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Abstract

Hybrid PDDL+ models are amongst the most advanced mod-
els of systems and the resulting problems are notoriously
difficult for planning engines to cope with. An additional
limiting factor for the exploitation of PDDL+ approaches in
real-world applications is the restricted number of domain-
independent planning engines that can reason upon those
models. With the aim of deepening the understanding of
PDDL+ models, in this work we study a novel mapping be-
tween a time discretisation of PDDL+ and numeric planning
as for PDDL2.1 (level 2). The proposed mapping not only
clarifies the relationship between these two formalisms, but
also enables the use of a wider pool of engines, thus foster-
ing the use of hybrid planning in real-world applications. Our
experimental analysis shows the usefulness of the proposed
translation, and demonstrates the potential of the approach
for improving the solvability of complex PDDL+ instances.

Introduction
The availability of domain-independent planning engines is
fostering the use of planning in a wide range of applications.
This is despite the complexity issues inherent in plan gener-
ation, which are exacerbated by the separation of planner
logic from domain knowledge. A major advantage of the
separation of planning logic from domain knowledge lies
in the fact that, given a standard language to be used for
input and output, the two components can be interchanged
in a modular way, without affecting the other component,
and with no negative repercussions on the overall application
framework where the planning system is usually embedded.

This modular approach promotes the use of reformula-
tion techniques, which can automatically re-formulate or
re-represent the domain knowledge and/or the problem in-
stance in order to increase the efficiency of the planning
logic module and increase the scope of problems solved. The
general idea is to develop reformulation techniques that are
agnostic with regards to the domain knowledge and to the
planning engine, and use them to form a wrapper around
the planning engine, improving its performance for the do-
main in which it is applied. The transformation is then re-
versed after a solution has been found, such that the solution
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is rephrased in the original formulation language. A well-
known class of reformulation approaches aims at translat-
ing a model from the original input language, to a different
one. The idea is usually to remove the use of some poorly
supported features of the language (see for instance (Ceri-
ani and Gerevini 2015; Percassi and Gerevini 2019)) or to
re-represent the problem in a less expressive language. The
latter strategy has the advantage of increasing the number
of planning engines that are able to reason upon the plan-
ning problem, at the cost of making the model extremely
hard to read for human experts. Well-known examples of
this approach include the translation of conformant planning
problems into classical problems (Taig and Brafman 2013),
the re-representation of uncertainty in conformant planning
problems (Palacios and Geffner 2009), and the translation of
complex temporal aspects in PDDL2.1 (Cooper, Maris, and
Rgnier 2010).

In this paper we introduce a reformulation approach for
translating discretised PDDL+ problems to PDDL2.1 prob-
lems. Hybrid PDDL+ models are amongst the most advanced
models of systems and the resulting problems are notori-
ously difficult to cope with. Further, a limited number of
planning engines are able to parse PDDL+ models.

More precisely, we study two translations. The first trans-
lation leads to a numeric planning problem which is ex-
ponentially larger than the PDDL+ input but preserves the
number of discrete transitions. The second one keeps the re-
sulting formulation polynomial but requires more transitions
to generate a solution. We start off by revisiting Shin and
Davis (2005)’s formalisation, which lets us to formalise the
problem without the need of going through Fox and Long
(2003)’s hybrid automaton interpretation, and also crisply
formalises the connection between the continuous-time rep-
resentation, and its discretisation. We formally present the
two translations, and also show how these can be extended
to encode cascade of events emulated by actions. We study
both translations theoretically and empirically. In particular,
we validate the resulting formulations against a set of chal-
lenging benchmark domains, including real-world applica-
tions, and well-known planning engines. Our results indicate
that the proposed translations can unlock the use of PDDL2.1
planning engines for tackling hybrid PDDL+ problems, with
the clear advantage of drastically expanding the number of
approaches that can be used to solve a problem.
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Problem Formalisation
In this section we formalise the problem of PDDL+ (Fox
and Long 2006), and the problem of numeric planning as
the one that can be specified in PDDL2.1 (level 2) (Fox and
Long 2003), hereinafter simply referred to as PDDL2.1. We
first describe the syntax of our problems, then detail the se-
mantics of PDDL+ under both continuous and discrete time,
and only sketch the PDDL2.1’s one in the interest of space.
Our discussion follows Shin and Davis (2005)’s formaliza-
tion and terminology1 in a way that is instrumental for our
work. We detail our problems using propositional formu-
las over comparisons and Boolean variables2. A compari-
son is ξ ./ 0 where ξ is a mathematical expression, and
./∈ {≤, <,=, >,≥}.
Definition 1 (PDDL+ problem). A PDDL+ problem Π is the
tuple 〈F,X, I,G,A,E, P 〉 where:
• F and X are the sets of Boolean and numeric variables,

respectively.
• I and G are the description of the initial state, expressed

as a full assignment to all variables in X and F , and the
description of the goal, expressed as a formula, respec-
tively.

• A and E are the sets of actions and events, respec-
tively. Actions and events are pairs 〈p, e〉 where p is a
propositional formula and e is a set of conditional ef-
fects of the form c . e where (i) c is a formula and
(ii) e is a set of Boolean (f = {⊥,>}) or numeric
(〈{ass, inc, dec}, x, ξ〉 where ξ is an expression over X)
assignments.

• P is a set of processes. A process is a pair 〈p, e′〉 where p
is a formula and e′ is a set of numeric continuous effects
expressed as pairs 〈x, ξ〉 with the meaning that ξ repre-
sents the time-derivative of x, with x ∈ X .
Let a = 〈p, e〉 be an action or an event or a process, we

use pre(a) to denote the precondition p of a, and eff(a) the
effect e of a. In the following we will use a, ρ and ε for
denoting an action, process and event, respectively.

A plan for a PDDL+ is an ordered set of timed actions plus
a time envelope, organised formally as following.
Definition 2 (PDDL+ plan). A PDDL+ plan πt is a pair
〈π, 〈ts, te〉〉 where π = 〈〈a0, t0〉, 〈a1, t1〉, ..., 〈an−1, tn−1〉〉,
with ti ∈ R, is a sequence of time-stamped actions and
〈ts, te〉, with ts, te ∈ R, is a real interval, called envelope,
within which π is performed.
Definition 3 (PDDL2.1 problem). A PDDL2.1 problem Π
is the tuple 〈F,X, I,G,A, c〉 where all elements are as for
PDDL+, yet there are neither processes nor events and c as-
sociates to each action a rational cost.
Definition 4 (PDDL2.1 plan). A PDDL2.1 plan is a sequence
of actions 〈a0, ..., an−1〉. The cost of the plan π is the sum
of all action costs in π, cost(π) =

∑
a∈π c(a).

1As Shin and Davis (2005), we idealise the execution of actions
and events to be truly instantaneous transitions as long as an order
is imposed among transitions sharing the same time clock.

2With abuse of notations we also use positive and negative lit-
erals as shortcut for f = {>}.

Intuitively, a PDDL+ problem consists in finding a num-
ber of actions along a potentially infinite timeline, whilst
conforming to a number of processes and events that may
change the state of the world in a continuous or an instan-
taneous manner as time goes by. Actions have to be appli-
cable when they are scheduled, and have to be such that the
agent is into a state in which the goal is satisfied when the
plan is finished. In technical terms, PDDL+ prescribes events
and processes to be interpreted as must discrete and contin-
uous transitions along a potentially infinite timeline, while
actions are may transitions. A PDDL2.1 problem is the vari-
ant where there is no time, and we only seek for a sequence
of actions that starts from some initial state and yields a state
satisfying the goal. In the rest of the section we focus on
the semantics of PDDL+, and in particular on its temporal
dimension. We assume the reader is familiar with notions
of action/event applicability, and simply use γ(s, ·) for the
state resulting by applying either an action/event (γ(s, a))
or a sequence of action/events (γ(s, 〈a0, . . . , an〉)) in state
s. For details on PDDL2.1, we refer the reader to Fox and
Long (2003). Moreover, we exploit the widely shared as-
sumptions of boundness adopted in PDDL+ problems (Fox
and Long 2006). Importantly we assume there always is a fi-
nite (possibly empty) and unique acyclic sequence of events
that can be triggered, and there is a bound on the number
of spontaneous changes of processes over a closed interval.
We start off by introducing the notion of time points, inter-
vals and histories over intervals. We use these to define the
validity of a PDDL+ plan which we interpret both on a con-
tinuous and a discrete timeline, both based on the notion of
a projection of a plan.

A time point T is a pair 〈t, n〉 where t ∈ R and n ∈
N. Time points over R × N are ordered lexicographically,
i.e., let 〈ti, ni〉 and 〈tj , nj〉 be two time-points, 〈ti, ni〉 <
〈tj , nj〉 iff either ti < tj or ti = tj and ni < nj . Let Ti
and Tj be two time points, a closed (open) time interval I =
[Ti, Tj ] ((Ti, Tj)) is the non empty set I = {T, Ti ≤ T ≤
Tj}({T, Ti < T < Tj}).

A history H over I = [Ts, Te] maps each time point
in I into a situation. A “situation at time T ” is the tuple
H(T ) = 〈HA(T ),Hs(T )〉, where HA(T ) is the set of ac-
tions executed at time T and Hs(T ) is a state, i.e., an as-
signment to all variables in X and F at time T . We denote
by Hs(T, v) and Hs(T, ξ) the value assumed in the state
at time T by v ∈ F ∪ X and by a numeric expression ξ,
respectively. Etrigg(T ) indicates the set of active events in
T . T is a significant time point of H over [Ts, Te], iff ei-
ther HA(T ) 6= ∅ or a process has started or stopped in T
or Etrigg(T ) 6= ∅ or T = Ts or T = Te or there has been
a discrete change just before. A history H is monotonous
over It = (t1, t2), where t1, t2 ∈ R, if there is no t ∈ It
such that H(〈t, n〉) is a significant point of H. Note that,
for each 〈t, n〉 such that t ∈ (t1, t2), the set of active pro-
cesses does not change and the set of triggered events is
empty. We denote the set of active processes over It as
C(It) = {ρ | ρ ∈ P andHs(〈t1, n1〉) |= pre(ρ)}, where
n1 is a sufficiently large natural number beyond which the
state, for the clock equal to t1, is stable.

In the following definitions we assume Π =
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〈F,X, I,G,A,E, P 〉, and πt = 〈π, 〈ts, te〉〉 implicit.
Definition 5 (PDDL+ plan projection). Let Hπ be a his-
tory, let I be an initial state and let πt be a PDDL+ plan.
We say that Hπ is a projection of πt which starts in I iff
Hπ induces a sequence of significant time points TH =
〈T0 = 〈ts, 0〉, · · · , Tm = 〈te, nm〉〉 such that Hπ is de-
fined over I = [T0, Tm] with Hπs (T0) = I , HπA(Tm) = ∅,
Etrigg(Tm) = ∅ and, for all 0 ≤ i < m, the following rules
hold:

R1 Etrigg(Ti) 6= ∅ iff Hπs (Ti+1) = γ(Hπs (Ti), Etrigg(Ti)),
HπA(Ti) = ∅, ti+1 = ti and ni+1 = ni + 1;

R2 HπA(Ti) 6= ∅ iff Hπs (Ti+1) = γ(Hπs (Ti),HπA(Ti)),
Etrigg(Ti) = ∅, ti+1 = ti and ni+1 = ni + 1;

R3 for each 〈ai, ti〉, 〈aj , tj〉 ∈ π, with i < j and ti = tj
there exists Tk, Tz ∈ TH such that ai ∈ HπA(Tk) and
aj ∈ HπA(Tz) where tk = tz = ti and nk < nz;

R4 Hπ is monotonous over It = (ti, ti+1), iff ti+1 > ti
and for each t ∈ It and for each x ∈ X , we have that:
– Hπs (〈t, 0〉, x) is continuous and differentiable;
– for each x ∈ X we have that:

dHπs (〈t, 0〉, x)

dt
=

∑
〈x′,ξ〉∈eff(ρ), x′=x

ρ∈C(It)

Hπs (〈t, 0〉, ξ)

– for each x ∈ X we have that Hπs (〈ti+1, 0〉, x) =
limt→t−i+1

Hπs (〈t, 0〉, x), and values of unaffected vari-
ables persist up to ti+1 (frame-axiom).

Definition 6 (Valid PDDL+ plan). πt is valid plan for Π
iff Hπs (Tm) |= G and, for each a ∈ HπA(T ) with T ∈ I ,
Hπs (T ) |= pre(a).

Given a mathematical expression ξ and a rational value
δ ∈ Q we denote with ∆(ξ, δ) the discretised expression.
Definition 7 (PDDL+ plan discrete projection). Let δ ∈ Q,
let Hπ be a history, let I be an initial state and let πt be a
PDDL+ plan. We say that Hπ is a discrete projection of πt
which starts in I iff Hπ induces the significant time points
TH = 〈T0 = 〈t0, n0〉, · · · , Tm = 〈tm, nm〉〉 where either
ti+1 = ti + δ or ti+1 = ti, and all rules as for Def. 5 apply,
except for R4 that becomes:
R4 for each pair of contiguous significant time points Ti =
〈ti, ni〉, Ti+1 = 〈ti+1, 0〉 such that ti+1 = ti+δ, the value
of each numeric variable x ∈ X is updated as:

Hπ
s (Ti+1, x) = Hπ

s (Ti, x) +
∑

〈x′,ξ〉∈eff(ρ), x′=x
ρ∈{ρ∈P, Hπs (Ti)|=pre(ρ)}

Hπ
s (Ti,∆(ξ, δ))

and values of unaffected variables remain unchanged
(frame-axiom).

Note that plans featuring actions at non discrete time points
do not admit any projection, and are therefore ill-defined un-
der discrete interpretation.

In the following we provide a more intuitive description
of R1–R4 of Defs. 5 and 7. R1 (R2) states that if an ac-
tion (event) is executed (triggered) in a significant time point

T1 = 〈t, n〉, then there necessary exists a successor of T1,
i.e., T2 = 〈t, n+ 1〉 having the same clock t and the step in-
creased by one unit, i.e., n+1; the successor state associated
to T2 is calculated by simply applying the discrete effects
of the action (event). R3 is used to enforce how actions of a
PDDL+ plan π are projected over an history, preserving their
original ordering in case they share the same time-stamp in
π. R4 is used to enforce how a numeric variable changes
continuously over time according to the active processes
in those “monotonous” temporal intervals in which “noth-
ing happens (there is no action/event executed/triggered and
there is no process which starts/ends).

Definition 8 (δ Discrete valid PDDL+ plan). πt is a valid
plan for Π under δ discretisation iff Hπ

s (Tm) |= G and, for
each T ∈ I such that Hπ

A(T ) 6= ∅, thenHπs (T ) |= pre(a).

From PDDL+ to PDDL2.1
PDDL+ problems differ from PDDL2.1 for the presence of
processes and events. In this section we show a translation
schema that transforms all these structures into regular ac-
tions, and adds additional predicates to their preconditions
and to the goal so that every valid plan that is found in the
process and event-free translation, retains its validity on the
discretised version of the PDDL+ problem it has been gener-
ated from. We do so by explicitly formulating a simulation
action that lets the planning engine wait and observe the state
of the world for a given amount of time. Instead, when the
planner picks some action, time does not flow; rather the
state is instantaneously modified by the planning engine.

To make this operational, there are a number of challenges
to pursue: (i) we need to capture what processes are active in
a given state so that the time-discretised continuous update
of the state consistently reflects what the dynamical specifi-
cation of the system prescribes; (ii) we need to take care of
the potentially complex cascade of events that may be trig-
gered for each encountered state.

We proceed in a modular fashion. In what follows we
firstly present a solution to point (i) with a (straightforward)
exponential encoding first, and then with a more sophisti-
cated polynomial translation. Both are guaranteed to work
for event-free PDDL+ problems. Then we face point (ii) by
showing how also events can be translated into actions with
conditional effects with a translation step that is modular to
how we tackle point (i).

Exponential Translation
Given an event-free PDDL+ problem Π =
〈F,X, I,G,A, P, ∅〉, we define a context C to be a
non-empty subset of processes, and denote with P+(P ) the
set of non-empty subsets of P , that is the set of all possible
contexts.

For an event-free PDDL+ problem Π, the exponen-
tial translation generates a PDDL2.1 problem Π′ =
〈F,X, I,G,A ∪ {SIM}, c〉, discretised in t = δ. Π′ is al-
most identical to Π but for the absence of processes and the
presence of the special action SIM playing the role of the
simulator, i.e., what changes when time goes forward. SIM
is defined as follows:
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pre(SIM) =>

eff(SIM) =
⋃

C∈P+(P )

{contpre(C) . conteff(C)}

where

contpre(C) =
∧

ρ∈P\C

¬pre(ρ) ∧
∧

ρ∈P∩C
pre(ρ)

conteff(C) =
⋃
x∈X
{〈inc, x,

∑
〈x′,ξ〉∈eff(ρ), x′=x

ρ∈C

∆(ξ, δ)〉}

Intuitively, the action SIM organizes all possible contexts
within a unique action, delegating to each conditional ef-
fect (i) the conditions under which a context is triggered
and (ii) the consequences that such a context has on the
state after some time δ has passed. Point (i) is formalised
conjoining two conjunctions: the first ensures that no other
process of some other context has its precondition satisfied
(

∧
ρ∈P\C

¬pre(ρ)); the second ensures that all the precondi-

tions of a given context are satisfied (
∧

ρ∈P∩C
pre(ρ)). Let x

be some numeric variable of our problem, point (ii) is ob-
tained by summing the contribution of each process within
the context.

Ultimately, we reflect the effect of the time passing ac-
tion on the overall make-span of the plan directly in the cost
function of our problem, differentiating therefore whether
the planning engine chooses some action, or lets the time
go for some δ time: c(a) = 0 if a ∈ A while c(a) = δ if
a = SIM.
Example 1 (EXP translation). Let Π = 〈F,X, I,G,A, ∅, P 〉
be a PDDL+ problem without events encompassing one
Boolean variable, i.e., F = {f1}, four numeric variables,
i.e., X = {x1, x2, x3, x4} and two processes P = {ρ1, ρ2}
such that:

ρ1 = 〈x1 > 0, {〈x2, x3〉}〉, ρ2 = 〈f1, {〈x2, x4〉}〉
According to R4 of Defs. 5-7, ρ1 affects x2 according to
dx2

dt = x3 when x1 > 0 holds and, similarly, ρ1 af-
fects x2 according to dx2

dt = x4 when f1 holds. Finally, if
x1 > 0 ∧ f1, then dx2

dt = x3 + x4. The PDDL2.1 prob-
lem obtained using EXP discretised in t = δ is Π′ =
〈F,X, I,G,A ∪ {SIM}, c〉. The novel action SIM is always
applicable and features a conditional effect for each el-
ement in P+(P ) = {{ρ1}, {ρ2}, {ρ1, ρ2}}, i.e., SIM =
〈>,W{ρ1},W{ρ2},W{ρ1,ρ2}〉, where3:

W{ρ1} = (x1 > 0) ∧ ¬f1 . {〈inc, x2, x3 · δ〉}
W{ρ2} = ¬(x1 > 0) ∧ f1 . {〈inc, x2, x4 · δ〉}

W{ρ1,ρ2} = (x1 > 0) ∧ f1 . {〈inc, x2, (x3 + x4) · δ〉}

3Observe that zero increase can be easily omitted as they do not
cause any numeric transition.

Lemma 1. Let Π = 〈F,X, I,G,A, ∅, P 〉 be a PDDL+ prob-
lem, and let Π′ = 〈F,X, I,G,A ∪ {SIM}〉 be the PDDL2.1
problem obtained by using the EXP translation discretised in
t = δ. Π admits a solution under δ discretisation iff so does
Π′.

Proof Sketch. (⇒) Let πt = 〈π, (0, te)〉 be a valid solution
for Π (assume w.l.o.g. ts = 0) under δ discretisation, and
let π′ be a PDDL2.1 plan constructed in such a way that: i)
for each 〈a, t〉 ∈ π then a′ ∈ π′ (where a′ is the compiled
version of a); ii) for each 〈ai, ti〉, 〈aj , tj〉 with ai ≺ aj in π
then a′i ≺ a′j in π′ iii) a sequence, possibly empty, of SIM
actions has to be placed before each action a′i ∈ π′ and at
the end of π′ according to the following structure:

π
′
= 〈〈SIM〉 ×

t0

δ
, a
′
0, 〈SIM〉 ×

t1 − t0
δ

, ..., a
′
n−1, 〈SIM〉 ×

te − tn−1

δ
〉

where 〈SIM〉 × k indicates k repetitions of SIM.
Let τ be the sequence of states associated to each signifi-

cant point of Hπ and let τ ′ be the sequence of states gener-
ated by the execution of π′.

In order to prove that π is a valid solution for Π′, it suf-
fices to show that, let τ = 〈Hπ

s (T0), ...,Hπ
s (Tm−1)〉 and

τ ′ = 〈s0, ..., sm−1〉, Hπ
s (Ti) and si are equivalent (agree

on all values for F ∪X) at each 0 ≤ i < m. We prove this
by induction on τ (τ ′). The base case (i = 0) trivially proves
true as Hπ

s (T0) = I and s0 = I . For the induction step, we
assume true the statement for some i < |τ |, and prove this
for i + 1 by considering the two types of transitions occur-
ring between two contiguous significant points in Hπ

s .
Instantaneous transition. Let Ti = 〈ti, ni〉 and Ti+1 =
〈ti+1, ni+1〉 be two significant time points of Hπ such that
ti+1 = ti and ni+1 = ni + 1. R2 of of Defs. 5-7 implies
that Hπ

A = {ai} 6= ∅. Since the compiled action a′i is equal
to the original one ai, it is easy to see that the outcomes
of the transitions γ(Hπ

s (Ti, ai)) and γ(s, a′i) are equivalent,
and we know that si |= pre(a′i) as Hπ

s (Ti) |= pre(ai) and si
and Hπ

s (Ti) are equivalent by inductive hypothesis.
Temporal transition. Let i be an index such that Ti = 〈ti, ni〉
and Ti+1 = 〈ti + δ, 0〉 are two significant time points
of Hπ . According to R4 of Def. 7 each numeric variable
x ∈ X changes over δ by using the active processes in
{ρ ∈ P,Hπ

s (Ti) |= pre(ρ)}. It is easy to see that the SIM
operator activates exactly the effects entailed by the condi-
tional effects related to the active processes in Hπ

s (Ti). In-
deed, Hπ

s (Ti) is equivalent to si by inductive hypothesis.
Thus, Hπ

s (Ti+1) and si+1 = γ(si, SIM) are equivalent.
(⇐) Starting from π′ we can build a valid PDDL+ plan

πt = 〈π, 〈0, te〉〉 as follows: i) for each action a′i ∈ π′ such
that a′i 6= SIM then 〈ai, ti〉 ∈ π, where ti is equal to δ multi-
plied for the occurrences of SIM in π′ before a′i; ii) for each
a′i, a

′
j such that a′i ≺ a′j in π′ then 〈ai, ti〉≺ 〈aj , tj〉 in π and

iii) te is equal to δ multiplied by the number of SIM in π′.
In order to show the validity of πt, we reason on the dis-

crete projection Hπ of πt that is determined as follows. Ev-
ery action 〈ai, ti〉 in π is associated with a significant time
point Ti such that Hπ

A(Ti) = {ai}. This implies, by using
R1 of Defs. 5-7, the existence of a significant point Ti+1 =
〈ti, ni + 1〉 such that Hπ

s (Ti+1) = γ(Hπ
s (Ti+1), ai). Any
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pair of contiguous actions 〈ai, ti〉 and 〈ai+1, ti+1〉 induces
k = ti+1−ti

δ significant time points Ti+j = 〈ti + j · δ, 0〉
of Hπ , with 1 ≤ j ≤ k. The number of significant time
points equates the number of SIM actions between a′i and
a′i+1. Once we have built Hπ we can generate τ and, know-
ing that π′ is valid for Π′, proceed by induction over τ and
τ ′ in a similar way to the opposite direction.

Polynomial Translation

The translation that we present in this section relies on the
idea to keep the factored processes-based representation and
to reflect this into a number of actions (in the next orga-
nized in set AP ), each devoted to model whether one par-
ticular process is active, and what its effects on the state
of the world are. Instead of evaluating which context holds
into an exponentially large set of possible alternatives, we
let the planning engine develop the applications of actions
from AP in depth, i.e., by sequencing their execution one
after the other. This sequencing gets activated when the plan-
ning engine switches into simulation modality, activated by
so called action start, and ends once all actions from AP are
executed.

Since, as their homologous, these actions can change the
values of the variables throughout the execution, start also
makes a full copy of the numeric state values before simula-
tion. It does so by assigning the current value of all relevant
variables into a new set of variables,Xcp, before any process
starts operating. This lets the planning engine safely evalu-
ate all variables each process effect depends on. In order to
achieve this last point, each numeric effect in some process
is rewritten before being transformed into an action. The
rewriting manipulates each formula in a way to substitute
every occurrence of a variable fromX with its doppelganger
in Xcp 4. Let be ψ a formula, we denote with σ(ψ,Xcp) the
result of such a rewriting.

This translation trades the exponential blow-up caused by
the context switching operation of EXP, with an increase in
the length of the plan. The resulting formulation is sound,
complete and, more interestingly, is polynomial on the size
of the input. For this reason, we call this translation POLY
and detail in what follows its precise definition and func-
tioning.

Let Π = 〈F,X, I,G,A, P, ∅〉 be an event-free PDDL+
problem, and a discretisation parameter t = δ, POLY gener-
ates a new PDDL2.1 problem Π′ = 〈F ∪D ∪ {pause}, X ∪
Xcp, I, G ∧ ¬pause, Ac ∪AP ∪ {start, end}, c〉 such that:

Xcp = {xcopy | x ∈ X}

D =
⋃

ne∈eff(ρ)
ρ∈P

{donene}

Ac = {〈pre(a) ∧ ¬pause, eff(a)〉 | a ∈ A}

4Recall that every numeric expression is a formula.

start = 〈¬pause, {pause} ∪
⋃
x∈X

{〈ass, xcopy, x〉}〉

end = 〈
∧

done∈D

done ∧ pause, {¬pause} ∪
⋃

done∈D

{¬done}〉

AP =
⋃

ne:〈x, ξ〉∈eff(ρ)
ρ∈P

{〈pause, {σ(pre(ρ), Xcp).

〈inc, x,∆(δ, σ(ξ,Xcp)〉} ∪ {donene}〉}

As it is possible to observe, at any discrete time step, the
planning engine can decide to let time pass by an amount of
t = δ, and does so by deciding to execute action start– note
the empty preconditions. From that moment onward, no ac-
tion from Ac can be executed, and only when all conditional
process effects are applied, the planning engine can come
back into actual planning mode (¬pause). AP encompasses
all such processes effects, and delegates to a conditional ef-
fect the check and the consequent update of the variables
according to their past value (σ(pre(ρ), Xcp) for the precon-
dition of the process, and σ(ξ,Xcp) for the right-hand side of
the numeric effect) under the proper ∆ discretisation. Note
that, action start also ensures that all the variables are copied
through an assignment operation, which is responsible for it-
erating over all numeric variables of the problem and updat-
ing their value for the next round of simulation (the snippet⋃
x∈X{〈ass, xcopy, x〉}).
Similarly to the exponential translation, also in this case

we make the planning engine aware of the passage of time
through the cost function. As however we do not have only
one action that reflects such a passage of time, we attribute
a non-zero cost only to action start. That is: c(a) = δ if
a = start, 0 otherwise.
Example 2 (POLY translation - Continuing on Ex. 1). Let
ne1 = 〈x2, x3〉 and ne2 = 〈x2, x4〉 be the numeric continu-
ous effects of ρ1 and ρ2, respectively. The PDDL2.1 problem
obtained using POLY discretised in t = δ is Π′ = 〈F ∪
{ne1, ne2}∪{pause}, X ∪{xcopy

1 , xcopy
2 , xcopy

3 , xcopy
4 }, I, G∧

¬pause, Ac ∪ {SIM-ne1, SIM-ne2} ∪ {start, end}, c〉 such
that:

start =〈¬pause, {〈ass, xcopy
1 , x1〉, 〈ass, xcopy

2 , x2〉,
〈ass, xcopy

3 , x3〉, 〈ass, xcopy
4 , x4〉, pause}〉

SIM-ne1 =〈pause, {(xcopy
1 > 0) . {〈inc, x2, x

copy
3 · δ〉}, donene1}〉

SIM-ne2 =〈pause, {f1 . {〈inc, x2, x
copy
4 · δ〉}, donene2}〉

end =〈pause ∧ donene1 ∧ donene2 , {¬pause,¬donene1 ,

¬donene2}〉

The novel actions are generated in a way that “start” needs
to be followed by any permutation of SIM-ne1 and SIM-ne2,
plus action “end”. “start” and “end” are used to open and
close the simulation sequence, while SIM-ne1 and SIM-ne2
are used to simulate the continuous numeric effects of pro-
cesses ρ1 and ρ2, respectively.
Lemma 2. Let Π = 〈F,X, I,G,A, ∅, P 〉 be a PDDL+
problem, and let Π′ = 〈F ′, X ′, I, G ∧ ¬pause, A′〉 be the
PDDL2.1 problem obtained by using the POLY translation
discretised in t = δ. Π admits a solution under δ discretisa-
tion iff so does Π′.
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Proof sketch. (⇒) The construction of the plan π′ for prob-
lem Π′ follows the procedure explained in Lemma 1, but
for rule iii), where, a sequence, possibly empty, of se-
quences having the form wait = 〈start, seq(AP ), end 〉
(where seq(AP ) is any sequencing of all AP operators) has
to be placed before each action a′i ∈ π′ and at the end of π′
according to the following structure:

π
′
= 〈〈wait〉 ×

t0

δ
, a
′
0, 〈wait〉 ×

t1 − t0
δ

, ..., a
′
n−1, 〈wait〉 ×

te − tn−1

δ
〉

Much as we do for Lemma 1, we proceed by induction
over the states τ and τ ′, noticing that τ ′ can be constructed
using wait as if it was a single transition, therefore leading us
to have |τ | = |τ ′|. In the following we consider equivalent
two states if they share the same values over X ∪ F .

The aspect that we need to prove is the inductive case
when there is a temporal transition (the case base and the
instantaneous transitions trivially follow from Lemma 1).
In particular, starting from two equivalent states in τ and
τ ′, i.e., Hπ

s (Ti) and si, we need to prove that Hπ
s (Ti+1) is

equivalent to si+1 = γ(si,wait). Note that the action start in
wait has its precondition empty so it is executable. This ac-
tion copies each x ∈ X into Xcp. All AP operators become
thus executable blocking the execution of any other operator
until action end. The conditional effects of the AP actions
uniquely depends on Xcp; hence, as no action in AP modi-
fies a variable in Xcp, effects in seq(AP ) are commutative.
By inductive hypothesis, Hπ

s (Ti) and si are equivalent and
so is the set of active processes inHπ

s (Ti) and throughout the
execution of AP . From this point onward, for each x ∈ X ,
the terms summed by the execution of any possible seq(AP )
are the same as those appearing in the summation provided
in R4 of Def. 7. Thus, Hπ

s (Ti+1) and si+1 = γ(ai,wait) are
equivalent. Observe, moreover, that each action a′, compiled
version of a, requires pause to be false. This guarantees that
actions are only executable before and after a wait block.

(⇐) The mapping from π′ to πt = 〈π, 〈0, te〉〉 is simi-
lar to what was done for Lemma 1. All the occurrences of
sequence wait in π′ have to be ignored in building π. The
timestamp ti of each action 〈ai, ti〉 mapped in π is equal
to δ multiplied by the number of start before a′i in π′. te is
equal to δ multiplied by the number of start in π′. Then, we
proceed by induction on the length of the induced trajecto-
ries, as done for Lemma 1.

Handling Events
An event in PDDL+ models can be triggered at any time
during the execution of a plan, and it is necessary to track
whether and how such an event changes the state. More im-
portantly, the semantics of PDDL+ prescribes that a cascade
of events may also occur.

In order to handle this behaviour, we devise a new ac-
tion, namely SIMEV, that is responsible for keeping track
of the arisen events, and their impacts on the state. This ac-
tion does so by encoding in one single unit the potentially
repeated check and execution of several events via a so-
phisticated usage of conditional effects that are evaluated in
rounds. SIMEV makes use of 4 sets of conditional effects:

1. Wtrig that is responsible for actually updating the state
with all events having their precondition satisfied;

2. Wfired that is responsible for keeping track of whether
there is some event triggered;

3. Wsatu that is responsible for capturing whether no event is
triggered in the previous round;

4. W⊥ that captures the situation where there is some incon-
sistency caused by either a set of mutex events active at
the same time or a cyclic sequence of events being trig-
gered.
The formalization of such conditional effects in PDDL2.1

makes use of a number of additional fresh predicates that are
accumulated in set FE . We have a fact sim-ev that signals the
beginning of the event simulation; then we have a fact firedε
for each event in ε ∈ E.

The SIMEV action is formalised in such a way that:

pre(SIMEV) =sim-ev
eff(SIMEV) =Wtrig ∪Wfired ∪Wsatu ∪W⊥

where:

Wtrig =
⋃

c.e∈eff(ε)
ε∈E

{pre(ε) ∧ c . e}

Wfired =
⋃
ε∈E

{pre(ε) . firedε}

Wsatu =
{ ∧
ε∈E

(¬pre(ε) ∨ firedε) . {¬sim-ev} ∪
⋃
ε∈E

{¬firedε}
}

W⊥ =
{( ∨

ε,ε′∈E:
ε 6=ε′∧

mutex(ε,ε′)

pre(ε) ∧ pre(ε′)
)
∨

∨
∨
ε∈E

pre(ε) ∧ firedε . {⊥}
}

As it is possible to observe from the snippet above,
SIMEV captures which events have been triggered and, on
the one hand, applies their effects, and on the other hand,
memorizes whether at least one event has been executed. If
that is the case, the action needs to re-evaluate the condi-
tional effects; indeed, events can be triggered in cascade. It
is easy to see that the triggering of events is blocked when-
ever the action detects a cycle, i.e., an event that is deemed
to be executed more than once. For this reason, SIMEV can
be performed up to |E| times, that is, after the termination
condition induced byWsatu is reached. Observe that this ef-
fect ({¬sim-ev} ∪

⋃
ε∈E{¬firedε}) not only interrupts the

execution of the simulation of the events, but also resets all
fired facts; this way, we keep the memory ready for the next
round of simulation of events.

The very last set of conditional effects ensures that the
reached state does not contain cycles or mutexes events that
can be executed at the same time. If either of these two situ-
ations arise, SIMEV generates an inconsistent state, thereby
denoted by the special ⊥ symbol. This check guarantees
to prune states where interfering events leading to non-
deterministic outcomes or infinite cascade of events arise.
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This complies with the semantics restrictions imposed by
Shin and Davis (2005); Fox and Long (2006); Fox, Howey,
and Long (2005).

The presented exponential and polynomial translations
can be extended to address PDDL+ planning problems with
events by forcing action SIMEV to be applied in the ini-
tial state, and switching back to event simulation (sim-ev)
modality after any occurrence of an instantaneous action (in
both translations), after action SIM in EXP and after action
end in POLY. Let a be an action, we denote with ev-check(a)
the operation that generates a new action a′ such that:
pre(a′) = pre(a)∧¬sim-ev and eff(a′) = eff(a)∪{sim-ev}.

We are now ready to summarize the further translation
that is needed in order to make the resulting PDDL2.1 for-
mulation aware of the presence of events, for both cases.
From EXP. Let Π = 〈F,X, I,G,A, P,E〉 be a PDDL+
problem, and let ΠEXP = 〈F,X, I,G,A ∪ {SIM}, c〉 the
PDDL2.1 problem obtained using EXP ignoring set E, re-
spectively. The handling of events E can be achieved by
a further translation into Πevents

EXP = 〈F ∪ FE , X, I ∪
{sim-ev}, G∧¬sim-ev, A′∪{ev-check(SIM)}∪{SIMEV}, c〉
with A′ =

⋃
a∈A ev-check(a).

From POLY. Let Π = 〈F,X, I,G,A, P,E〉 be a PDDL+
problem, and let ΠPOLY = 〈F ∪D∪{pause}, X∪Xcp, I, G∧
¬pause, Ac∪AP ∪{start, end}, c〉 the PDDL2.1 problem ob-
tained using POLY ignoring setE, respectively. The handling
of events E can be achieved by a further translation into
Πevents

POLY = 〈F∪D∪{pause}∪FE , X∪Xcp, I∪{sim-ev}, G∧
¬pause ∧ ¬sim-ev, A′c ∪ AP ∪ {start, ev-check(end)} ∪
{SIMEV}, c〉 with A′c =

⋃
a∈Ac ev-check(a).

Properties
Theorem 1. Let Π = 〈F,X, I,G,A,E, P 〉 be a PDDL+
problem, and let Πevents

EXP (Πevents
POLY ) be the PDDL2.1 problem

obtained by using the EXP (POLY) translation. Π admits a
solution under δ discretisation iff so does Πevents

EXP (Πevents
POLY ).

Proof sketch. We focus on Πevents
EXP (the proof for Πevents

POLY is
similar) and sketch a proof for the two directions.

(⇒) Let ES(Ti) = 〈Etrigg(Ti), ..., Etrigg(Ti+k−1)〉 be the
unique and finite5 cascade of events from a significant time
point Ti of the discrete projection Hπ of πt solving Π.

We construct a plan π′ from πt such that π′ is valid for
ΠEXP. Differently from an event-free planning task where we
can define a mapping from πt to π′, in this case we have
to resort to Hπ to build a valid π′. Let TH = 〈T0, ..., Tm〉
be the m + 1 significant time points of Hπ , we define π′
in two steps. As a first step we define the sequence π′′ =
〈a′0, . . . , a′m−1〉 such that for all i ∈ {0, . . . ,m− 1}

a′i =


ai if Hπ

A(Ti) = {ai} 6= ∅
SIMEV if Etrigg(Ti) 6= ∅
SIM otherwise

Then we obtain π′ from π′′ by inserting a SIMEV ac-
tion just before any action a ∈ π′′ such that a 6= SIMEV,

5Note that, under the restriction imposed over PDDL+, for each
E,E′ ∈ ES, E ∩ E′ = ∅ and, for each ε, ε′ ∈ E with E ∈ ES,
ε and ε′ are not mutex, as long as ε 6= ε′.

and just before the end of the plan. Let τ ′ = 〈s0, . . . , sm〉
be the sequence of states obtained by applying iteratively
actions from π′ and filtering out those states produced by
any last SIMEV of a series, the difficult bit is to show that
τ ′ is equivalent to τ = 〈Hπ

s (T0), . . . ,Hπ
s (Tm)〉 under vari-

ables F ∪ X . The first observation is that |τ | = |τ ′|; and
this follows directly from the fact that the number of states
we are filtering out is exactly the number of SIMEV that we
have added to the plan. Then, in order to prove that Hπ

s (Ti)
and si are equivalent for all 0 ≤ i ≤ m, we can use the
same arguments of Lemma 1 extended to account for the
case where the transition is due to a cascade of events. More
precisely, let Ti = 〈ti, ni〉 be a significant time point in
which a cascade of events ES(Ti) with |ES(Ti)| = k is
triggered. By using R1 of Defs. 5-7 we know that, for each
i ≤ j < i+ k, Hπ

s (Tj) |=
∧
ε∈Etrigg(Tj)

pre(ε), Hπ
s (Tj+1) =

γ(Hπ
s (Tj), Etrigg(Tj)) and Tj+1 = 〈ti, nj + 1〉.

In order to prove Hπ
s (Ti+k) = si+k with si+k =

γ(si, SIMEV × k) we need to show that, for every j such
that i ≤ j ≤ i + k, Hπ

s (Tj) = sj ; we do so, again, by
induction. The base case (j = i) is trivially proved (inher-
ited by Lemma 2). For the inductive step it suffices to ob-
serve that SIMEV exhibits a behavior that is equivalent to
〈>,

⋃
c.e∈eff(ε)
ε∈Etrigg(Tj)

c . e〉 and then it follows that Hπ
s (Tj+1) and

sj+1 = γ(sj , SIMEV) are equivalent. The only thing that
is missing is to show that when each action is applied in π
the variable sim-ev is false. But this directly follows from
the fact that the last SIMEV is applied when all events have
been triggered. Indeed, we have that Etrigg(Ti+k) = ∅, and
Hπ
s (Ti+k) = si+k. So, SIMEV will make sim-ev false and

get ready for the next round of execution by resetting all the
monitoring variables fired to false.

(⇐) The mapping from π′ to πt is identical to what was
done for Lemma 1, but for the fact that all occurrences
of SIMEV are ignored. Then, plan πt can be proved valid
against the discretised PDDL+ model by observing that, for
each series of SIMEV of length k the projection Hπ encom-
passes k−1 significant points, one for each SIMEV that trig-
gers a change on variables in F ∪X . Each significant point
generates a set of events whose effects are those that arise
from the active conditional effects of the associated SIMEV.
This is due to the fact that the SIMEV conditional effect’s
condition subsumes the precondition of each event is asso-
ciated with.

Theorem 2. Let Π = 〈F,X, I,G,A,E, P 〉 be a PDDL+
problem, and let Πevents

POLY and Πevents
EXP be the PDDL2.1 prob-

lems obtained by using the POLY and EXP translations, re-
spectively. Translations POLY and EXP preserve plan size
polynomially in the sense of (Nebel 2000).

Proof Sketch. Let πt = 〈π, 〈ts, te〉〉 be a solution for Π un-
der δ discretisation and let πPOLY and πEXP be the correspond-
ing plan for Πevents

POLY and Πevents
EXP , respectively.

Using the rules outlined in Lemma 2 and Theorem 1 to
map πt into πPOLY we can prove the upper-bound on |πPOLY|
as follows: i) each action of π′ has to be followed by at least
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one SIMEV action up to a maximum of |E|+ 1 and such se-
quence has to be executed also at the beginning of π′ since
I ′ |= sim-ev; ii) possible event triggers must be checked af-
ter the block of actions that simulates the passage of time,
i.e., the wait sequence; therefore |E| + 1 has to be multi-
plied by the number of time steps occurred within the enve-
lope 〈ts, te〉, i.e., te−tsδ ; iii) each wait in π′ consists of two
delimiting actions, i.e., start and end, plus an action for each
numeric effect of each process; in the worst case, each pro-
cess has a numeric effect for each variable of the problem.
By adding these contributions we obtain:

|πPOLY| ≤ (|π|+ 1) ·

i)︷ ︸︸ ︷
(|E|+ 1)+

te − ts
δ

· (

ii)︷ ︸︸ ︷
(|E|+ 1)+

iii)︷ ︸︸ ︷
(|P | · |X|+ 2))

The only difference for πEXP is that instead of the wait se-
quence we apply a single action SIM.

Experimental Analysis
Our experimental analysis aims at assessing the extent
to which the introduced translations allow to reformulate
PDDL+ instances into instances amenable for PDDL2.1 plan-
ning engines (the translator and the benchmark suite can
be found at https://bit.ly/30gMyNW). In this evaluation we
consider three engines at the state of the art for PDDL+ plan-
ning: ENHSP version 20 (Scala et al. 2020) with the AIBR
heuristic (Scala et al. 2016), SMTPLAN (Cashmore, Mag-
azzeni, and Zehtabi 2020), and DINO (Piotrowski et al.
2016). As a PDDL2.1 planning engine we use the well-
known METRIC-FF (Hoffmann 2003). We could not con-
sider other numeric planning systems such as LPG (Gerevini,
Saetti, and Serina 2008), OPTIC (Benton, Coles, and Coles
2012) or the same ENHSP because none of them provide an
effective support for conditional effects and negated precon-
ditions. All the planning engines have been run using default
parameters.

Our experiments were run on an Intel Xeon Gold 6140M
CPUs with 2.30 GHz. For each instance we set a cutoff time
of 900 seconds, and memory was limited to 8 GB.

For our experimental evaluation, we consider six bench-
mark domains. Three of them, in particular Linear-Car (Lin-
Car), Linear-Generator (Lin-Gen), and Solar-Rover (Rover),
are well-known PDDL+ benchmarks. Overtaking-Car (OT-
Car) is a version of Linear-Car that extends the original do-
main by considering multiple lanes, and the need for the car
to move between lanes in order to avoid obstacles. Baxter
(Bertolucci et al. 2019) and Urban Traffic Control (UTC)
(Vallati et al. 2016) are taken from real-world applications.
The Baxter domain exploits planning for supporting robots
in dealing with articulated objects manipulation tasks. The
UTC domain models the use of planning for generating traf-
fic light signal plans, in order to de-congest an area of an
urban region.

Table 1 gives an intuition of the size increase due to
the use of the translation. For each domain, we reported
the average number of ground processes and events, i.e.,
µ(|P |) and µ(|E|) respectively, and a measure of the size
increase introduced by the used translation w.r.t. the orig-
inal grounded problem. Let Π = 〈F,X, I,G,A, P,E〉 be
a PDDL+ problem and let Π′ = 〈F ′, X ′, I ′, G′, A′, c〉 the

Domain µ(|P |) µ(|E|) r(POLY) r(EXP)

Rover (20) 4.0 5.0 1.43 1.36
Lin-Car (10) 2.0 0.0 1.67 1.33
Lin-Gen (10) 6.1 8.3 2.04 16.03
UTC (10) 34.1 15.8 2.47 3834.02
Baxter (20) 56.0 22.0 1.52 —
OT-Car (20) 4.1 5.4 1.31 2.1

Table 1: For each domain, µ(|P |) and µ(|E|) denote the
average number of grounded processes and events, respec-
tively, while r(POLY) and r(EXP) denote the average size in-
crease ratio of the instances. “—” indicates a translation fail-
ure due to the size. Between brackets, the number of prob-
lem instances considered for each domain.

Domain METRIC-FF DINO ENHSP SMTPLAN
POLY EXP

Rover (20) 20 20 20 * 5 19
Lin-Car (10) 10 10 10 * 10 10 *
Lin-Gen (10) 10 3 10 * 10 10 *
UTC (10) 7 0 0 7 0
Baxter (20) 19 0 7 17 8
OT-Car (20) 18 19 0 19 0
TOTAL 84 52 47 68 47

Table 2: Number of problems solved by the considered plan-
ning approaches. Between brackets, the number of problem
instances considered for each domain. POLY and EXP are
used to indicate that, respectively, the polynomial or the ex-
ponential translation has been used. “*” denotes that the re-
ported result refers to a variant of the domain model we con-
sidered, modified to allow the specific engine to reason upon
it. Bold indicates best results.

corresponding PDDL2.1 problem obtained by using T ∈
{POLY, EXP}, we define the size increase ratio, denoted
with r, introduced by T as r(T ) = |A|+|P |+|E|

|A′|+|W| , where
W denotes a subset of conditional effects of Π′ such that
W =

⋃
a∈A′ {c . e|c . e ∈ eff(a), c 6= >}.

Table 2 shows the achieved results, in terms of number
of solved problems, by the considered planning approaches
on the benchmark domains. POLY and EXP are used to in-
dicate that, respectively, the polynomial or the exponential
translation has been used to allow METRIC-FF to deal with
the considered problem instances. It is also worth remark-
ing that some of the PDDL+ planning engines required the
models to be modified in order to generate a solution: this
has been indicated in the table using an “*”. The presented
results highlight that the proposed translation is effective in
supporting the use of PDDL2.1 planning engines for solving
complex hybrid planning problems. The polynomial trans-
lation seems to be more indicated in domains where there
is a large number of ground events and processes, such as
UTC and Baxter. In the other domains, it seems that the ex-
ponential translation can instead better support the planning
process of PDDL2.1 engines: a notable example is the OT-
Car domain.

Figure 1 gives some insights into the CPU-time needed
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Figure 1: Total number of instances solved by each of the
considered planning approaches, over time.

by the considered systems to solve the benchmark problems.
All the approaches are able to quickly solve a large number
of considered instances. When using the polynomial trans-
lation, METRIC-FF is able to solve approximately 80 in-
stances in less than 100 CPU-time seconds.

With regards to the quality of the generated plans, mea-
sured as makespan, we did not observe any significant over-
all difference between plans generated using the PDDL+ or
the PDDL2.1 models. Quality seems to be more affected by
the planning approach exploited by the engine, rather than
by the use of a specific formulation.

Summarising, the results of this experimental analysis in-
dicate that the translations can effectively support the use of
PDDL2.1 planning engines for solving PDDL+ instances.

Related Work
A range of techniques have been introduced to support the
reasoning on PDDL+ instances by means of translation. Bal-
duccini et al. (2017) proposed an approach for translating
a PDDL+ instance in a Constraint ASP instance (Baselice,
Bonatti, and Gelfond 2005), but the process has to be done
manually by an expert of the field. A number of approaches
have been introduced to translate PDDL+ instances into sat-
isfiability modulo theories (SMT) (Barrett and Tinelli 2018)
problems (e.g., (Bryce et al. 2015; Cashmore, Magazzeni,
and Zehtabi 2020)) or a mix of linear programming and SAT
instances (Shin and Davis 2005). These translations differ
among each other in the way the compilation is carried on;
some of them makes use of an intermediate translation step
into hybrid automata (Bryce et al. 2015; Heinz et al. 2019;
Cashmore, Magazzeni, and Zehtabi 2020), other performs a
more direct translation (Shin and Davis 2005). We follow on
these lines, yet, as we map the problem into another plan-
ning problem, we are not required to provide an upper limit
on the plan length as these approaches do. Those translations
indeed all require the ability to anticipate a maximum num-
ber of time points, sharing the same issues of incompleteness
of SAT-based planning (Kautz and Selman 1992).

Coles and Coles (2014) introduced a translation between
a non-discretised PDDL+ problem instance and a PDDL2.1
temporal continuous instance, but showed that such way
does not lead to models that are suitable for PDDL2.1

planning engines. Our approach targets the level 2 of the
PDDL2.1 language. The language that we are targeting does
not have a notion of time, with the result that constructing
a planning engine supporting it is much easier than one that
needs to natively support temporal reasoning.

A different line of work in automated planning focuses
on reformulating models without involving a translation to a
different language. With regards to PDDL+ models, Franco
et al. (2019) introduced a technique for minimising the
ground size of PDDL+ problems by reducing the arity of
sparse predicates, i.e., predicates with a very large number
of possible groundings, out of which very few are actually
exploited in the planning problems.

There is an interesting parallel with compilations de-
vised for classical planning models (Nebel 2000; Gazen and
Knoblock 1997). In particular, our exponential translation
anticipates the possible contexts a system is in much as the
exponential encoding by Gazen and Knoblock (1997) com-
pile away conditional effects, while our polynomial trans-
lation captures the semantics of processes unrolling them
into a number of actions, much as Nebel (2000) proposes
to simulate the execution of conditional effects. As these
two approaches have contributed the discovery of a num-
ber of techniques and heuristics for classical planning (e.g.,
(Haslum 2013; Röger, Pommerening, and Helmert 2014)),
we believe that our schemata can do the same for the much
more involved case of PDDL+.

The idea of tackling problems involving continuous
change of variables through simpler forms of discrete plan-
ning has been investigated by other works, too (e.g., Löhr
et al. (2012) and (Say and Sanner 2019)). Yet, to the best
of our knowledge, no previous work has done so using a
translation-based approach that starts from a declarative rep-
resentation of the problem, in our case PDDL+. Understand-
ing synergies among these lines of research is indeed a very
important avenue for future work.

Summary and Future Work
To deepen the understanding of PDDL+, and to support the
solvability of PDDL+ instances, we introduced two trans-
lations from time-discretised PDDL+ to PDDL2.1 (level
2). The exponential translation leads to a numeric plan-
ning problem which is exponentially larger than the initial
PDDL+, but preserves the number of discrete transitions. The
polynomial translation instead leads to a smaller formulation
but requires more transitions to generate a solution. Our ex-
perimental analysis demonstrated the usefulness of the intro-
duced translations in unlocking the exploitation of PDDL2.1
planning engines to solve challenging PDDL+ instances.

Future work will focus on exploring incomplete transla-
tions, where a trade-off can potentially be found between
completeness and the size of the resulting PDDL2.1 in-
stances.
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