
Distributed Fair Scheduling for Information Exchange in Multi-Agent Systems

Majid Raeis,1 S. Jamaloddin Golestani 2

1 University of Toronto, Toronto, Canada
2 Sharif University of Technology, Tehran, Iran

m.raeis@utoronto.ca, golestani@sharif.edu

Abstract

Information exchange is a crucial component of many real-
world multi-agent systems. However, the communication be-
tween the agents involves two major challenges: the limited
bandwidth, and the shared communication medium between
the agents, which restricts the number of agents that can si-
multaneously exchange information. While both of these is-
sues need to be addressed in practice, the impact of the lat-
ter problem on the performance of the multi-agent systems
has often been neglected. This becomes even more important
when the agents’ information or observations have different
importance, in which case the agents require different pri-
orities for accessing the medium and sharing their informa-
tion. Representing the agents’ priorities by fairness weights
and normalizing each agent’s share by the assigned fairness
weight, the goal can be expressed as equalizing the agents’
normalized shares of the communication medium. To achieve
this goal, we adopt a queueing theoretic approach and pro-
pose a distributed fair scheduling algorithm for providing
weighted fairness in single-hop networks. Our proposed al-
gorithm guarantees an upper-bound on the normalized share
disparity among any pair of agents. This can particularly im-
prove the short-term fairness, which is important in real-time
applications. Moreover, our scheduling algorithm adjusts it-
self dynamically to achieve a high throughput at the same
time. The simulation results validate our claims and compar-
isons with the existing methods show our algorithm’s superi-
ority in providing short-term fairness, while achieving a high
throughput.

Introduction
Many real-world multi-agent systems rely on the informa-
tion exchange between the agents. However, the commu-
nication of the agents involves major practical limitations
such as the shared communication medium and the lim-
ited bandwidth. Whether the information exchange is re-
quired for the coordination of agents, or solely the transfer
of information from one point to another, the agents can-
not transmit their messages simultaneously over the same
communication medium. This becomes even more challeng-
ing when there is no coordinator to arbitrate access to the
medium and therefore, a distributed algorithm is required
for scheduling the agents’ transmissions. Fairness is a key
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concern in distributed scheduling algorithms, where some
agents might hog the communication medium for a long pe-
riod of time and therefore, lead to starvation of the other
agents. Moreover, the agents’ messages might have different
importance or different latency requirements. Information
exchange in multi-agent reinforcement learning (MARL) is
one such example, where the importance of each agent’s par-
tially observed information can be different from one an-
other (Kim et al. 2018). Weighted fair queueing, which has
long been used as an effective basis for resource allocation
and scheduling, is a natural candidate for dealing with these
cases. The main goal of the weighted fair queueing algo-
rithms is to provide service in proportion to some specified
service shares (also known as fairness weights) to the com-
peting users of a shared resource. The Generalized Processor
Sharing (GPS) scheme (Parekh and Gallager 1993) serves
as the reference for most of the existing fair queueing al-
gorithms in the literature. The GPS algorithm uses a fluid
flow model in which all the users can receive service simul-
taneously. However, because of the fluid flow assumption,
the GPS scheme is not applicable in many real-world ap-
plications such as information exchange. Consequently, al-
ternative fair queueing algorithms such as (Golestani 1994;
Goyal, Vin, and Cheng 1997) have been proposed to mimic
the behaviour of the GPS algorithm in real-world packet-
based applications. However, the majority of these algo-
rithms are centralized in implementation and cannot be used
directly to provide fair queueing in a distributed manner.

In the information exchange context, the communication
medium is the shared resource that needs to be scheduled
among the agents. In wireless networks, the medium ac-
cess control (MAC) protocol is responsible for scheduling
the users. IEEE 802.11 DCF1 (Wi-Fi) is the dominant dis-
tributed MAC protocol in wireless networks. Although there
has been some effort in designing distributed fair schedul-
ing algorithms based on 802.11 DCF, almost all these pro-
posed methods take heuristic approaches to emulate a par-
ticular centralized fair queueing algorithm without provid-
ing any guarantees or theoretical analysis. Moreover, they
suffer from short-term unfairness, which is particularly im-

1We use the terms 802.11 DCF and Wi-Fi interchangeably for
referring to the Distributed Coordination Function (DCF) protocol
in IEEE 802.11
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portant in real-time applications. In contrast, we propose a
distributed fair scheduling algorithm, which provides deter-
ministic guarantees on the normalized share disparity among
any pair of agents. Specifically, we propose a distributed
scheduling algorithm for information exchange in single-
hop wireless networks, which guarantees a bounded dispar-
ity between the normalized services received by any two
agents. To the best of our knowledge, this is the first time that
a distributed scheduling algorithm is capable of providing a
bounded service disparity among the users. This particularly
improves the short-term fairness of our proposed algorithm
compared to the existing ones. Furthermore, our algorithm
dynamically adjusts itself to balance the trade-off between
the fairness and the network throughput.

A Brief Background on 802.11 Wi-Fi
Wi-Fi is the dominant protocol for wireless communication
scheduling, which is based on CSMA (Carrier-Sense Mul-
tiple Access). The main idea of CSMA is that each agent
is required to listen to the medium before its transmission.
The agent is allowed to transmit its message only if the
medium is idle. However, to avoid collisions after busy pe-
riods, it uses the Binary Exponential Backoff (BEB) mech-
anism, which requires the agents to choose random back-
offs in the interval [0, CW ]. Whenever the medium becomes
idle, each agent discretizes the time into time slots of pre-
defined length (denoted by σ) and decrements its backoff
counter by one after each idle time slot. The backoff counter
will be frozen during the busy periods. When the counter
reaches zero, the agent is allowed to attempt a transmission.
The parameter CW is called the contention window, which
is doubled by the agent if its transmission is unsuccessful.
CW is reset to its default value once the agent transmits
its message successfully. Moreover, 802.11 uses interframe
spaces (IFS), which are specified waiting periods between
transmission of frames, to prioritize different traffic types
(such as control and data).

Related Work
Efficient and fair communication between agents of a sys-
tem is a challenging task. Particularly, it is a key compo-
nent in applications that require agents’ coordination, such
as cooperative multi-agent reinforcement learning. Most of
the existing studies on multi-agent communication only fo-
cus on the bandwidth limitation of the medium and ignore
the shared medium contention between the agents (Goldman
and Zilberstein 2003; Mao et al. 2020; Foerster et al. 2016;
Zhang and Lesser 2013). For instance, a message pruning
mechanism is proposed by (Mao et al. 2020) to improve the
bandwidth efficiency of the recent deep RL-based communi-
cation methods for multi-agent systems (Foerster et al. 2016;
Jiang and Lu 2018; Peng, Zhang, and Luo 2018; Singh, Jain,
and Sukhbaatar 2019). In another work, (Zhang, Zhang, and
Lin 2019) introduce Variance Based Control (VBC) tech-
nique for efficient communication in MARL, which limits
the variance of the exchanged messages between the agents
in the training phase. (Goldman and Zilberstein 2003) have
developed a theoretical model for decentralized control of
a cooperative multi-agent system with communication. This
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Figure 1: Modeling the communication medium as a shared
server in a queueing model that needs to be scheduled be-
tween the agents.

model can be used for studying the trade-off between the
value and cost (including bandwidth cost) of the exchanged
information, as well as its effect on the joint utility of the
agents. While almost all these works focus on the band-
width efficiency of the communication and ignore the shared
medium contention between the agents, (Kim et al. 2018)
study the problem of communication scheduling in MARL.
The authors propose SchedNet for scheduling the communi-
cation of the agents, which uses a weight-based scheduling
algorithm to prioritize the agents with more important infor-
mation.

On the other hand, the scheduling problem has been well
studied in the area of wireless communication. Since Wi-
Fi is the dominant distributed MAC protocol in wireless
networks, most of the existing distributed scheduling algo-
rithms have been proposed based on this protocol. In par-
ticular, these algorithms use one of the parameters of the
802.11, such as CW size (Qiao and Shin 2002), IFS (Shree-
dhar and Varghese 1996; Lee, Liao, and Chen 2007) or back-
off intervals (Vaidya et al. 2005), to emulate centralized fair
queueing service disciplines in a distributed manner. A com-
mon problem with these algorithms is the short-term unfair-
ness, which is mainly caused by the random backoffs that are
used in the collision resolution mechanism of 802.11 (Choi,
Yoo, and Kim 2008). In order to improve the short-term fair-
ness, (Dugar, Vaidya, and Bahl 2001) propose a protocol that
uses pulse transmissions for giving priority to the agents that
have experienced collision in their last attempt. Although
this protocol improves the short-term fairness, the order in
which packets are served could still drastically change from
the reference centralized fair queueing algorithm. Moreover,
almost all these methods use heuristic methods to mimic the
behaviour of the centralized fair queueing algorithms and
do not provide any guarantees or theoretical backings on the
fairness or the network throughput.

System Model and Problem Formulation
Consider a network consisting of N agents that need to
communicate with each other to achieve a common goal.
The set of all agents is represented by N and each agent
n ∈ N has a fairness weight of φn, which corresponds to
its share of the communication medium. Fairness weights
are chosen independently and are based on the importance
of each agent’s information. We assume that the agents can
sense the medium and therefore, avoid transmitting their
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Figure 2: An example of using splitting algorithm (with m =
2) for contention resolution.

messages when the medium is busy. Without loss of gen-
erality and solely to simplify the discussion, we assume that
all the agents can instantaneously detect if the communica-
tion medium becomes busy or idle. Although in practice the
agents are only able to detect the medium’s status with some
delay, the concept of interframe spaces in the 802.11 DCF
protocol can be easily merged into our algorithm to address
this issue for real-world applications.

In order to study this problem, we model the communi-
cation medium as a shared resource (server) that needs to
be scheduled among the agents. Specifically, each agent has
a transmission queue for storing the information that needs
to be sent (Fig. 1). At a given time, the agents with non-
empty queues are called backlogged agents, while the ones
with no information to share are called absent agents. Let
B(t) denote the set of backlogged agents at time t, andA(t)
represent the absent agents. In the same way, B(t1, t2) and
A(t1, t2) respectively represent the set of agents that are
backlogged and absent during the whole interval (t1, t2).
Each time an agent successfully transmits a packet, it re-
ceives a service equal to the transmitted packet size. We
define Wk(t) as the total service provided to agent k dur-
ing (0, t). Based on our definition, if a packet of agent k
is under transmission at t, Wk(t) includes any part of it
transmitted by time t. The normalized service received by
agent k, wk(t), is defined as the aggregate service provided
to this agent during (0, t) normalized to its fairness weight,
i.e., wk(t) = Wk(t)/φk, k ∈ N . Furthermore, we de-
fine bivariate process wk(t1, t2) as wk(t1, t2) = wk(t2) −
wk(t1), k ∈ N , t2 ≥ t1 ≥ 0.

Now, our goal can be formulated as designing a dis-
tributed scheduling algorithm that guarantees a bounded
normalized service disparity among any pair of backlogged
agents, i.e.,

|wk(t1, t2)− wj(t1, t2)| ≤ ε, k, j ∈ B(t1, t2), (1)

while achieving a high throughput at the same time. Since
our proposed algorithm implements the centralized Self-
Clocked Fair Queueing algorithm (Golestani 1994) in a dis-
tributed manner to provide the above guarantee, we refer to
it as Distributed SCFQ (DSCFQ) in the rest of the paper.

Distributed SCFQ (DSCFQ)
An important source of short-term unfairness in the exist-
ing scheduling schemes is that the agents with unsuccessful
last attempts have no priority over other agents. In order to

address this issue, we split the backlogged agents into two
classes: class I that is defined as the set of agents that have
to retransmit their messages because of their unsuccessful
last attempts, and class II agents, which are the agents with
new information to share. Moreover, each agent maintains
a collision counter, scaling factor and a compensation fac-
tor. Collision counter keeps track of the number of colli-
sions that the agent has experienced since its last successful
transmission. Scaling factor is a parameter for suitable scal-
ing of the backoff intervals, in order to reach an acceptable
throughput. Finally, compensation factor is a parameter that
is required for providing short-term fairness, which compen-
sates the fairness deviations that are caused by the discrete
backoff intervals.

Now, let us introduce our distributed scheduling algorithm
for providing weighted fairness in a multi-agent system. Let
pik denote the ith message2 (packet) of agent k. Moreover,
the arrival time, transmission start time and transmission fin-
ish time of packet pik are denoted by aik, sik and dik, respec-
tively. Now, each agent takes the following actions to trans-
mit the backlogged messages in its queue.
Class II agents:

1. At the time message pik reaches the front of agent k’s
transmitter queue, it is tagged with backoff tag Bik, cal-
culated as follows:

Bik =

⌊
α
(Lik
φk
− εik

)⌋
, (2)

where Lik and α are the size of packet pik and scaling fac-
tor, respectively, and εik represents the compensation fac-
tor, which is defined as

ε1k = 0, εik = εi−1
k +

(Bi−1
k

α
−
Li−1
k

φk

)
. (3)

2. To send pik, agent k picks a backoff interval equal to Bik
slots. Class II agents can start decrementing their backoff
counters only after sensing the medium idle for one time
slot. The backoff counter is decremented by one after each
idle slot and is frozen during the busy periods.

3. Whenever an agent’s backoff reaches zero, it starts the
transmission process for the intended destination.

4. If a transmitting class II agent detects a collision, it stops
the transmission, increments its collision counter by 1 and
starts following the procedure for class I agents.

Class I agents:
1. Splitting Algorithm for Collision Resolution: In con-

trast to class II agents, each class I agent can access the
medium as soon as it becomes idle, without waiting for
an extra idle time slot. In this way, the agents involved
in the collision get prior access to the medium. However,
to avoid a guaranteed collision with other class I agents,
we employ a mechanism based on the splitting algorithm
(Bertsekas and Gallager 1992) for resolving the collision.

2Throughout the paper, we use the terms message and packet
interchangeably.
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In particular, agent k chooses a uniformly distributed inte-
ger, Cqkk , in the interval [(qk−1)m+1, qkm], where qk is
agent k’s collision counter and m denotes the number of
branches into which agents involved in the latest collision
are divided. As soon as the medium becomes idle, agent
k transmits a pulse for a duration of Cqkk slots and then
starts sensing the medium. If it concludes that the follow-
ing slot is busy, it defers its transmission and repeats this
step, without changing its collision counter. Otherwise, if
the medium is idle after its pulse transmission, the agent
starts its transmission. Hence, the agent with the largest
pulse transmission period among class I agents will be
the winner of the contention.

2. If a collision happens during the collision resolution pe-
riod, agents involved in the collision increase their colli-
sion counters and go to the previous step.

3. Each time an agent transmits successfully, it resets its
collision counter to 0 and follows the procedure for the
class II agents.

Fairness Analysis of DSCFQ
Now let us introduce some definitions, which facilitate our
fairness analysis of the proposed scheduling algorithm.

Definition 1. We define Collision Resolution Period as the
whole period of the splitting algorithm, during which all
class I agents receive service, and will refer to it as CRP
in the rest of the paper. Furthermore, we define the set of
agents that were involved in the latest collision as Collision
Set.

Definition 2. A generalized time slot is defined as the inter-
val between two consecutive times at which class II agents
are allowed to transmit a packet.

In other words, the generalized time slot equals an idle
slot (σ) if the medium has been idle at least for one time
slot. Otherwise, the generalized time slot will be equal to
the time interval during which the medium is entirely busy
until it gets idle for one time slot. These cases are shown in
Fig. 3.

Definition 3. We define the network’s virtual time, v(t), as
the number of idle slots during interval (0, t), normalized
by the scaling factor. Furthermore, for any interval (t1, t2),
v(t1, t2) is defined as v(t2)− v(t1).

It is obvious from Definition 3 that the system’s virtual time
is a cumulative function and as a result, it is a nondecreasing
function of time. Whenever an agent transmits at the begin-
ning of a slot, all the other agents will be able to detect that
transmission. As a result, all the agents have similar obser-
vations about the status of a given slot and therefore, all the
agents are capable of tracking the network’s virtual time.

In order to compare the normalized services received by
different agents, we define virtual time and service deviation
for each agent, as follows:

Definition 4. The virtual time of agent k, vk(t), is defined
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Figure 3: Illustration of the possible states of a generalized
time slot.

as

vk(0) = 0, ∀k ∈ N ,

vk(t1, t2) =

{
wk(t1, t2), ∀k ∈ B(t1, t2),
v(t1, t2), ∀k ∈ A(t1, t2).

Definition 5. We define normalized service deviation of
agent k, which represents the difference between the net-
work’s and the agent’s virtual times, as follows

δk(t) = v(t)− vk(t), ∀k ∈ N .

Theorem 1. The maximum normalized service disparity be-
tween any pair of agents k and j, k, j ∈ B(t1, t2), in a
shared medium with our proposed scheduling algorithm, is
bounded as

|wk(t1, t2)− wj(t1, t2)| ≤ Lmaxk

φk
+
Lmaxj

φj
+

2

α
, (4)

where Lmaxk and Lmaxj are the maximum packet sizes that
can be transmitted by agents k and j, respectively.

We prove this theorem through the following set of lem-
mas.
Lemma 1. Whenever the transmission of an agent’s mes-
sage finishes, the normalized service deviation of the corre-
sponding agent satisfies

− 1

α
< δk(dik) ≤ 0 ∀i, ∀k ∈ N . (5)

Proof. Let us define bik as max{aik, d
i−1
k }. If packet pik ar-

rives before that packet pi−1
k has finished its service, bik =

di−1
k and hence

δk(bik) = δk(di−1
k ), aik < di−1

k . (6)

Otherwise, bik = aik > di−1
k and therefore we have

δk(bik) = δk(aik) = δk(di−1
k ) + δk(di−1

k , aik). (7)

Since agent k is not backlogged during the inter-
val (di−1

k , aik), we get δk(di−1
k , aik) = v(di−1

k , aik) −
vk(di−1

k , aik) = 0. We conclude from Eqs. (6) and (7) that

δk(bik) = δk(di−1
k ). (8)

On the other hand, according to the definition of bik, all the
previous messages of agent k have been sent by time bik. So,
pik is the only message that will be transmitted by agent k
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during (bik, d
i
k). Furthermore, transmitting pik requires sens-

ing the medium idle for Bik generalized slots. Consequently,
during the interval (bik, d

i
k), normalized service of agent k

and the network’s virtual time will be increased by Lik/φk
and Bik/α, respectively, i.e.,

vk(bik, d
i
k) = wk(bik, d

i
k) =

Lik
φk
, (9)

v(bik, d
i
k) =

Bik
α

=
bα(

Li
k

φk
− εik)c
α

. (10)

Using Eqs. (9) and (10), we get

δk(bik, d
i
k) =

bα(
Li

k

φk
− εik)c
α

− Lik
φk
. (11)

Let us return to the definition of εik. Comparing Eqs. (3) and
(11) we get εi+1

k − εik = δk(bik, d
i
k). Moreover, we have:

εik = ε1k +

i−1∑
n=1

(εn+1
k − εnk ) =

i−1∑
n=1

δk(bnk , d
n
k )

= δk(b1k, d
1
k) +

i−1∑
n=2

δk(bnk , d
n
k ).

Using Eq. (8) and considering the fact that δk(b1k) = 0, since
b1k is the first time that agent k gets backlogged and conse-
quently v(b1k) = vk(b1k), we get the following equation:

εik = δk(d1k) +
i−1∑
n=2

δk(dn−1
k , dnk ) = δk(di−1

k ). (12)

Therefore, CompensationFactor for the ith message of agent
k is actually equal to the normalized service deviation after
the transmission of message pi−1

k . Using Eq. (8), we have

δk(dik) = δk(di−1
k )+δk(bik, d

i
k). Now, defining γ = α(

Li
k

φk
−

δk(di−1
k )), and substituting εik = δk(di−1

k ) into Eq. (11), we
get

δk(dik) = δk(di−1
k ) + δk(bik, d

i
k) =

bγc − γ
α

. (13)

Since −1 < bγc − γ ≤ 0, the proof is complete.

Lemma 2. The normalized service deviation of agent k,
k ∈ N , in a shared medium with our proposed scheduling
algorithm, gets bounded as

− 1

α
≤ δk(t) ≤ Lmaxk

φk
, ∀k ∈ N . (14)

Proof. We consider two possible cases. In the first case,
agent k is absent at time t, i.e. k ∈ A(t). If pi−1

k rep-
resents the last packet that was transmitted by this agent
before t, we can easily conclude that this agent’s queue
has been empty in the interval (di−1

k , t), which results in
vk(di−1

k , t) = v(di−1
k , t), and therefore δk(di−1

k , t) = 0.
Now, δk(t) can be calculated as follows:

δk(t) = δ(di−1
k ) + δ(di−1

k , t) = δ(di−1
k ).

Finally, using Lemma 1 we get

− 1

α
< δk(t) ≤ 0, k ∈ A(t). (15)

Hence, while an agent is absent, its normalized service de-
viation equals δ(di−1

k ), where pi−1
k is the last packet sent by

it before becoming absent.
Now, let us consider the other case in which agent k is

backlogged at t. Assuming that pik is the first packet that
finishes its service after t, we get bik ≤ t ≤ dik, where
bik = max{aik, d

i−1
k }. So, we can calculate δk(t) as δk(t) =

δk(bik) + δk(bik, t). Since the transmission of packet pik be-
gins after sensing Bik idle slots, the network’s virtual time
will have an increase of Bik/α by the time agent k starts
transmitting pik, i.e., t = sik. Furthermore, the medium will
get busy during (sik, d

i
k) and therefore, the network’s virtual

time will remain unchanged during this interval. Therefore,
for t ∈ [bik, d

i
k], v(bik, t) satisfies the following:

0 ≤ v(bik, t) ≤ v(bik, s
i
k) =

Bik
α

=
bα(

Li
k

φk
− δk(di−1

k ))c
α

,

(16)
where we have used εik = δk(di−1

k ) from Eq. (12). On the
other hand, agent k is backlogged during (bik, d

i
k) and there-

fore, vk(bik, t) = wk(bik, t). Since sik represents the time that
transmission of packet pik begins, wk(bik, t) will remain zero
until sik, and then reachesLik/φk at time dik because of trans-
mitting packet pik during (sik, d

i
k). So we have

0 ≤ vk(bik, t) = wk(bik, t) ≤ wk(bik, d
i
k) =

Lik
φk
. (17)

Since δk(bik, t) = v(bik, t) − vk(bik, t), from Eqs. (16)
and (17) we deduce that δk(bik, t) is zero for t = bik, reaches
its maximum at t = sik and finally decreases to δk(bik, d

i
k) at

dik. So, this yields

min
{

0, δk(bik, d
i
k)
}
≤ δk(bik, t) ≤ δk(bik, s

i
k).

Adding δk(di−1
k ) to each side of the above inequalities, we

get

min
{
δk(di−1

k ), δk(dik)
}
≤ δk(t) ≤ δk(di−1

k ) + δk(bik, s
i
k),

(18)
where we have used Eq. (8). Using Lemma 1, we have

− 1

α
≤ min

{
δk(di−1

k ), δk(dik)
}
. (19)

Moreover, since vk(bik, s
i
k) = wk(bik, s

i
k) = 0, the upper-

bound in Eq. (18) can be simplified as

δk(di−1
k ) + δk(bik, s

i
k) = δk(di−1

k ) + v(bik, s
i
k)

= δk(di−1
k ) +

bα(
Li

k

φk
− δk(di−1

k ))c
α

=
bγc − γ

α
+
Lik
φk

≤ Lmaxk

φk
.

Therefore, using (18) and (19) we have

− 1

α
≤ δk(t) ≤ Lmaxk

φk
, k ∈ B(t), (20)

Finally, the lemma follows from (15) and (20).
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It can be shown from Lemma 2 that

|δk(t1, t2)| ≤ Lmaxk

φk
+

1

α
, k ∈ N . (21)

Using Definitions 4 and 5, and inequality (21), we get the
following corollary.
Corollary 1. For any agent k ∈ B(t1, t2), we have

|v(t1, t2)− wk(t1, t2)| ≤ Lmaxk

φk
+

1

α
. (22)

Now, Theorem 1 can be easily obtained by using Corol-
lary 1 for any pair of agents k and j, k, j ∈ B(t1, t2).

It can be observed from Theorem 1 that the maximum
normalized service disparity between a pair of backlogged
agents is a function of the maximum packet sizes, fairness
weights and the scaling factor. Furthermore, the effect of
discretizing backoff times after scaling by α is reflected in
the term 2/α in Eq. (4). Hence, using small scaling factors
results in large maximum service deviations and vice versa.

Throughput Analysis of DSCFQ
In this section, we study the achievable network throughput
by our proposed algorithm. We begin by introducing some
assumptions and parameters that will be used in the analysis.

We concentrate on saturation throughput, which repre-
sents the network throughput in overloaded conditions that
all the agents are always backlogged. Let us denote by gk
the probability that agent k ∈ class II attempts to transmit
a packet in a given generalized slot. Furthermore, we define
total attempt rate G as the expected number of transmission
attempts in a generalized slot, i.e., G =

∑N
n=1 gk. Now,

we analyze the network throughput for the case in which
N � 1, and assume that each agent’s average access prob-
ability is very small compared to the total transmission at-
tempt rate, i.e., gk � G, ∀k ∈ N . Since G represents the
average number of transmission attempts in a given gener-
alized slot, and also each collision wastes much more time
compared to an idle slot, we expect the optimal total attempt
rate, which maximizes the network saturation throughput, to
be less than one. So, we conduct the analysis for the case in
which G < 1, and consequently gk � 1, ∀k ∈ N .

As discussed in the previous section, a generalized time
slot may be an idle slot, may contain a successful transmis-
sion or it may contain collisions. So, a generalized time slot
might have a length of Tidle = σ, Tsucc or Tcoll as shown in
Fig. 3. Let us denote by Ts and Tc the duration of a success-
ful transmission and the length of the wasted time caused by
the collision of class II agents, respectively. Hence, Tcoll and
Tsucc can be calculated based on Fig. 3 as follows:

Tcoll = Tc + TCRP + σ, Tsucc = Ts + σ,

where TCRP represents the duration of the contention res-
olution period (CRP). Now, we calculate the probabilities
that a given generalized slot is idle (Pidle), it contains a suc-
cessful transmission (Psucc) or it contains collisions (Pcoll).
Since each agent k ∈ class II, transmits with probability gk
in a generalized slot, the total number of transmission at-
tempts in a given slot has a Poisson Binomial distribution.

Furthermore, Le Cam’s theorem (Le Cam 1960) suggests
that the Poisson Binomial distribution with gk � 1, ∀k ∈
N , can be approximated by a Poisson distribution with mean
G =

∑N
k=1 gk. Therefore, considering the fact that a given

slot remains idle (contains a successful transmission) only if
zero (one) transmission attempt has been made in that slot,
we can calculate Pidle, Psucc and Pcoll as follows

Pidle ' e−G, Psucc ' Ge−G,
Pcoll = 1− Psucc − Pidle = 1−Ge−G − e−G. (23)

Now, let us define the normalized saturation throughput,
which is represented by S, as the fraction of time the
medium is used to successfully transmit payload bits. We
can express S as follows:

S =
(Ps + n̄cPc)(L̄/C)

PsTsucc + Piσ + PcTcoll
, (24)

where L̄, C and n̄c denote the average message length, the
transmission rate, and the average number of agents involved
in a given collision of class II agents, respectively. Let nt
denote the number of agents attempting a transmission in a
given generalized slot. Since a collision happens only if the
number of transmitted packets in a given time slot is larger
than one, n̄c can be calculated as follows

n̄c = E[nt|collision] = E[nt|nt > 1] = G(1− e−G).
(25)

Adaptive DSCFQ
As we discussed earlier, scaling factor is a parameter for
backoff adjustment and it has a direct impact on the net-
work throughput. Choosing a small scaling factor results in
an increase of the collision probability, and reduces the idle
intervals during which the medium is left unused. On the
other hand, increasing the scaling factor causes less colli-
sions, but large idle intervals. Therefore, it is important to
pick the optimal scaling factor that maximizes the through-
put. In the following, we propose a simple adaptive method
for updating the scaling factor to reach the peak saturation
throughput.

Let us first define the optimal total attempt rate,G∗, as the
value for which the saturation throughput in Eq. (24) is max-
imized. Substituting G∗ in Eq. (23), we get P ∗

idle, P
∗
succ and

P ∗
coll, respectively. Now, we introduce an adaptive method

to reach the maximum saturation throughput. As discussed
earlier, each generalized slot has one of the three different
states of successful transmission, collision or idle state. As-
sume that all the agents agree on a common initial scaling
factor, which is denoted by α0. Then each agent senses the
medium and updates α based on each generalized slot’s state
as follows:

αnew =

{
α, success
α+ γ, collision
α− β, idle

(26)

where P ∗
idleβ = P ∗

collγ.
Now, let α∗ denote the optimal scaling factor that maxi-

mizes the saturation throughput. Since Pidle and Pcoll are,
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Parameter Value Definition
C 12 Mbps data transmission rate
Cctrl 6 Mbps control transmission rate
LACK 112 bits ACK frame length
LRTS 160 bits RTS frame length
LCTS 112 bits CTS frame length
L̄ 2016 bytes average message length
σ 9 µs slot time
SIFS 10 µs SIFS time

Table 1: Simulation parameters.

respectively, monotonically decreasing and increasing func-
tions of G, and G is inversely proportional to α, we have

Dα =

{
γPcoll − βPidle > 0, if α < α∗

γPcoll − βPidle < 0, if α > α∗ (27)

whereDα is the expected drift of the scaling factor from one
generalized slot to the next one. Hence, as long as α < α∗,
there will be a positive drift which increases α on average.
On the other hand, α > α∗ results in a negative drift and
therefore, leads to the reduction of the scaling factor.

Performance Evaluation
In this section, we present our evaluations of the proposed
distributed scheduling algorithm. We first describe the ex-
perimental setup and the technical assumptions used in the
experiments. We then explain the baselines and the metrics
that have been used for the evaluations. Finally, we discuss
the experiments and results.

Experimental Setup: Consider a network of 10 agents
that are always backlogged and need to share their infor-
mation with each other. Furthermore, the importance of
the agents’ information are different. Therefore, each agent
chooses a fairness weight that reflects the importance of
its messages. We consider a scenario in which three agents
choose φ = 10, three other agents choose φ = 8, two agents
pick φ = 2 and finally two agents pick φ = 1 as their fair-
ness weights. Moreover, to study the performance of our al-
gorithm in more realistic conditions, we implement our al-
gorithm based on 802.11 DCF. Specifically, in our imple-
mentation we consider various practical requirements such
as the control messages (RTS/CTS/ACK), inter frame spac-
ing intervals, the imperfections caused by the packet headers
and the propagation delay, etc. The parameters used in our
implementation are summarized in Table 1.

Baselines: To compare our algorithm with the existing
fair scheduling algorithms, we classify these baselines into
two general types. The first type, which we call Type I,
includes algorithms that emulate weighted fair queueing
by taking backoff intervals (or IFS values) in proportion
to the packet size of the head of the queue messages, i.e.
Bik = bα(

Li
k

φk
)c, while still using random mechanisms such

as BEB for collision resolution. The DFS algorithm intro-
duced by (Vaidya et al. 2005) belongs to this category. The
other type (Type II) uses similar methods for providing fair-
ness, with the difference of giving a higher priority to the

agents with unsuccessful last transmission attempts. The
proposed algorithm by (Dugar, Vaidya, and Bahl 2001) is
an example of type II algorithms. An advantage of the above
classification is that the value and impact of each part of our
algorithm on the performance of the system can be assessed
separately.

Evaluation Metrics: For evaluating the fairness of our
algorithm, we use the fairness index (Jain et al. 1996), which
is defined as follows:

fairness index =

(∑
k Tk/φk

)2
N ·

∑
k

(
Tk/φk

)2 , (28)

where Tk denotes the throughput of flow k. Moreover, we
compare the degree of fairness over different time-scales us-
ing Sliding Window Method (SWM), introduced by (Kok-
sal, Kassab, and Balakrishnan 2000). In this method, we
slide a window of size w across a packet trace of medium
accesses. By calculating the fairness index for the transmis-
sions that lie in this window after each sliding, we get a se-
quence of fairness indices. We report the average fairness
index as the fairness metric for a given window size. The
other metrics used in our evaluations are the throughput of
the agents and the network throughput. The throughput of
a particular agent in a given interval is defined as the ratio
of the successfully transferred information to the length of
the interval. The network throughput can be calculated by
adding the throughput of the agents.

Results and Discussions
Let us start our evaluations with the fairness analysis of
the system. Fig. 4 shows the performance of our algorithm
along with type I and II scheduling schemes for differ-
ent time scales (w=30, 50, 100 and 1000). As can be ob-
served, our algorithm achieves the best performance among
all the compared algorithms in both short-term (w=30, 50)
and long-term (w=100, 1000) comparisons. While our al-
gorithm achieves a relatively constant fairness index over
a wide range of scaling factors ([0.0001,0.02]), the perfor-
mance of type I and II algorithms deteriorate dramatically
for the small scaling factors. This is particularly important
since large scaling factors can result in more idle time slots
and therefore, less efficient utilization of the medium. On
the other hand, we can observe that the difference between
the fairness indices of the compared algorithms starts to di-
minish as we increase the scaling factor. This can be ex-
plained by considering the main sources of unfairness in
Type I and II algorithms. Specifically, the agents with un-
successful last transmissions have no priority over the other
agents in type I algorithms, which creates unfairness in the
case of collisions. Since increasing the scaling factor results
in less collisions, the effect of this factor becomes less dom-
inant. On the other hand, discretization of the backoff inter-
vals, i.e., using bα(Lik/φk)c instead of α(Lik/φk), is another
source of unfairness in both type I and II algorithms. In a
similar way, the impact of this factor is more noticeable for
small scaling factors, where a large range of packet lengths
can be mapped into the same backoff intervals after scal-
ing and discretization. The compensation factor εik used in
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Figure 4: Average fairness index as a function of the scaling factor, for window sizes w=30, 50, 100, 1000.
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Figure 5: Convergence of the (a) scaling factor (b) fairness
index and (c) normalized throughput to their optimal values.

the backoff calculation step in our algorithm (Eq. (2)) deals
with this issue effectively. Since our algorithm eliminates
the effect of the two sources of unfairness, it achieves the
best performance among all the compared baselines in dif-
ferent time scales (Fig. 4). Therefore, the difference between
the fairness indices of type I and II algorithms shows the
amount of improvement in average fairness index, using an
algorithm that gives priority to the agents with unsuccessful
last transmission attempts. On the other hand, the difference
between our algorithm and type II class demonstrates the in-
crease in the fairness index by using compensation factor in
the backoff calculation as in Eq. (2). Another observation
we make is that the fairness index generally decreases for all
the algorithms as we consider shorter time scales. This phe-
nomenon can be also observed in the centralized scheduling
algorithms, which is justified by the packet-based nature of
the problem (in contrast to fluid flow models).

Now, let us study the adaptive behaviour of our algorithm.
As we discussed before, there is an intrinsic trade-off be-
tween the fairness and the network throughput, which can
be controlled by the scaling factor. In previous section, we
proposed an adaptive method for updating the scaling fac-
tor to achieve the maximum throughput attainable by our
algorithm. Fig. 5a shows dynamic adaptation of the scaling
factor for the case in which it is initially set to 0.2. We ob-
serve that as the scaling factor converges into its optimum
value, the fairness index approaches one (Fig. 5b) and the
network throughput reaches its maximum value (Fig. 5c).
This can be validated from Fig. 6a, which shows the nor-
malized network throughput obtained from the simulation
and the theory (Eq. (24)). As can be seen, the analytically
driven throughput from Eq. (24) closely approximates the
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Figure 6: a) Comparison of the normalized network through-
put obtained from the simulation and Eq. (24), as a func-
tion of the scaling factor. b) Convergence of the normalized
throughput of agents 1 and 2 (with φ = 2 and φ = 8) into
the same shares.

throughput obtained from the simulations. Moreover, we can
observe that the maximum throughput (' 0.8) is achieved
for a scaling factor around 0.04, which are the same values
that our algorithm converges into in Figs. 5a and 5c. Finally,
Fig. 6b shows the convergence of the normalized throughput
of two agents with fairness weights of φ1 = 2 and φ2 = 8.
As can be observed, our algorithm equalizes the normalized
throughput of these agents after its convergence.

Conclusion

In this paper, we considered one of the important, but under-
studied challenges in the communication of multi-agent sys-
tems. Specifically, we studied the shared medium contention
problem in the communication of the agents and proposed a
new distributed scheduling algorithm for providing fairness
in these systems. This becomes even more important when
the agents’ information or observations have different im-
portance, in which case the agents require different priori-
ties for accessing the medium and sharing their information.
We showed that our proposed algorithm can provide a de-
terministic bound on the maximum service disparity among
any pair of agents. This can particularly improve the short-
term fairness, which is important in real-time applications.
Moreover, we designed an adaptive mechanism that enables
our scheduling algorithm to adjust itself and achieve a high
throughput at the same time.
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