsilon)
2   fT, nextT ← h(start, goal)
3   path ← ∅
4   while true do
5      γT ← split(fT)
6      if F_DFS(s,g,fT,gT_F,h,path,nextT,ε)
7         return path
8      fT ← nextT
9
10 F_DFS(n_F,g,fT,gT_F,h,path,nextT,ε)
11   if f_F(n_F) > fT
12      return false
13   b_path ← ∅
14   if g_F(n_F) > g_T
15      b_path ← ∅
16   nextT ← nextT + 1
17   if B_DFS(n_F,g,fT,gT_B,h,b_path,nextT)
18      return true
19   return false
20   foreach neighbour n of n_F do
21      path.push(state(n_F))
22      if F_DFS(n_F,g,fT,gT_B,h,path,nextT,ε)
23         return true
24      path.pop()
25
26 B_DFS(n_F,n_B,fT,gT_B,h,b_path,nextT)
27   if state(n_B) = state(n_F) and g_F(n_F) + g_B(n_B) ≤ fT
28      return true
29   if f_B(n_B) > fT or g_B(n_B) > g_T
30      return false
31   updateNextBound(nextT,f_T, max(f_B(n_B), g_F(n_F) + g_B(n_B) + \epsilon, f_T))
32   return false
33   foreach neighbour n of n_B do
34      b_path.push(state(n_B))
35      if B_DFS(n_F,n_F,fT,gT_B,h,b_path,nextB)
36         return true
37      else
38         b_path.pop()
39   updateNextBound(nextT,f_T)
40   if f > fT
41      nextT ← min(nextT, f_T)
```

3. Suspend and Match (13-18). If $f_F(n_F) \leq fT$ and $g_F(n_F) > g_T_F$, suspend F_DFS and call the backward DFS (B_DFS) in an attempt to match n_F from the backward side. As illustrated in Figure 1a, B_DFS is called for every forward frontier node n_F until either a solution is found or all forward frontier nodes have been explored.

When calling B_DFS on candidate nodes n_F, the g-threshold for the backward direction (gT_B) needs to be defined. Unlike GBFHS, where g_{Lim_B} is known given f_{Lim} and g_{Lim_F} ($g_{Lim_B} = f_{Lim} - g_{Lim_F} - 1 + \epsilon$), in IDBiHS g_{T_B} is defined specifically for each node n_F to be matched. For example, assume that $fT = 10$, $gT_F = 5$ and $\epsilon = 1$.

333
Further assume that F,DFS found a node n_F to be matched with $f_F(n_F) \leq 10$ and $g_F(n_F) = 7 > 5$. Then B,DFS needs only to expand nodes up depth 2 ($g_T = 2$), thus generating nodes with cost 3 and matching n_F. However, if $g_B(n_F) = 6$, then nodes whose $g_B = 3$ also need to be expanded ($g_T = 3$). This example shows that different g_T values can be defined for the same f_T and g_T. Hence, we define: $g_T(n_F) = f_T - g_F(n_F) - \epsilon$ (line 15).

4.2 Backwards DFS

Upon reaching a candidate meeting node n_F in F,DFS and setting g_T, B,DFS performs a DFS iteration from g_T (lines 25-36). When B,DFS encounters a node n_B, it has three options (line numbers in parentheses):

1. **Expand** (31-36). If $f_B(n_B) \leq f_T$ and $g_B(n_B) \leq g_T$, then expand n_B and move to one of its children.
2. **Prune** (28-30). If $f_B(n_B) > f_T$, prune n_B and backtrack.
3. **Match** (26-27). If $f_B(n_B) \leq f_T$ and $g_B(n_B) > g_T$, match n_F against n_B. If they represent the same state, a solution has been found. Otherwise, n_B can be immediately pruned.

After B,DFS finishes without matching n_F, B,DFS returns false and F,DFS resumes by backtracking from n_F. Note that in every iteration F,DFS is called once, while B,DFS is called many times, once for each frontier node.

As soon as all forward paths have been explored by F,DFS and no solution has been found, F,DFS returns false and a new iteration begins. Finally, the minimum f-value among all nodes pruned (from either direction) with $f > f_T$ is a lower-bound on the cost of any solution that goes through them. Moreover, solutions that go through nodes n_B, that were pruned due to their g-value in an attempt to match a forward node n_F, are bounded by $g_F(n_F) + g_B(n_B) + \epsilon$. Therefore, next f-threshold is updated to be the minimum between all bounds (line 8).

4.3 Theoretical Analysis of IDBiHS

We now show that IDBiHS returns optimal solutions.

Lemma 1. IDBiHS is guaranteed to return an optimal solution when given admissible heuristics.

Proof. First, observe that IDBiHS cannot terminate before a solution of cost f_T is found (while true loop at line 4) and that at every iteration of the while loop, f_T is incremented. Assume by contradiction that IDBiHS did not find an optimal solution when $f_T = C^*$. When $f_T = C^*$, IDBiHS considers for expansion all nodes u, with $f_F(u) \leq C^*$ and $g_F(u) \leq g_T$. Assume that a node u belongs to an optimal path $\text{start} = \ldots, a, v, w, \ldots, \text{goal}$, and that u is the last node in the path such that $d(\text{start}, u) \leq g_T$. If the heuristic is admissible, the f-value of every node in the path cannot exceed C^*, therefore $f_F(u) \leq C^*$. Thus, the forward direction expands u and the backward search attempts to match v. Then, all nodes v' with $f_F(v') \leq C^*$ and $g_F(v') \leq C^* - g_F(v) - \epsilon$ are considered for expansion by the backward search. Since v is on an optimal path, $g_F(v) = C^* - g_F(v)$. In addition, $f_T = C^*$. Since (v, w) is an edge in the search graph, we know that $d(v, w) \leq \epsilon$, and therefore $g_B(w) \leq g_F(v) - \epsilon$. Moreover, due to admissibility, $f_B(w) \leq C^*$, thus w fulfills both conditions, and is expanded by the backward search. Then, v is matched, and an optimal solution is found, a contradiction.

In exponential unit edge cost domains where no heuristic is available, IDBiHS will generate $b(g_T)$ forward frontier nodes for each iteration (f_T), where b is the branching factor. For every forward frontier node, B,DFS expands all nodes up to depth g_T. Since we consider unit edge cost problems, $\epsilon = 1$ and $g_F(n_F) = g_T + 1$ for every node n_F searched for by the backward search. Thus,

$$g_T = f_T - g_F(n_F) - \epsilon = f_T - g_T$$

This means that for every iteration, IDBiHS expands $b(g_T^C) \cdot b(g_T) = b(g_T^C) \cdot b(f_T - g_T)$ nodes, similar to IDA*. However, IDBiHS has worse performance in polynomial unit edge cost problems in which no heuristic is available. Assume that the number of expansions performed by a DFS up to depth d is bounded by d^C for some constant C. Therefore, IDA* will perform $(fT)^C$ expansions for each threshold f_T. By contrast, IDBiHS expands $(g_T^C) \cdot (f_T - g_T)^C$, which is significantly more than the fT^C nodes expanded by IDA*. Nonetheless, we show that when a heuristic is available, IDBiHS can often outperform IDA* when applying the improvements described next.
DFS can employ
10,767
DFS starting from a node
110,171
218,698
DFS as explained above. Then, once
Both
1,540,325
75,205
85
didn’t contribute at all (85 for Imp1 and for both), while for
both Imp1 and Imp2 has a diminishing effect. For GAP, it
significant as the heuristic deteriorates. However, combining
imp2 is further reduced the num-
4,680
4,680
2,000 in terms of run-time
5.1 Improvements Evaluation

We evaluated the effectiveness of these improvements over
the original IDBiHS (given a meet-in-the-middle split pol-
icy) on the Pancake Puzzle with n pancakes (P[n]). We used the the GAP (G) heuristic (Helmert 2010). In addition,
to get a range of heuristic strengths, we also used the
G-k heuristics (for k ∈ {1, 2, 3}) where the k smallest
pancakes are deleted from the GAP heuristic computation
(Holte et al. 2016). For each combination of n and k, we
used 100 random problems. The results are reported in Ta-
ble 1, which presents the the average number of nodes ex-
panded by IDBiHS for n = 12 pancakes. The results show
that applying either Imp1 or Imp2 speeds up the search by
up to a factor of 2,700 in terms of node expansions (See G-2
and Imp1) and by up to a factor 2,000 in terms of run-time
compared to the basic variant. This difference becomes more
significant as the heuristic deteriorates. However, combining
both Imp1 and Imp2 has a diminishing effect. For GAP, it
didn’t contribute at all (85 for Imp1 and for both), while for
GAP-3 using both improvements further reduced the num-
ber of expansions by a factor of 5.

In terms of runtime, IDBiHS is very efficient and has an
overhead similar to IDA*. Imp1 runtime depends on the dif-
ficulty of obtaining a heuristic estimation between nodes.

For example, in GAP-k, Manhattan distance (MD), and pat-
tern databases (PDBs) (Culberson and Schaeffer 1998) on
permutation problems such as Rubik’s cube, there is no ad-
tional overhead for using F2F heuristic over F2E heuris-
tic. However, using PDBs on the sliding-tile puzzle (STP)
for F2F heuristics requires more memory and several more
heuristic evaluations for each F2E evaluation due to the
asymmetry introduced by the blank (Zahavi et al. 2008). For
some problems (e.g., 4-peg Towers of Hanoi), it is not clear
how to create efficient F2F heuristics and Imp1 is not appli-
cable. Applying Imp2 requires two additional heuristic eval-
uations for each backward frontier node. When combining
Imp1 and Imp2, the overhead from these extra evaluations
is not significant, as most nodes are pruned by Imp1 and
Imp2 is rarely applied. For example, the average runtime
(seconds) in G-3 when using only Imp1 was 4.8 compared
to 1.14 when using both improvements (x5.4 fewer node ex-
ansions and x4.2 less time).

The trends reported above are also evident when evalu-
ating Imp1 and Imp2 on other domains (the domains used in
in Section 7). Based on all this, it is certainly worthwhile
to apply both improvements whenever possible. Therefore,
only IDBiHS with both improvements is further evaluated
and compared to other algorithms in Section 7.

6 Allowing Additional Memory

IDBiHS and its suggested improvements use memory linear in C*.
We now introduce two FM variants of IDBiHS.

6.1 A*+IDBiHS

The first algorithm, A*+IDBiHS (illustrated in Figure 1b), is a variation of IDBiHS inspired by A*+IDA* (Bu and Korf 2019). Given a memory budget M, A*+IDA* first runs
A* until either a solution is found, or the memory used by
A* exceeds M. Then, it continues by running IDA* start-
ing from the OPEN nodes, denoted hereafter as NF. Simi-
larly, A*+IDBiHS executes A* from start until it runs out
of memory. Then, IDBiHS is executed sequentially from the
nodes in NF as follows. FT is initialized to be the mini-
mal f-value in NF. Next, F_DFS is executed on all nodes
n ∈ NF for which f_F(n) = FT in increasing order of h-
values (the same ordering used by A*+IDA*). For each ex-
cution of F_DFS starting from a node n ∈ NF, the next
threshold variable (nextT) is initialized to be FT and is up-
dated during F_DFS as explained above. Then, once F_DFS
fails to find an optimal solution from n, h(n) is updated to
be the current nextT − g(n).

Imp1 and Imp2 can also be applied to the IDBiHS
searches in A*+IDBiHS. In addition, F_DFS can employ
duplicate-detection (DD) and prune duplicate nodes that
already appear in the closed list of A* or in NF. However,
DD induces additional overhead, as it requires computing
hash functions for states, which can be expensive. Nonethe-
less, DD improved the performance of A*+IDBiHS and was
therefore used in the experiments reported in Section 7.

Note that IDBiHS can also be bootstrapped using GBFHS
instead of A*. The available memory is split between the
two sides. But, doing this will weaken the strength of Imp1.
Assume that IDBiHS is bootstrapped by a BiHS, and that \(N_F, N_B \) are the forward and backward nodes in OPEN, respectively, after memory was exhausted. Now, \(F_{DFS} \) is executed from each node in \(N_F \), and when a frontier node \(n_F \) is discovered, \(B_{DFS} \) must match \(n_F \) to every node in \(N_B \). In practice, most nodes in \(N_B \) are pruned right away, since their F2F heuristic to \(n_F \) makes their \(f \)-value exceed \(fT \). Thus, \(B_{DFS} \) iterations from such nodes are initiated and halt right away. In contrast, a \(B_{DFS} \) from \textit{goal} (e.g., IDBiHS and \(A^*+IDBiHS \)) prunes common ancestors of these nodes without the need to visit them. While the unnecessary iterations over the nodes in \(N_B \) do not require additional node expansions, they consume a significant amount of time. In fact, we experimented with first running MM and then moving to IDBiHS when the memory budget is exhausted. Indeed, this algorithm required fewer node expansions than \(A^*+IDA^* \) and \(A^*+IDBiHS \), but it had a much larger runtime.

6.2 IDBiHS-Trans
We now introduce IDBiHS-Trans, a variant of IDBiHS that uses a transposition table to store nodes (illustrated in Figure 1c). While \(A^*+IDA^* \) stores nodes near \textit{start} to minimize the number of duplicate nodes on lower depths, IDBiHS-Trans stores frontier nodes in order to match against multiple nodes at once, and thus calling \(B_{DFS} \) fewer times (from the other frontier). In particular, if the available memory is sufficient to store \(K \) frontier nodes, then the number of \(B_{DFS} \) calls will be reduced by a factor of \(K \). The pseudo-code of IDBiHS-Trans is very similar to basic IDBiHS (Algorithm 1), with a few small differences. Instead of calling \(B_{DFS} \) on line 16, in an attempt to match \(n_F \) (a forward frontier node), \(n_F \) is inserted into a transposition table. \(B_{DFS} \) is called only when the transposition table is full. Then, instead of matching against a single forward frontier node, \(B_{DFS} \) tries to match any of the nodes of the transposition table at once. If a solution was not found by \(B_{DFS} \), the transposition table is discarded and \(F_{DFS} \) resumes.

Finally, Imp1 and Imp2 can be applied to IDBiHS-Trans. However, while Imp2 can be efficiently computed by using the minimal \(Diff_F(k) \) value among all nodes \(k \in K \). Imp1 is costly as F2F heuristic evaluation needs to be performed against each one of the \(K \) forward frontier nodes. Therefore, imp1 makes each \(B_{DFS} \) more expensive. Nonetheless, given a consistent heuristic, BIDAS’s method of saving heuristic evaluations can be applied (see Section 3). Specifically, when \(B_{BFS} \) considers a node \(n_B \), every node \(k \in K \) for which \(g_F(k) + h(k,n_B) + g_B(n_B) > fT \) can be discarded when calling \(B_{BFS} \) on children of \(n_B \).

7 Empirical Evaluation
We performed experiments on three domains: (1) The Pancake Puzzle as described in Section 5.1. (2) The standard 100 instances of the 15 puzzle (STP) problem (Korf 1985) using the MD heuristic. (3) 8-Grid-based pathfinding using the octile heuristic: 16 b1e maps from Dragon Age Origins (DAO) with canonical ordering (Sturtevant 2012), each with 350 different start and goal points (a total of 5,600 instances). The edge cost of diagonal moves is 1.5. In all of these domains \(\epsilon = 1 \). Note that all of the above heuristic are consistent and can be used both as F2E and F2F.

All experiments were run on a machine with an AMD Ryzen 9 3900X CPU, on a single core and a 64GB RAM.

Our implementation is integrated into HOG2, a well-known, open-source, search platform. HOG2 implements common domains, heuristics and algorithms, and is used in numerous papers by many authors.

7.1 Comparison of LM Algorithms
First, we compare the following LM algorithms: IDA*, SF- BDS with JIL(1) as a jumping policy,\(^7\) and IDBiHS. IDBiHS was evaluated using two different split policies. The first policy, denoted as IDBiHS-0.5 splits each \(fT \) in the middle \((gT_F = (fT/2) - \epsilon) \). The second policy was inspired by Pohls cardinality criterion (Pohl 1971; Barley et al. 2018). The idea is to balance the workload (BW) between the two frontiers. IDBiHS-BW counts the number of nodes expanded in the previous iteration in the forward search, and those expanded in the backward search, and increments the \(g \)-threshold of the direction that expanded fewer nodes. The increment is the difference between the next iteration’s \(fT \) and the current iteration’s \(fT \). In IDBiHS this means either increasing \(gT_F \) or leaving \(gT_B \) unchanged, which will automatically cause \(gT_B \) to increase, since \(fT \) is increased. We also experimented with a policy that considers the number of pruned nodes, but the results were similar to that of the BW split function.

Table 2 presents the averages number of node expansions before finding an optimal solution and the runtime for the LM algorithms. The task of finding an optimal solution is composed of two sub-tasks: finding a solution, and proving its optimality. In order to measure the effort invested in each of these two sub-tasks, we also report, in parenthesis next to the node expansions, what percentage of the overall expansions was performed in the last C-layer (i.e. after the algorithm proved that there is no solution of cost less than \(C^* \)). For reference, we also provide results in the “Best UM” column for the best among the results of \(A^* \), reverse-\(A^* \) (\(A^* \) from \textit{goal} to \textit{start} and MM). We used these algorithms because they are well-known and simple. In addition, they naturally bound the number of nodes expansions of our methods. \(A^* \) bounds IDA* (and other algorithms that use IDA* iterations), reverse-\(A^* \) bounds the effort of building the perimeter, and MM bounds IDBiHS with a meet-in-the-

\(^5\)https://github.com/nathanstt/hog2: HOG2 is a general platform, thus, low-level and domain specific optimization tricks (e.g., see (Burns et al. 2012)) that speedup the CPU overhead are not always implemented. However, the timing trends reported below will likely apply for more optimized and/or domain specific solvers.

\(^6\)We also tried using a lookahead of 2, but the runtime overhead was too great and many problems timed-out without solution.
Table 2: Average node expansions and runtime of linear-memory algorithms

<table>
<thead>
<tr>
<th>Domain</th>
<th>H</th>
<th>Best UM</th>
<th>IDA*</th>
<th>SF BDS JIL(1)</th>
<th>IDBiHS 0.5</th>
<th>IDBiHS BW</th>
<th>Best UM</th>
<th>IDA*</th>
<th>SF BDS JIL(1)</th>
<th>IDBiHS 0.5</th>
<th>IDBiHS BW</th>
<th>Time(sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P[10]</td>
<td></td>
<td>21(63%)</td>
<td>32(72%)</td>
<td>72(76%)</td>
<td>31(72%)</td>
<td>53(60%)</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2.90</td>
</tr>
<tr>
<td></td>
<td>G-1</td>
<td>371(13%)</td>
<td>1,674(58%)</td>
<td>2,068(60%)</td>
<td>650(57%)</td>
<td>538(60%)</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2.90</td>
</tr>
<tr>
<td></td>
<td>G-2</td>
<td>2,054(9%)</td>
<td>43,571(54%)</td>
<td>38,289(56%)</td>
<td>10,178(57%)</td>
<td>9,845(57%)</td>
<td></td>
<td>0.00</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>G-3</td>
<td>3,369(4%)</td>
<td>549,522(53%)</td>
<td>511,224(55%)</td>
<td>132,910(56%)</td>
<td>118,407(55%)</td>
<td></td>
<td>0.01</td>
<td>0.25</td>
<td>0.08</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>P[12]</td>
<td></td>
<td>34(57%)</td>
<td>951(70%)</td>
<td>1,692(79%)</td>
<td>857(76%)</td>
<td>857(77%)</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>G-1</td>
<td>1,256(14%)</td>
<td>9,665(72%)</td>
<td>8,622(74%)</td>
<td>3,417(70%)</td>
<td>2,897(72%)</td>
<td></td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>G-2</td>
<td>13,089(10%)</td>
<td>383,488(68%)</td>
<td>205,469(71%)</td>
<td>75,205(70%)</td>
<td>72,939(72%)</td>
<td></td>
<td>0.04</td>
<td>0.25</td>
<td>0.15</td>
<td>0.06</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>G-3</td>
<td>38,545(6%)</td>
<td>8,601,396(66%)</td>
<td>4,161,889(69%)</td>
<td>1,540,325(71%)</td>
<td>1,390,806(69%)</td>
<td></td>
<td>0.13</td>
<td>5.44</td>
<td>2.90</td>
<td>1.14</td>
<td>1.03</td>
</tr>
<tr>
<td>P[45]</td>
<td></td>
<td>45,822(50%)</td>
<td>140,574(74%)</td>
<td>184,809(74%)</td>
<td>128,912(78%)</td>
<td>127,743(78%)</td>
<td></td>
<td>2.32</td>
<td>0.94</td>
<td>1.25</td>
<td>0.85</td>
<td>0.84</td>
</tr>
<tr>
<td>STP</td>
<td>MD</td>
<td>8,143,628(2%)</td>
<td>232,460,834(50%)</td>
<td>139,225,772(46%)</td>
<td>117,414,968(40%)</td>
<td>137,331,587(48%)</td>
<td></td>
<td>24.76</td>
<td>37.85</td>
<td>35.90</td>
<td>36.44</td>
<td>29.29</td>
</tr>
<tr>
<td>Grid</td>
<td>Octile</td>
<td>383(70%)</td>
<td>47,060(75%)</td>
<td>131,488(78%)</td>
<td>210,555(78%)</td>
<td>122,304(79%)</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Table 3: Comparison of FM Algorithms

<table>
<thead>
<tr>
<th>Domain</th>
<th>H</th>
<th>Best UM</th>
<th>IDA*</th>
<th>SF BDS JIL(1)</th>
<th>IDBiHS 0.5</th>
<th>IDBiHS BW</th>
<th>Time(sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td></td>
<td>21(63%)</td>
<td>32(72%)</td>
<td>72(76%)</td>
<td>31(72%)</td>
<td>53(60%)</td>
<td>2.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>34(57%)</td>
<td>951(70%)</td>
<td>1,692(79%)</td>
<td>857(76%)</td>
<td>857(77%)</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>38(54%)</td>
<td>951(70%)</td>
<td>1,692(79%)</td>
<td>857(76%)</td>
<td>857(77%)</td>
<td>0.01</td>
</tr>
<tr>
<td>STP</td>
<td>MD</td>
<td>8,143,628(2%)</td>
<td>232,460,834(50%)</td>
<td>139,225,772(46%)</td>
<td>117,414,968(40%)</td>
<td>137,331,587(48%)</td>
<td>24.76</td>
</tr>
<tr>
<td>Grid</td>
<td>Octile</td>
<td>383(70%)</td>
<td>47,060(75%)</td>
<td>131,488(78%)</td>
<td>210,555(78%)</td>
<td>122,304(79%)</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Note that “Best UM” is not the best possible unrestricted memory algorithm, as there are other sophisticated algorithms which may be better than the ones we used (see for example Alcázar, Riddle, and Barley (2020)).

7.2 Comparison of FM Algorithms

Table 3 presents results for FM algorithms. In order to consider meaningful amounts of memory, we used a memory budget proportional to the number of states stored by the Best UM algorithm (denoted by S). Specifically, we used C · S, where C ∈ {50%, 10%, 1%}. In most cases, IDBiHS-Trans requires the fewest expansions. However, it has a large runtime overhead per node. Nonetheless, IDBiHS-Trans achieved the fastest runtime in STP. Max-BAI performed well, achieving the fastest runtime and the least number of node expansions in GAP-1 through GAP-3, when having 50% memory. However, its performance deteriorated the most when less memory was available. By contrast, A*+IDBiHS uses less overhead per node, and therefore is often the fastest algorithm. We also compared to Max-BAI with different ratios between memory used for the perimeter and for the transposition table, but the results were similar to those of Max-BAI and are not reported.

All fixed memory algorithms experience a trade-off. Having more memory often results in fewer node expansions. However, more memory results in a larger overhead per node due to the cost of maintaining the required data-structures. For example, in STP, Max-BAI runs almost 4 times slower per node with 50% memory than with 10% memory. IDBiHS-Trans also demonstrates an anomaly, where using more memory result in more node expansions and the percentage of nodes expanded in the last C-layer is higher. The reason behind this anomaly is that forward frontier nodes are stored and matched by BDFS only after the available memory is full. In the worst case scenario, an optimal solution can be found by matching only the first forward frontier node, but this node will only be matched once memory is filled by many other forward nodes. Thus, less memory ensures that fewer forward nodes are expanded. On the other hand, more memory causes fewer BDFS executions, and thus fewer backward nodes are expanded. Therefore, the task of choosing how much memory to allocate is not trivial for any algorithm, especially for IDBiHS-Trans. Nonetheless, in most cases, it is more beneficial to use available memory than to not use memory at all (LM). In fact, IDBiHS-Trans has managed to run 2.7 times faster than the best UM algorithm (best among A*, reverse-A*, and MM) in STP. This improvement is partially due to the smaller overhead per node and partially due to less overall node expansions resulting from using consistency and the F2F heuristic.

8 Conclusions and Future Work

This paper presents IDBiHS, a general BiHS algorithm for memory-restricted algorithms. We started by introducing the basic variant which uses linear-memory. Then, we moved to fixed-memory algorithms and developed A*+IDBiHS, which bootstrap the search using A*, and IDBiHS-Trans, that uses a transposition table to store frontier nodes. An empirical evaluation suggests that our new methods often outperform existing methods in exponential domain, especially when given weaker heuristics. Nonetheless, all IDBiHS variants do not perform as well in polynomial domains. In addition, when the available memory is significantly large, both FM variants of IDBiHS can run slower and sometimes even expand more nodes than when using less memory. To over-
come these limitations, we propose to continue the research in the following directions:

(1) Different hybrids of A*+IDBiHS and IDBiHS-Trans. While a large memory budget can deteriorate the performance of each of these algorithms individually, a combination of both algorithms might be better at utilizing the available memory and improve the performance. Instead of using all available memory either on A* or on a transposition table, we propose to use a portion of the memory on each.

(2) Storing Frontier Nodes in Bloom-filters. A Bloom filter (Bloom 1970) is a space-bounded data structure that stores a set of elements, and can answer a query of whether an element is a member of a set. We propose to modify IDBiHS-Trans to store all frontier nodes in a Bloom-filter instead of storing some of them in a transposition table. Bloom-filters membership queries can return false-positive, but not false-negative. Therefore, when using Bloom-filters, states that are matched by B_DFS were not necessarily generated by the forward search. But, states that were not matched cannot possibly lead to a solution with a cost of \(fT \). Thus, only nodes matched by the backward search need to be stored as potential meeting points, for further matching by the forward side. The hope is that the additional overhead induced by the false-positives will be lower than the one induced by the iterations on many forward frontier partial lists.

(3) Improving RBiS in Polynomial Domains. IBEX is an LM algorithm (Helmert et al. 2019) that improves on IDA* in polynomial domains. The number of states that IDA* expands in polynomial domains is bounded by \(O(n^2) \), where \(n \) is the number of states within the final threshold, while IBEX is bounded only by \(O(n \log C^+) \). IBEX achieves this asymptotic improvement over IDA* by increasing the \(f \)-threshold in an aggressive way (based on ideas from exponential search and binary search). We believe that the same ideas can be also incorporated into RM-BiS algorithms.

(4) Adapting more algorithms. Here we considered algorithms that control the meeting point of the two frontiers. It would be valuable to try to adapt other recent BiS algorithms that do not control the meeting point (such as NBS (Chen et al. 2017), DVCBS (Shperberg et al. 2019), or BEA* (Alcázar, Riddle, and Barley 2020)) to the RM setting.

Acknowledgments

This work was supported by Israel Science Foundation (ISF) grant #844/17 to Ariel Felner and Eyal Shimony, by BSF grant #2017692, by NSF grant #1815660 and by the Frankel center for CS at BGU. This work was funded by the Canada CIFAR AI Chairs Program; we also acknowledge the support of NSERC.

References

