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Abstract

Optimal cost partitioning can produce high quality heuristic
estimates even from small abstractions. It can be computed
with a linear program (LP) but the size of this LP often makes
this impractical. Recent work used Lagrangian decomposi-
tion to speed up the computation. Here we use a different de-
composition technique called Dantzig-Wolfe decomposition
to tackle the problem. This gives new insights into optimal
cost partitioning and has several advantages over Lagrangian
decomposition: our method detects when a cost partition is
optimal; it can deal with general cost functions; and it does
not consider abstractions in the linear program that do not
contribute to the heuristic value. We also show the advantage
of the method empirically and investigate several improve-
ments that are useful for all cost partitioning methods.

Introduction
The goal of optimal classical planning is to find a cheapest
plan in a large factored state space. Planning tasks are com-
monly solved with heuristic search methods like A∗ search
(Hart, Nilsson, and Raphael 1968). This requires an admis-
sible heuristic function that maps states to lower bounds of
their true goal distance. Cost partitioning (Katz and Domsh-
lak 2010) is a way to combine multiple admissible heuristics
into a single admissible estimate that can be higher than the
maximum of its components. It works by partitioning the
cost function of the problem and computing each heuristic
function under a fraction of the cost.

Abstraction heuristics map the state space of a planning
problem to a smaller abstract state space that can be fully
explored. A single small abstraction is not very accurate but
cost partitioning can combine many of them into a well-
informed heuristic. The optimal way of partitioning the costs
can be computed with a linear program (LP) in time poly-
nomial in the size of all abstractions (Katz and Domshlak
2010). In practice, this LP is often too large to be useful.

Previous work used Lagrangian decomposition (Pom-
merening et al. 2019) to split up the large LP and iteratively
compute suboptimal cost partitions that converge to an opti-
mal one. We use a different technique called Dantzig-Wolfe
decomposition (Dantzig and Wolfe 1960) which also com-
putes a sequence of suboptimal cost partitions that converge
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to an optimum. Both methods present a new interpretation
of cost partitioning. Pommerening et al. interpret Lagrangian
multipliers as cost functions and the gradients used to update
them as the number of times operators are used in a shortest
plan. With Dantzig-Wolfe decomposition the problem de-
composes into a master problem and several pricing prob-
lems and we interpret these LPs in terms of known planning
concepts. On linear programs Dantzig-Wolfe decomposition
is exactly dual to Benders decomposition (Benders 1962) so
we also interpret the duals of master and pricing problems.
In fact, our implementation is based on these dual problems,
so it is closer to a Benders decomposition. We still use the
view of Dantzig-Wolfe decomposition for most of the dis-
cussion as it directly works on the cost partitioning LP. Both
views offer new insights into cost-partitioned heuristics.

Our method has several advantages over the one used by
Pommerening et al.. Most importantly, it has a clear stop-
ping condition, detecting whether an optimal cost partition
is reached, while they use the subgradient method, which
might not stop once the optimum is reached. Our method
also supports general cost functions which can improve cost
partitioning significantly (Pommerening et al. 2015) while
theirs handles only non-negative ones. Finally, all known
cost partitioning methods struggle with large collections of
abstractions like the set of projections to at most three vari-
ables. We look at ways to mitigate this issue within the col-
umn generation used in Dantzig-Wolfe decomposition.

There is also a disadvantage compared to the method by
Pommerening et al.: they replace all LPs with shortest path
problems and compute them without an LP solver. Our algo-
rithm relies on LP solvers for all involved LPs. We discuss
the meaning of pricing problems but leave a more efficient
implementation as an interesting algorithmic challenge.

In the remainder of this paper, we first introduce some
notation for planning tasks and cost partitioning. We then
explain Dantzig-Wolfe decomposition, first for general LPs
and then specifically applied to the LP computing an optimal
cost partition over abstraction heuristics. We then consider
optional extensions of the basic method. In an experimen-
tal evaluation we show the use of these extensions and the
advantage of Dantzig-Wolfe decomposition over computing
the original LP or Lagrangian decomposition.
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Background
We start with basic definitions and notation for cost parti-
tioning and then explain Dantzig-Wolfe decomposition.

Planning

A transition system is a tuple 〈S, L, T, I,G, cost〉, where S
is a finite set of states,L a finite set of labels, each transition,
s `−→ t ∈ T ⊆ S×L×S connects two states and is annotated
with a label. We are looking for a path following transitions
from the initial state I ∈ S to some goal state s∗ from the
set of goal states G ⊆ S . Each label is associated with a
cost given by cost : L → R. The cost of a path is the sum
of its label costs. The perfect heuristic maps each state s to
the minimal cost of a path from s to some goal state, to∞
if no such path exists, or to −∞ if there is no minimal cost
because paths with arbitrarily low cost exist (if a path to a
goal state contains a cycle with negative total cost).

Planning tasks are compact, factored representations of
transition systems. They use variable assignments over a fi-
nite set of variables as states. Operators are used as labels
and can have preconditions and effects on variables (the for-
mer defining which states have an outgoing transition with
this operator and the latter where this transition ends). We
use the term “operator” instead of label when we want to
emphasize that we are talking about the transition system of
a planning task but otherwise will mostly talk about transi-
tion systems in general. Planning tasks can be projected to
a subset of their variables (a pattern). The result of such a
projection is a transition system (the abstract state space)
that is usually much smaller than the one induced by the
original task (the original state space). Projections preserve
some structure of the original state space: there is a transi-
tion α(s) `−→ α(s′) in the abstract state space for all tran-
sitions s `−→ s′ in the original state space. This means that
every plan in the original state space corresponds to a plan
for the abstract state space and thus, the perfect heuristic for
the abstract state space (hα) cannot overestimate the perfect
heuristic in the original state space (h∗). This makes hα an
admissible heuristic in the original state space.

Consider a set of abstractions A = {α1, . . . , αn}. Each
heuristic hαi provides an admissible estimate but for A∗
we have to combine them in a way that maintains the ad-
missibility. Cost partitioning (Katz and Domshlak 2010)
achieves this by evaluating each heuristic hαi under a dif-
ferent cost function costi. We write hαi(s, costi) for the
cost of a cheapest path in abstraction αi but using the cost
function costi instead of cost. The sum of these values
(
∑n
i=1 h

αi(s, costi)) is admissible if the cost functions costi
form a partition of the original cost function cost, i.e., if they
satisfy

∑n
i=1 costi(`) ≤ cost(`) for each label ` ∈ L. Katz

and Domshlak showed that an optimal way of partitioning
the costs can be computed in time polynomial in the size
of the abstract state spaces. This is done with a linear pro-
gram (LP) where variables encode the local cost functions
(costi(`) for each i and `) and the distance of each abstract
state from the current state under costi. Despite its polyno-
mial size this LP is often prohibitively large in practice.

Dantzig-Wolfe Decomposition
Dantzig-Wolfe decomposition (Dantzig and Wolfe 1960) is
a technique from operations research to solve large programs
with a specific structure. Before we apply it to cost parti-
tioning, we describe the technique for a general LP. The
decomposition consists of two steps: rewriting the LP into
an alternative form and using column generation (Ford and
Fulkerson 1958) on the rewritten LP. For a more detailed
introduction we refer to Desrosiers and Lübbecke (2005).

Rewriting the LP Consider the following LP:

Maximize
∑

1≤i≤n
o>i xi subject to∑

1≤i≤n

Aixi ≤ b0 (1)

Bixi ≤ bi for all 1 ≤ i ≤ n (2)

where all xi are vectors of LP variables, all oi and bi are co-
efficient vectors, and all Ai and Bi are coefficient matrices.
Constraint (1) is called the complicating constraint, while
the constraints (2) are called subproblem constraints. The
LP would decompose into subproblems that could be maxi-
mized independently if the complicating constraint were not
present (every xi only occurs in subproblem constraint i and
the complicating constraint).

The solutions of subproblem constraint i form a polyhe-
dron Pi = {xi | Bixi ≤ bi} so the constraint can be writ-
ten as xi ∈ Pi. The main result underlying the Dantzig-
Wolfe decomposition is Minkowski’s Theorem (Schrijver
1998) stating that every polyhedron is generated by finitely
many rays and extreme points. That is, there is a set of rays
rij and extreme points pik such that xi ∈ Pi iff xi =∑
k λikpik +

∑
j δijrij for some coefficients λik ≥ 0 satis-

fying
∑
k λik = 1 (convex combination of extreme points)

and some coefficients δij ≥ 0 (linear combination of rays).
This representation is called the Minkowski sum of Pi. We
could use it to rewrite the constraint xi ∈ Pi if we had all
rays rij and extreme points pik generating Pi.

At this point we deviate from the typical explanation of
Dantzig-Wolfe decomposition to simplify things. In the LP
we will consider later, all bi with 1 ≤ i ≤ n are 0. This
means that Pi = {xi | Bixi ≤ 0} is a special case of a
general polyhedron called a polyhedral cone. It can have at
most one extreme point (at 0) and its Minkowski sum sim-
plifies to consider only the rays: xi ∈ Pi iff xi =

∑
j δijrij

for some coefficients δij ≥ 0. Let us use this to eliminate
the variables xi and express the whole LP in terms of δij .

Maximize
∑

1≤i≤n

∑
j

o>i δijrij subject to∑
1≤i≤n

∑
j

Aiδijrij ≤ b0

δij ≥ 0 for all i and j

This representation is called the master problem and is
equivalent to the original problem. It has fewer constraints
but typically the number of rays is so high that even con-
structing the master problem is infeasible.

272



Column Generation An optimal solution to the master
problem typically leaves most variables at 0. If we knew
these variables in advance, we could remove them without
affecting the objective value. In absence of this knowledge,
we can generate the variables (columns in the coefficient ma-
trix) iteratively until the solution is guaranteed to be optimal.

To do so, we consider the restricted master problem
(RMP) that is like the master problem but only uses a subset
of its columns. Leaving out variables means that the RMP
can underestimate the objective value of the master problem.
According to the duality theorem (Schrijver 1998), those ig-
nored columns correspond to constraints in the dual RMP
and adding a column is the same as adding a dual constraint.
In fact, the method can also be seen as generating constraints
in the dual RMP rather than columns in the primal RMP.
This is called Benders decomposition (Benders 1962) and is
exactly dual to Dantzig-Wolfe decomposition on LPs.

Finding a dual constraint that is currently violated is
called the pricing problem. Formally, the dual of the mas-
ter problem from the previous section is

Minimize b>0 y subject to

(Airij)
>y ≥ o>i rij for all i and j
y ≥ 0

We can look for the most violated dual constraint in each
subproblem separately and then compare them to find the
most violated constraint or just add all of them to the RMP.
Assume that the vector y is an optimal solution to the dual
RMP, i.e., the LP above with all constraints generated so far.
We want to find a violated constraint, i.e., a new ray rij of
the polyhedron Pi for which (Airij)

>y − o>i rij < 0. The
most violated constraint minimizes the left-hand side. Using
the fact that rij is a ray of Pi = {xi | Bixi ≤ 0}, we can
write down the pricing problem Pi(y):

Minimize (Aixi)
>y − o>i xi subject to

Bixi ≤ 0

Note that this pricing problem is small relative to the RMP
and the original problem: it only uses variables and con-
straints of a single subproblem of our original problem.

To solve the original problem with Dantzig-Wolfe decom-
position, we thus perform the following steps:

1. Compute an optimal solution y to the dual RMP (initially
without constraints).

2. For each i, optimize the pricing problem Pi(y). LP solvers
will either produce a ray with negative objective value
if the problem is unbounded or an extreme point if it is
bounded.

(a) A ray rij represents a violated constraint. Add the con-
straint (Airij)

>y ≥ o>i rij to the dual RMP (or the
column for rij to the primal RMP).

(b) The only possible extreme point in our case is 0 (recall
that Pi is a polyhedral cone). In this case no constraint
for this subproblem is violated in the dual RMP.

3. If no pricing problem generates a ray, y is feasible in the
dual master problem, and the corresponding primal solu-
tion is optimal for our original problem. Otherwise repeat
from step 1.

Application to Cost Partitioning
We now apply Dantzig-Wolfe decomposition to the opti-
mal cost partitioning over abstraction heuristics. Let A =
{α1, . . . , αn} be abstractions of a common original prob-
lem with state space 〈S, L, T, I,G, cost〉. The abstract state
space of αi is 〈Si, L, Ti, Ii, Gi, cost〉. It is important that all
transitions s `−→ t ∈ Ti are alive, i.e., that s is reachable from
Ii and an abstract goal state is reachable from t. We assume
that all other transitions are removed from Ti. The optimal
cost partitioning over A in the initial state1 can be computed
as follows:

Maximize
∑

1≤i≤n
hi subject to∑

1≤i≤n

ci` ≤ cost(`) for all ` ∈ L (3)

diIi = 0 for all i (4)
dit ≤ dis + ci` for all i and s `−→ t ∈ Ti (5)
hi ≤ dis∗ for all i and s∗ ∈ Gi (6)

The cost partitioning constraint (3) is the complicating con-
straint as it involves variables from all abstractions. Con-
straints (4)–(6) form one subproblem constraint per abstrac-
tion. As before, the subproblems would be independent
without the complicating constraint. To match this with (1)–
(2), matrix Ai has one row for each ` ∈ L with 1 in the col-
umn for ci` and 0 everywhere else; the vector b0 corresponds
to the cost function cost, while all other bound vectors bi are
0. The objective coefficients oi are 1 in the column for hi
and 0 everywhere else. Using these definitions, we can now
construct the RMP and the pricing problems.

The (Relaxed) Master Problem
The RMP is based on rays of the subproblems. In our case
of a polyhedral cone, the set of rays and the feasible solution
space are identical because every solution can be scaled up
or down, i.e., rays are specific solutions to the subproblem
constraints. Each ray rij consists of values hij , cij` for all la-
bels ` ∈ Li, and values dijs for each abstract state s ∈ Si. In
the master problem j ranges over all rays in the Minkowski
sum of Pi, while in the RMP it ranges over all rays generated
for subproblem i so far.

Maximize
∑

1≤i≤n

∑
j

hijδij subject to∑
1≤i≤n

∑
j

δijcij` ≤ cost(`) for all ` ∈ L

δij ≥ 0 for all i and j

Note that the coefficients of all dijs are 0 so we can treat rays
as a cost function (encoded in the values cij`) and a value
hij . We tentatively interpret the hij as the heuristic value
under that cost function (and will later see this confirmed).
The cost functions costi(`) =

∑
j δijcij` form a cost par-

tition and the heuristic value of abstraction i under costi is
1Using the initial state here simplifies the presentation. The

heuristic can be computed for other states s by replacing I with
s and Ii with the abstract state representing s in abstraction i.
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∑
j hijδij . Since this is true for any choice of δij ≥ 0, the

LP computes an optimal choice of δij given the available
cost functions encoded in cij`. This gives a first interpreta-
tion of the method: the pricing problems generate candidate
cost functions together with the heuristic values achieved
under them; the RMP then “mixes” the candidates as a lin-
ear combination that satisfies the cost partitioning constraint.
The resulting cost partition is optimal only for the current set
of candidates, so the pricing problems add more candidates
to achieve a better global value.

The Dual (Relaxed) Master Problem
As the pricing problems are parameterized with a solution
of the dual RMP it is worth looking at this LP as well. The
view of generating constraints for this dual RMP rather than
columns for the primal corresponds to Benders decomposi-
tion. While it is known that optimal cost partitioning is dual
to operator-counting heuristics (Pommerening et al. 2015),
we are interested in what kind of operator-counting con-
straints the heuristic contains. The dual RMP is:

Minimize
∑
`∈L

cost(`) y` subject to∑
`∈L

cij`y` ≥ hij for all i and j

y` ≥ 0 for all ` ∈ L

Let costij be the cost function encoded by the values cij`.
Assume that hij is the heuristic value of abstraction i under
costij (as we suspected before). Then the dual RMP is an
operator-counting heuristic with constraints similar to post-
hoc-optimization constraints (Pommerening et al. 2014),
which are defined as

∑
`∈L cost(`) y` ≥ h(s, cost). The con-

straints here have the form
∑
`∈L cost′(`) y` ≥ h(s, cost′)

for an alternative cost function cost′, which is a valid op-
erator counting constraint for any choice of cost′ (Thüring
2019). The resulting constraint is still an operator-counting
constraint, so it can be used in the operator-counting frame-
work. Other operator-counting constraints could be added to
the RMP to strengthen the heuristic but we do not pursue
this option further to focus on the core problem.

The Pricing Problems
The pricing problem Pi(y) for subproblem i depends on an
optimal solution y of the dual RMP. If we plug in the specific
matrixAi (only 1 for row `, column ci` and otherwise 0) and
vector oi (only 1 for hi), we see that the pricing problem has
the objective (Aixi)

>y − o>i xi =
∑
`∈L y` ci` − hi. The

constraints are just the subproblem constraints for subprob-
lem i, so the pricing problem Pi(y) is

Minimize
∑
`∈L

y` ci` − hi subject to

diIi = 0

dit ≤ dis + ci` for all s `−→ t ∈ Ti
hi ≤ dis∗ for all s∗ ∈ Gi

The constraints closely resemble a shortest path problem
for abstraction αi but the objective is different. Instead of

maximizing the heuristic value (resp. minimizing −hi) un-
der a given cost function, we can choose the cost function
freely, but get a penalty in the objective for the costs we use
(weighted by the parameter y).

Another way to look at this is to consider a cost function
costi. The constraints can be satisfied with ci` = costi(`)
for any hi ∈ R with hi ≤ hαi(I, costi). The values of the
variables dis do not matter here because they are ignored in
the RMP. If we define costi(y) =

∑
`∈L costi(`) y`, we can

rewrite the pricing problem as

Minimize costi(y)− hi subject to

hi ≤ hαi(I, costi)
costi : L→ R, hi ∈ R

Note that that the pricing problem generates a new col-
umn if its objective value is negative. If this is the case for
some cost function costi and value hi, it is also true for
h′i = hαi(I, costi) and cost′i defined as the saturated cost
function of costi (Seipp, Keller, and Helmert 2020) where
the cost of each label is reduced as much as possible without
affecting the goal distance of any state. In our experiments,
we always do this step to achieve tighter constraints.

To better understand the pricing problem, we now look at
its dual.

The Dual Pricing Problems
The dual of the pricing problem Pi(y) can be written as

Maximize 0 subject to∑
t labeled

with `

ft = y` for all ` ∈ L (7)

∑
t leaves s

ft + gs[s ∈ Gi] =
∑

t enters s

ft for all s 6= Ii (8)∑
s∗∈Gi

gs∗ = 1 (9)

ft ≥ 0 for all t ∈ Ti and gs∗ ≥ 0 for all s∗ ∈ Gi (10)

Constraints (8)–(10) describe a network flow problem in
the abstraction where ft describes the amount of flow along
a transition. Constraint (7) requires that the flow is consistent
with y, i.e., that the aggregated flow for a label ` matches y`.
If such a flow exists, the objective value is 0 so the primal
pricing problem also has a value of 0 and does not generate
a column. In case no such flow exists, the dual is infeasible
and the primal is unbounded and generates a ray in the RMP.

This agrees with the view of the dual RMP as an operator-
counting LP: the dual solution y is an operator count map-
ping each operator to a number of uses. If an abstraction
does not have a consistent flow, it generates a new operator-
counting constraint demonstrating that the cost of a cheapest
flow under a cost function costi must be lower than costi(y).

Extensions
In this section, we discuss several optional extensions to the
basic algorithm outlined above.
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Combining Labels
In abstractions (particularly in small ones), some labels can
be equivalent. For example, think of a Blocksworld task
projected to the single variable indicating whether a certain
block b is clear. Stacking any block on top of b leads to an
abstract transition from clear to not clear. In the abstraction
all of these operators will label parallel transitions.

We say two labels `, `′ ∈ L are equivalent in an abstrac-
tion with transitions T if they only label parallel transitions:
` ∼ `′ iff T (`) = T (`′) where T (`) = {〈s, t〉 | s `−→ t ∈ T}.
Let [`] be the equivalence class of label ` under ∼. The ab-
straction can be compactly represented with labels {[`] | ` ∈
L} and transitions {s [`]−→ t | s `−→ t ∈ T}, i.e., by combining
all equivalent labels into a single new label.

With cost partitioning, the original label costs now have
to be partitioned among local label cost functions that do not
share labels. Implicitly, we compute a cost partition that as-
signs the same cost to all equivalent labels. A cost partition
that assigns a higher cost to some label in an equivalence
class cannot yield a higher heuristic value, as the cheapest
path between two states is determined by the minimum cost
of any label on a transition between them. The cost parti-
tioning constraint for label ` changes to partition the cost of
` among its equivalence classes from all abstractions:∑

1≤i≤n

c[`]i ≤ cost(`)

All other constraints are changed to use the compact form
of transitions defined above and the label cost variables c[`]i
instead of ci`. While the size of the RMP is not affected
by this, the size of the pricing problems is reduced as they
are now phrased in terms of the compact representation. We
want to emphasize the large reduction this simple change
can bring. While the number of operators in a planning task
is often in the thousands, in a projection to a binary variable,
at most seven different equivalence classes are possible.

The idea to combine equivalent labels is not new. The
merge-and-shrink framework stores abstractions in this
compact form (Sievers 2018) and even reduces the amount
of labels further with label reduction. Sievers et al. (2020)
define extended label cost partitioning for merge-and-shrink
abstractions which matches our definition. We note that this
way of computing compact transition systems and cost par-
titions over them is beneficial not only for merge-and-shrink
or Dantzig-Wolfe decomposition, but for all cost partition-
ing methods over abstractions.

A small extension is to not explicitly represent a label
for the equivalence class of irrelevant labels, i.e., labels that
only induce self-looping transitions at all states. These can-
not contribute a positive cost to optimal solutions and cannot
take a negative cost without resulting in a heuristic value of
−∞. We therefore replace their LP variables by the con-
stant 0.

Restricting the Considered Patterns
Pommerening, Röger, and Helmert (2013) define the notion
of interesting patterns for non-negative cost partitioning. It is
based on the causal graph of a given planning task Π, which

is a directed graph with the variables of Π as nodes. It con-
tains a precondition edge from v to w if there is an operator
with a precondition on v and an effect on w, and it contains
an effect edge from v to w if there is an operator affecting
both v and w. A pattern P is interesting for non-negative
cost partitioning if the causal graph restricted to P is weakly
connected and contains a path using precondition edges that
leads from each variable in P to a a variable mentioned in
the goal of Π. Pommerening, Röger, and Helmert show that
a projection to an uninteresting pattern can be replaced by
one or more projections to smaller patterns without chang-
ing the value of an optimal non-negative cost partitioning.

Unfortunately, this definition of interesting patterns is
too strict for cost partitioning with general cost functions.
For example, Pommerening et al. (2015) show an example
where a projection to a single non-goal variable is relevant
(Figure 1 in their paper). Therefore, all previous work on
general cost partitioning does not exclude any projections.
However, there are clearly patterns which we can identify as
redundant for general cost partitioning.
Definition 1. A pattern P is redundant for general cost par-
titioning in a task with causal graph G if
• G restricted to P is not weakly connected, or
• P contains a variable v such that G has no directed path

along precondition edges from v to a goal variable.
The difference between this definition and the one for

non-negative costs is in the second condition. We consider
the full causal graph G there, not its restriction to P . Note
that variables that satisfy this second condition can be re-
moved from the planning task in a preprocessing step and
the definition simplifies to the first condition if this is done.

We can show that projections to redundant patterns can be
replaced by projections to smaller patterns without affecting
the heuristic value. For the full proofs, we refer to a techni-
cal report (Pommerening et al. 2021b). The proof idea in the
first case is to replace P by the connected components of G
restricted to P . No operator can affect more than one con-
nected component and operators not affecting a component
induce self-looping transitions on all states. In the second
case P can be replaced by P ′ = P \ {v}. In an optimal cost
partition, we have to set the cost of all operators (in all ab-
stractions) that depend directly or indirectly on v to 0. This
cannot affect the heuristic value as no path to the goal can
depend on v. The difficult part in the proofs is to show that
changing the cost partitions does not introduce a cycle of
negative cost.

We conjecture that this definition is the most restrictive,
i.e., any stricter definition considering just the patterns and
the causal graph would exclude useful patterns.

Incrementally Extending the Set of Subproblems
Corrêa and Pommerening (2019) show that encoding the op-
timal heuristic usually requires considering a large number
of small projections but only a small number of larger pro-
jections. (They consider potential heuristics which partition
costs over projection heuristics.) Their result implies that a
low number of abstractions is often sufficient to find plans
that are plans for larger abstractions. If this extends to our
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setting, a large fraction of the pricing problems will often
accept the dual RMP solution as a consistent network flow
and will not generate a new column. We can use this by in-
crementally extending the set of subproblems.

Instead of querying all pricing problems in each iteration,
we can query just a subset of them. When none of them gen-
erates a new column, we extend the set and repeat the pro-
cess. We use a simple strategy to extend the set: we iterate
over all candidate patterns ordered by size, generate the ab-
straction and pricing problem and check if it generates a new
column. If so, we add it and break out of the loop. Observe
that even this simple strategy can pay off because it does not
consider all pricing problems in every iteration and it has
fewer abstractions in memory at the same time. We will ex-
plore the trade-off between solving fewer pricing problems
per iteration and requiring more iterations empirically. We
leave more advanced techniques for future work.

Note that there is a subtle issue with this incremental pro-
cess: we assume that our abstractions only contain alive tran-
sitions and explicitly remove other transitions. If an operator
induces no alive transitions in an abstraction, it is considered
dead and cannot be used in the solution. We fix operator-
counting variables of such operators to 0 in the dual RMP.
When constructing the set of abstractions incrementally, we
do not know the set of dead operators in advance, so con-
structing an abstraction for the first time might show that an
operator is dead. We treat this as if the pricing problem had
generated a column and add it to the considered set.

Using the Heuristic in Search
The naive way of using the Dantzig-Wolfe method within
search is to restart the process from scratch in every state.
As this is prohibitively expensive, we instead keep the RMP
and every pricing problems that is ever generated and update
them when we evaluate a new state. We interpret the gener-
ated columns as pairs 〈h, cost〉 where cost is a saturated cost
function and h = hα(s, cost) is the heuristic value for the
current state under this cost. If the search moves from state
s to a new state s′, we compute h′ = hα(s′, cost) and up-
date all generated columns by substituting h with h′. In the
primal RMP, this updates the objective, in the dual RMP it
updates the bounds of the post-hoc optimization constraints.

In addition, we have to recompute the set of dead opera-
tors in every state, because the notion of an operator not in-
ducing alive transitions in an abstraction depends on which
abstract states are reachable from the current state.

Once the RMP and the pricing problems are updated, we
continue with the heuristic computation as described above
by querying all existing subproblems for new columns and
by iteratively adding all candidate patterns that create a
new column for s′ to the set of subproblems. The resulting
heuristic value is guaranteed to match the optimal cost par-
titioning value for all patterns. In the following, we call this
the KEEPALL strategy.

Relaxing the Heuristic
Computing an optimal cost partition in each state of a search
might be too expensive. We consider three relaxations of the
heuristic that all compute admissible approximations:

KEEPPATTERNS When incrementally extending the set of
subproblems, we extend the set until no new columns are
generated in the initial state, but do not extend it in any
subsequent state. We still update the bounds of constraints
and add columns from all considered subproblems. This
selects a set A′ ⊆ A of abstractions that is sufficient to
compute an optimal cost partition over all abstractions A
in the initial state. In subsequent states, the computed cost
partition is optimal for A′ but not necessarily for A.

KEEPRMP We neither extend the set of subproblems nor
do we evaluate pricing problems in states other than the
initial state, i.e., we stick to the columns in the RMP af-
ter the computation of the initial state. This requires only
a single LP evaluation of the RMP in each state and the
memory used for the pricing problems can be reused. The
resulting heuristic value is that of a suboptimal cost parti-
tion over the abstractions used in the initial state.

KEEPCP After the computation for the initial state, we
extract the cost functions costi(`) =

∑
j δijcij` from

the RMP solution δ. We compute the abstract goal dis-
tances in abstraction αi under costi and store the dis-
tances. The resulting heuristic can be seen as additive pat-
tern databases (Culberson and Schaeffer 1998; Edelkamp
2001) or potential heuristics (Pommerening et al. 2015).

Each method is a relaxation of the methods above it, trad-
ing off heuristic quality for savings on computation time and
memory usage. We will explore this in our experiments.

Experiments
We implemented Dantzig-Wolfe decomposition in Fast
Downward 20.06 (Helmert 2006) with CPLEX 12.10 as an
LP solver and used Downward Lab (Seipp et al. 2017) to
run experiments. Our benchmark set consists of all 1827
tasks without conditional effects from the optimal sequen-
tial tracks of the International Planning Competitions 1998–
2018. We limit memory to 3.5 GiB. Time is limited to
5 minutes in experiments evaluating only the initial state and
30 minutes otherwise. All benchmarks, code and experiment
data are published online (Pommerening et al. 2021a).

In all experiments, we construct the dual rather than the
primal RMP, generating constraints rather than columns.
This implementation as Benders decomposition fits better
into the existing implementation of operator-counting. We
use general cost partitioning unless stated differently. All
experiments are run with two sets of abstractions: all projec-
tions to up to two (SYS2) and up to three (SYS3) variables.

We start our empirical evaluation with a configuration
DWbase that uses no additional extensions. This configura-
tion computes an optimal cost partition for the initial state
in 1018 out of 1827 tasks for SYS2 and in 321 tasks for
SYS3 (see Table 1). The configuration OCP-LPbase com-
putes the same heuristic as a monolithic LP. Comparing both
clearly shows the benefit of the decomposition which solves
305 additional tasks for SYS2 and 87 for SYS3. As there are
still many tasks where optimally partitioning the costs is not
feasible we evaluate if our proposed extensions can help.

276



101 103 105 107

101

103

105

107

DWbase = DWlabel

D
W

in
te

re
st

101 103 105 107

101

103

105

107

DWbase = DWlabel

D
W

in
cr

101 103 105

101

103

105

DWinterest

D
W

in
cr

Figure 1: Number of considered patterns from SYS2 (red) and SYS3 (blue). We only consider instances where data for both
configurations is available.

labels
combined

interesting
patterns

incremental
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S
3

OCP-LPbase - - n/a 713 234
OCP-LPlabel + - n/a 1042 281
OCP-LPinterest + + n/a 1161 379

DWbase - - - 1018 321
DWlabel + - - 1167 358
DWinterest + + - 1456 561
DWincr + + + 1461 772

Table 1: Number of tasks for which the heuristic value for
the initial state can be computed within the resource limits.

Basic Extensions
We first consider combining equivalent labels in configura-
tion DWlabel. We see a strong impact in Table 1. The more
compact representation of the transition systems requires
significantly less memory allowing the method to compute
a heuristic value in tasks where DWbase ran out of memory.
Combining labels has an even larger impact on the mono-
lithic LP (OCP-LPlabel) but the Dantzig-Wolfe method still
comfortably outperforms this configuration.

We now keep labels combined but consider only projec-
tions to non-redundant patterns (DWinterest). This shows an
even stronger impact on the number of tasks where we can
compute the heuristic with 289 additional initial heuristic
values for SYS2 and 203 for SYS3. The first plot in Fig-
ure 1 shows that this is because DWbase and DWlabel use up
to 80 times as many patterns for the computation of the ini-
tial heuristic value as DWinterest for SYS2 and up to 450 times
as many for SYS3. Again, this extension also has a positive
impact on the monolithic LP (OCP-LPinterest) but in this case,
the effect on the Dantzig-Wolfe method is stronger.

The configuration DWincr uses both extensions considered
above but reduces the number of considered subproblems
further by incrementally extending the set of subproblems
starting from projections to goal variables and going up to
SYS2/SYS3. The results in Table 1 indicate a small addi-

tional impact in SYS2 and a large effect in SYS3. The num-
ber of considered patterns (last two plots in Figure 1) ex-
plains this: DWincr usually requires less than 100 of the up
to 107 patterns to compute an optimal cost partition, and
the number of patterns considered by DWbase and DWlabel
is up to 50000 times as high for SYS2 and up to 250000 for
SYS3. This fits with the results by Corrêa and Pommeren-
ing (2019) discussed earlier. Considering fewer abstractions
improves the memory usage of the algorithm dramatically.
With DWinterest for SYS3, over 1000 tasks run out of mem-
ory, while none run out of memory in DWincr. We see this
method trades time for memory in an overall favorable rate.

Overall, the experiments summarized in Table 1 show that
all proposed extensions have a positive impact on Dantzig-
Wolfe decomposition. Smaller differences for extensions
that are added later do not necessarily mean smaller effects
because of diminishing returns.

Comparison to Other OCP Methods
We now compare the strongest configuration from the pre-
vious section (DWincr) to the Lagrangian decomposition
method (LG) by Pommerening et al. (2019) and the mono-
lithic LP (OCP-LPinterest). As the Lagrangian method cannot
handle general cost functions, we restrict all methods to non-
negative costs in this section. We also combine equivalent
labels in LG and consider only patterns that are interesting
for non-negative costs in all configurations.

Since Lagrangian decomposition does not detect when it
has reached an optimum, we cannot compare the number
of instances for which an optimal partition can be com-
puted. However, the anytime nature is a strength of La-
grangian decomposition. As Dantzig-Wolfe also computes a
sequence of cost partitions of increasing quality, we compare
the approaches based on their heuristic quality as a func-
tion of time in the first plot of Figure 2. We seed the La-
grangian decomposition version with a saturated cost par-
titioning (Seipp, Keller, and Helmert 2020) which is opti-
mized by hill-climbing for 100 seconds. This configuration
achieved the highest heuristic estimates in previous work
(Pommerening et al. 2019). We compute heuristic quality of
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Figure 2: Heuristic quality for the initial state over time for non-negative (left) and general (right) cost partitioning methods.

a task at time t as the ratio of the heuristic value it would get
if the heuristic computation were stopped after t seconds and
the value of an optimal cost partition. The figure shows the
average of these values at each time. Note that the plots for
SYS2 and SYS3 are incomparable because their reference
values are different.

For both pattern collections, we see that DWincr clearly
outperforms the other methods, i.e., it finds higher heuristic
values more quickly. The configuration OCP-LPinterest can
only have a quality of 0 or 1 for a task, so the fact that it
has much lower values in the plot reflects that it takes much
longer to compute the optimal values with a monolithic LP.
This is even more pronounced when computing the gen-
eral OCP (see the second plot of Figure 2). Here, DWincr
achieves a heuristic quality of 1.0 for SYS2 and SYS3 af-
ter 300 seconds, while OCP-LPinterest only reaches values of
0.77 (SYS2) and 0.51 (SYS3).

Usage as Heuristic
We proposed four ways of using the Dantzig-Wolfe heuris-
tic in a search. In all cases, we first compute DWincr as
described above. Depending on the strategy, we then re-
move the pricing problems (KEEPCP, KEEPRMP) and the
RMP (KEEPCP) from memory. In every state we update the
bounds of the remaining LPs, compute the set of dead oper-
ators and fix their operator counts to 0 as described above.
The strategies span a range from expensive-to-compute but
accurate to cheap-to-compute but less accurate. We now ex-
plore this trade-off.

Incrementally extending the set of subproblems is crucial
for all strategies other than KEEPALL because they benefit
from a small set of subproblems. However, we have seen that
the incremental extension takes time, and might be too much
to repeat in every state. We thus additionally test a configura-
tion KEEPALLNOINCR that is based on DWinterest instead of
DWincr. The coverage and per-domain coverage comparison
of the results in Table 2 show that the incremental extension
is indeed too expensive to perform in every step.

Table 2 also shows that performance increases the more
we relax the heuristic. The relaxations do not seem to
lose much accuracy and the expensive heuristic computa-
tion does not pay off in comparison. This is not surprising,

SYS2 (A) (B) (C) (D) (E) coverage

(A) KEEPALL – 10 8 7 10 693
(B) KEEPALLNOINCR 26 – 9 8 10 750
(C) KEEPPATTERNS 36 27 – 8 9 823
(D) KEEPRMP 46 41 30 – 12 890
(E) KEEPCP 47 46 40 35 – 974

SYS3 (A) (B) (C) (D) (E) coverage

(A) KEEPALL – 12 1 1 2 339
(B) KEEPALLNOINCR 18 – 5 2 3 362
(C) KEEPPATTERNS 46 42 – 1 7 568
(D) KEEPRMP 54 50 35 – 9 665
(E) KEEPCP 57 54 35 23 – 698

Table 2: Per-domain coverage comparison of different
strategies. The entry in row r and column c shows the num-
ber of domains in which r solves more tasks than c. The
maximum of entries (r, c) and (c, r) is highlighted.

as suboptimal cost partitioning techniques often outperform
optimal ones. While the KEEPCP strategy does not achieve
state-of-the-art performance, there are many options for im-
provement. The computation runs out of time in the initial
state for 259 tasks. Due to the iterative nature of DWincr,
the process can be stopped before an optimal cost parti-
tion is computed to ensure that search always starts. The
strategy also never exhausts time (only memory) after the
search starts, which shows that search and heuristic evalua-
tion are fast. Trading off time for improved heuristic quality
should hence improve performance. Several enhancements
that could be used here have been proposed for saturated
cost partitioning, e.g., using multiple cost partitions (Seipp,
Keller, and Helmert 2020), or using abstractions from a
larger set as long as resources permit (Seipp 2019).

Future Work
Our method can be seen as Dantzig-Wolfe or Benders de-
composition of a large LP. Many techniques from operations
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research tackle convergence issues in such decompositions
and are directly applicable here (e.g., stabilization methods).
In contrast to the typical use case in OR, we solve related
versions of the original LP multiple times to compute heuris-
tic values for each state encountered in the search. This is an
interesting use case for such methods.

We see three additional areas for future work. Firstly, we
focused mainly on computing a single heuristic value and
only briefly explored the use of our method as a heuris-
tic. Additional work is required for state-of-the-art perfor-
mance. Secondly, the main effort in computing heuristic val-
ues stems from evaluating LPs. We could avoid some of it
by precomputation. Finally, we might be able to avoid using
an LP solver altogether if we were able to find efficient al-
gorithms for two clearly defined problems. In the remainder
of this section, we discuss these three areas in more detail.

Improving Usage as Heuristic
Currently, the strategies KEEPALL and KEEPPATTERNS
keep adding constraints to the dual RMP in every state. Con-
straints for previous states are kept and updated with new
bounds. Generated constraints can remain useful and cause
fewer constraints to be generated for new states. While the
number of constraints we add in this way is limited by the
combined size of all skeletons it is easy to imagine cases
where it becomes too large. To mitigate this, we should thus
explore strategies to remove constraints. One option would
be to track how often a column was useful and remove use-
less columns. A column is useful if its variable has a non-
zero solution or if the associated dual constraint is tight.

Precomputing Columns
If we consider small projections and combine their equiva-
lent labels, the number of different subproblems is limited.
There are only 33 equivalence classes with two alive states;
only 744 with three; and 44076 with four. As binary vari-
ables are quite common and projections to one or two vari-
ables often carry a lot of the information, these subproblems
are especially important.

The double description method (Motzkin et al. 1953) can
be used to compute a skeleton of the subproblem (the set of
rays used in the Minkowski sum). We found that small ab-
stractions have small skeletons with at most two rays when
the projection has two states and up to five rays when it
has three. This is encouraging for two reasons: (i) subprob-
lems cannot generate many columns, so the Dantzig-Wolfe
decomposition is likely to converge quickly, and (ii) it is
feasible to precompute and store skeletons for all small ab-
stractions. At runtime, their pricing problems could then be
replaced by a method that simply checks if any ray in the
skeleton has a negative objective value. If so, that ray is re-
turned, otherwise all constraints in the pricing problem are
satisfied. Checking a small number of precomputed rays is
likely much faster than running an LP solver for the sub-
problem.

Alternatively, the double description method could be
used at runtime for all abstractions that are sufficiently small.
This is usually not done because the skeletons are generally
assumed to be much larger.

Avoiding Search Altogether
We identified two interesting algorithmic challenges that de-
serve additional attention in future work.
Pattern discovery problem Given an operator count y,

find an abstraction that has no flow consistent with y.
Pricing problem Given an operator count y and an abstrac-

tion, find a cost function that shows that y is no flow.
The pattern discovery problem could also be phrased in

terms of a multiset of operators if the RMP solves the
operator-counting MIP instead of its LP relaxation.

With efficient algorithms for both of these problems, the
Dantzig-Wolfe method could be used as a planner. Consider
running the method on the set of all abstractions. However,
instead of generating all abstractions, we start with a small
set, generate columns from it using the pricing algorithm,
and extend it with the pattern discovery algorithm once no
new column can be generated anymore. As soon as the pat-
tern discovery algorithm has no solution, we know that the
current RMP solution is the cost of an optimal plan.

Towards the goal of finding an efficient algorithm for the
pricing problem it is worth investigating its polyhedron more
closely. Observe that the constraints imply that there can-
not be negative cost cycles in the abstraction because other-
wise hαi(I, costi) = −∞ and there is no smaller hi ∈ R.
Cost functions that do not induce negative cost cycles can
always be scaled by a non-negative factor which scales the
heuristic value under that cost function in the same way.
Instead of considering hi ∈ R we could limit the choices
to hi ∈ {−1, 0, 1}. With this condition, we could replace
Pi(y) by three problems Pi(y, hi) for hi ∈ {−1, 0, 1} that
fix the value of hi (ignoring cases where Pi(y, hi) is infeasi-
ble). Their objective then simplifies to minimizing costi(y).
The question whether Pi(y) can be solved without an LP
solver remains open but one approach could be to solve
Pi(y, hi), i.e., find a saturated cost function costi that mini-
mizes costi(y) and satisfies hαi(I, costi) = hi.

Conclusions
We applied Dantzig-Wolfe decomposition to the optimal
cost partitioning of abstraction heuristics. The relaxed mas-
ter problem can be seen as either finding a cost partition with
a linear combination of some candidate cost functions or as
an operator-counting LP over some post-hoc optimization
constraints using alternative costs. The pricing problems are
parameterized with an operator-count y that optimizes the
current RMP and compute a new column iff their abstrac-
tion does not have a network flow consistent with y.

Empirically, we have seen that this method computes
the optimal cost partitioning faster than previous methods
and also gives good approximations early on. We have in-
vestigated how combining equivalent labels and restricting
attention to interesting patterns improves cost partitioning
methods in general and ours in particular. We have also
explored several relaxations of the heuristic that make it
faster to evaluate while not losing too much accuracy. Exten-
sions used in other state-of-the-art heuristics could be added
here as well, e.g., internal resource limits, diversification, or
adding/removing cost partitions during the search.
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Pommerening, F.; Röger, G.; and Helmert, M. 2013. Getting
the Most Out of Pattern Databases for Classical Planning.
In Rossi, F., ed., Proceedings of the 23rd International Joint
Conference on Artificial Intelligence (IJCAI 2013), 2357–
2364. AAAI Press.
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