
Decentralized Refinement Planning and Acting

Ruoxi Li, Sunandita Patra, Dana S. Nau
Dept. of Computer Science, and Institute for Systems Research

University of Maryland, College Park, MD 20742, USA
rli12314@cs.umd.edu, patras@umd.edu, nau@cs.umd.edu

Abstract

We describe Dec-RPAE, a system for decentralized multi-
agent acting and planning in partially observable and non-
deterministic environments. The system includes both an act-
ing component and an online planning component. The act-
ing component is similar to RAE, a well-known acting engine,
but incorporates changes that enable it to be used by multiple
autonomous agents working independently in a collaborative
setting. Each agent runs a local copy of Dec-RPAE, with a set
of hierarchical refinement methods using operational models
that specify various ways to accomplish its designated tasks.
To perform actions, the agent uses Dec-RPAE’s acting com-
ponent to execute the methods in the agent’s environment.
To advise the acting component on which method to execute,
the planning component repeatedly does Monte Carlo simu-
lations of the methods to estimate their potential outcomes.
Agents can communicate with each other to exchange infor-
mation about their states, tasks, goals, and plans in order to
cooperatively succeed in their respective missions. Our ex-
perimental results demonstrate that Dec-RPAE is useful for
improving the agents’ performances.

1 Introduction
Recent work on the integration of acting and planning has
advocated a hierarchical organization of an actor’s deliber-
ation functions, with online planning throughout the acting
process. This view has led to the development of the RAE
acting algorithm (Ghallab, Nau, and Traverso 2016) and the
RAE+UPOM integrated planning-and-acting system (Patra
et al. 2020). A key limitation of the above work is that it is
essentially single-agent planning and acting. Although sev-
eral of the test domains for RAE+UPOM involved multiple
robots, in each case the planning and acting were done by a
single centralized system.

In this paper, we extend the above approach to accommo-
date multiple agents that do their planning and acting in a
decentralized fashion. Our contributions are as follows:

• We introduce Dec-RPAE, a decentralized multi-agent
planning and acting engine that uses operational models
like the ones used in RAE. It consists of two components,
Dec-RAE and D-UPOM:

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

– Dec-RAE, the decentralized acting component, is a gen-
eralization of RAE. Multiple agents can run Dec-RAE
concurrently in a decentralized fashion, and can use
it to perform actions, communicate and delegate tasks
among each other.

– D-UPOM, the decentralized planning component, uses
a Monte-Carlo rollout technique based on the well-
known UCT algorithm (Kocsis and Szepesvári 2006).
D-UPOM is a decentralized adaptation of UPOM (Patra
et al. 2020). In D-UPOM, if an agent i needs to delegate
a task τ to some other agent j, i can ask j to predict
how well they can accomplish τ , and delegate τ to the
agent that can do the best job.

Dec-RAE can also be used with RAE’s UPOM planner (Pa-
tra et al. 2020) instead of D-UPOM, but D-UPOM has the
advantage of supporting inter-agent plan coordination. We
prove that D-UPOM’s Monte Carlo rollouts will converge
to optimal choices of methods for Dec-RAE to use.

• We present experimental evaluations of Dec-RPAE in two
domains. The results show that additional Monte-Carlo
rollouts in the planning component improve the perfor-
mance of the acting component in both single-agent and
multi-agent settings. We observe that communication en-
ables coordination between agents thereby improves their
performance to a large extent. Our experiments also show
that agents can successfully coordinate their actions, and
D-UPOM works in a setting where tasks need to be dele-
gated among each other recursively.
The rest of this paper is organized as follows: (1) back-

ground, (2) definitions, (3) Dec-RPAE, (4) experimental re-
sults, (5) discussion, (6) related work, and (7) conclusion.

2 Background
In RAE, Refinement methods and commands are operational
models of actions that tell the agent what to do. A refinement
method for a task t gives a procedure for accomplishing t.
The procedure may include any of the usual programming
constructs (if-then-else, loops, etc.), as well as commands to
send to the actor’s execution platform, and subtasks to re-
fine further using the actor’s refinement methods. RAE may
have several methods available for the same task, in which
case it can consult the UPOM planner to get a recommen-
dation of which method to try first. UPOM uses the same

Proceedings of the Thirty-First International Conference on Automated Planning and Scheduling (ICAPS 2021)

225

operational model that the RAE uses and performs UCT-like
Monte Carlo Tree Search (MCTS) in the space of opera-
tional models in a simulated environment to predict the ac-
tions’ outcomes.

Monte Carlo tree search (MCTS) is a promising approach
for online planning because it efficiently searches over long
planning horizons and is anytime (Browne et al. 2012). In
treating the choice of child node to expand in the MCT as a
multi-armed bandit problem, the UCT algorithm balances
the tradeoff between exploration and exploitation, to find
a near-optimal plan. Yao et al. (2020) proposes a MCTS-
based solver for hierarchically organized intention progres-
sion problems, and Wichlacz et al. (2020) applies MCTS in
HTN Planning, but they only works in a single-agent, deter-
ministic and static task environment. Dec-MCTS (Best et al.
2018) features decentralized multi-agent MCTS, but it does
not have a hierarchically organized deliberation that also al-
lows task allocation.

Extended from the above work, our work features decen-
tralized online multi-agent MCTS in the space of hierarchi-
cal operational models that enables inter-agent communica-
tion and task allocation.

3 Definitions
We now describe the parameters for our decentralized multi-
agent refinement planning and acting domain, and give some
examples. I is the set of all agents. Each agent a ∈ I has its
own local knowledge Σa = 〈Sa, Ta,Ma, Ca〉, where

• Sa is a set of local states an agent a may be in; each state
s ∈ Sa is represented using a state-variable formulation
similar to the one in (Ghallab, Nau, and Traverso 2016).

• Ta is a finite set of tasks and events that agent a may have
to deal with.

• Ma is the set of refinement methods, each of which gives
a way for a to perform a task τ ∈ Ta.

• Ca is a finite set of primitive actions (commands) that can
be carried out by the execution platform of agent a. The
actions can have non-deterministic outcomes.

A refinement method is composed of 4 elements, where
1) head specifies the name and parameters of the method,
where the number of parameters could be arbitrary greater
than that in the task which it is related to, 2) tasks indi-
cates the task that the method is capable of refining, 3) body
gives a procedure to accomplish a the task by performing
subtasks, commands and state variable assignments. We get
a refinement method instance by assigning values to the free
parameters of a method.

Example Let us illustrate the above definitions by an ex-
ample domain, where several robots including drones and
roombas (robot vacuum cleaners) forage for some target ob-
jects (e.g., dirt) in an initially unknown terrain. This domain
includes but is not limited to:

• a set of agents I = {d1, r1, r2}, where d1 is a drone, and
r1 and r2 are roombas,

• a set of refinement methods Mr1 for agent
r1 that includes {m1-cleanSet(s), m1-clean(s),
m1-broadcastGoal(g)},

• a set of refinement methods Mr2 for agent r2 that in-
cludes {m2-cleanSet(s, l)},

• a set of refinement methods Md1 for agent d1

that includes {m1-search(a), m1-planTrajectory(a),
m1-flyTo(l)},

• a set of commands Cd1 for agent d1 that includes
{observe(l)},

• a set of tasks Td1 for agent d1 that includes {flyTo(l),
planTrajectory(a), search(a)}.

• sets of tasks Tr1 , Tr2 for agents r1 and r2 that both include
{cleanSet(s), clean(l)}.
Below we show the pseudo code for three example refine-

ment methods: m1-search(a), cleanSet(s), and cleanSet(s).
m1-search(a):

task: search(a)
body: trajectory← do task planTrajectory(a)

for l in trajectory:
do task flyTo(l)
execute command observe(l)
if l has dirt:

delegate task clean(l) to agent r ∈ {r1, r2}
m1-search(a) is a method for the drone d1 to search area

a along a trajectory, perform the command observe(l) to
check if an intermediate location l is dirty before delegating
a task to a either roomba r1 or r2 to clean up the location.

m1-cleanSet(s): # greedy method
task: cleanSet(s)

body: if s is ∅ then return
l← closest l ∈ s
do task broadcastGoal(l)
do task clean(l); remove l from s
do task cleanSet(s)

Task cleanSet(s) requires a set of locations s to
be cleaned. Roomba r1 has one method for this task,
m1-cleanSet(s). m1-cleanSet(s) is a greedy method that
cleans the closest location in s, then calls cleanSet recur-
sively for the other locations.

Roomba r2 does not have the above method, but in-
stead has a simple method m2-cleanSet(s, l) that refines task
cleanSet(s), where l indicates the first location to clean:

m2-cleanSet(s, l): # simple method
task: cleanSet(s)

body: if s is ∅ then return
do task clean(l); remove l from s
do task cleanSet(s)

l’s value is automatically assigned with some predefined
rules (e.g, l ∈ s). In this case, there are |s| method instances
applicable to task cleanSet(s) for agent r2.

The current context for an incoming external task τ is rep-
resented via a refinement stack σ which keeps track of how

226

far RAE has progressed in the refinement method that is re-
fining τ . E.g., the initial refinement stack is

σ0 = 〈(τ0,m0, 1)〉, (1)

where τ0 is a task, m0 is a method that is relevant for τ0 and
applicable in s0, and 1 indicates that the current progress is
the on the first step of method m0.

Now we define the refinement planning problem for each
agent a ∈ I as Πa = (Σa, s0, σ0, Ua), where s0 is the initial
state, σ0 is the initial refinement stack, and Ua is a’s utility
function. The planner’s objective is to optimize the utility
function Ua.

Figure 1 illustrates the space of refinement trees (Patra
et al. 2020) which is composed of 3 types of nodes: 1) a dis-
junction node is a task followed by its applicable method in-
stances; 2) a sequence node is a method instancem followed
by all the steps; and 3) a sampling node for an action a has
the possible nondeterministic outcomes of a as its children.

Decentralized Refinement planning is essentially a series
of independent tree search procedures by a team of commu-
nicating agents I that over their local spaces of refinement
trees in order for the agent to find a near-optimal method to
use for refining a task τ . The ultimate objective is to opti-
mize f(Ua1 , Ua2 , ..., Uan), where a1, a2, ..., an ∈ Iτ , and
Iτ ⊆ I. Iτ is the set of agents that are relevant to task τ . We
use summation as f() in our experiments.

4 Dec-RPAE
Dec-RPAE is a decentralized refinement planning and acting
engine that enables heterogeneous robots to cooperatively
operate in a partially-observable, non-deterministic environ-
ment. Dec-RPAE consists primarily of Dec-RAE (the acting
engine), and D-UPOM (the Monte-Carlo rollout algorithm
that is used for planning). Each agent has its own copies of
Dec-RAE and D-UPOM, and its own domain knowledge, ex-
ecution platform, and internal state.

Dec-RAE is a modified version of RAE (Patra et al. 2020),
modified to run concurrently on multiple agents and to en-
able communication among those agents. Here we specify
4 types of communication messages: 1) local state informa-
tion obtained from the agent’s action and observation his-
tory; 2) a goal that the agent is actively pursuing; 3) a task
that the agent needs one of the other agents to accomplish
(e.g. a subtask τ in agent A’s method that needs to be del-
egated to agent B or C); 4) plan information at any ab-
straction levels (e.g., estimated utility/reward/efficiency of
the plan, estimated state change resulted from the plan, or
the explicit plan).

Our agents are built with both actuators and sensors
to send and receive communication signals. Commands
are given to agents to sense the communication network,
send messages, or read messages. Received messages are
buffered in memory waiting for the agent to read. We
acknowledge the fact that communication is neither free,
nor guaranteed to succeed. Therefore, each communication
command is associated with a cost and a probability of suc-
cess just like other commands.

Like RAE, Dec-RAE uses method instances to perform
tasks, and when multiple method instances are available for

the same task, it either arbitrarily chooses the method in-
stance or consults its planner to get information about which
method instance to use. Unlike RAE, Dec-RAE may have re-
finement methods that specify tasks to be delegated to other
agents (see m1-search(a) in Section 3). In such a case, Dec-
RAE either arbitrarily chooses the delegatee from among a
set of candidate agents, or requests plan information from
among the candidate agents to get advice about which can-
didate to choose. To provide the task delegator with plan in-
formation, each candidate agent obtains the estimated utility
of doing the delegated task by calling its local planner using
its local state information. Dead cycles caused by recursive
task delegation can be prevented by specifying the rules of
task delegation in the methods.

Select-Method(s, τ, σ, dmax, n):
m̃← failure; d← 0
global Qs,σ # global for the agent

1 s′ ← Abstraction(s)
for n times do

D-UPOM (s′, push((τ, nil, nil), σ), dmax)
m̃← argmaxm∈MQs,σ(m) return m̃, Qs,σ(m̃)

Algorithm 1: Select-Method returns the method in-
stance with the highest estimated utility and the esti-
mated utility by performing n D-UPOM rollouts.

The planner is Select-Method (Algorithm 1), a wrapper
around the D-UPOM algorithm (see Section 4.1 for details).
During the acting phase, when an agent (e.g., agent i) needs
to witfully select the method instance to refine the task τ
in its local state s and a refinement stack σ, it calls Select-
Method with two control parameters: n, the number of roll-
outs, and dmax, the maximum rollout length (which dictates
the total number of sub-tasks and actions in a rollout).

Select-Method calls D-UPOM n times in a simulated en-
vironment, each call to D-UPOM proceeds until the rollout
length reaches dmax. Abstraction(s) (line 1) is the abstracted
agent state that is used in D-UPOM’s simulated environment.

4.1 D-UPOM
If no tasks are delegated, D-UPOM is essentially UPOM.
However, suppose agent i is performing task τ that has a
subtask τ2 that needs to be delegated to some other agent
(e.g., agent j or k), as illustrated in Figure 1. Without plan
communication, agent i has no idea how well the other agent
can accomplish τ2 or what effect the other agent will have
on the environment after finishing task τ2. Thus, agent i is
only able to delegate the task to an agent that is selected ar-
bitrarily or based on agent i’s subjective heuristics. In order
to generate more optimal plans, agents need to coordinate
with each other in the planning process by communicating
their local plans with each other. With D-UPOM, agent i can
ask the candidate delegatees to predict how well they can
accomplish τ2 as well as the resulting change to the state of
the environment, then delegate τ2 to the agent that expects
to do the best job and leave an ideal state of the environment
so agent i can successfully perform the rest of the task τ .

227

Figure 1: The space of the refinement trees for a decen-
tralized planning problem that requires cooperation among
agents i, j, and k. Agent i is supposed to delegate task τ2 to
agent j or agent k. The orange arrow indicates a D-UPOM
rollout for agent i.

D-UPOM naturally supports market-based task allocation
during the acting time. When the task τ ′ is potentially dele-
gated to different agents who are capable of accomplishing
it, each agent plans for τ ′ using its methods and returns the
estimated rewards. The agent who has a method that obtains
the highest reward will be chosen to accomplish τ ′.

Specifically, when task τ ′ is delegated to another agent
a ∈ I (Algorithm 2, line 1), one needs to request those
agents to plan for τ ′ by calling their local planners (line 2)
in parallel. Agent a is supposed to receive the request to
plan for τ ′, feed its locally observed state information into
its local copy of Select-Method to get the optimal method
m̃ and its corresponding plan utility Qs,σ(m̃), and send the
plan utility Qs,σ(m̃) as well as the abstract plan π back to
the agent who requests it. The estimated utility of task τ ′ is
the largest plan utility u returned from agent a. Then state
s is updated according to the corresponding abstract plan
π (line 3). Since the plan utilities are generated by com-
plete rollouts from other agents, it is unnecessary to make
the same requests, In which case, Request-Plan(τ ′,a) will
return the stored value.

next(σ, s) (line 4) is the refinement stack resulting from
performing m[i] in state s, where (τ,m, i) = top(σ).
Applicable(s, τ) (line 5) is the set of method instances appli-
cable to τ in state s. U(s, c, s′) (line 7) is the utility obtained
from entering state s′ by executing action c on state s.

5 Convergence of D-UPOM Rollouts

In this section, we discuss the convergence of Select-Method
and D-UPOM. As we know, UCT is demonstrated to con-
verge on a finite horizon MDP with a probability of not find-
ing the optimal action at the root node that goes to zero at
a polynomial rate as the number of rollouts grows to infin-
ity (Kocsis and Szepesvári 2006, Theorem 6). Since we can

D-UPOM(s, σ, d):
if σ = 〈〉 or d = 0 then return 0
(τ,m, i)← top(σ)
if m = nil or m[i] is a task τ ′ then

if m = nil then τ ′ ← τ # for the first task
1 if τ ′ is to be delegated then

I ← set of candidate agents
2 a← argmaxa∈IRequest-Plan (τ ′, a)[u]
3 s′ ← state s updated according to

Request-Plan (τ ′, a)[π]
4 return Request-Plan (τ ′, a)[u] +

D-UPOM(s′, next(σ, s′), d− 1)
else

if Ns,σ(τ ′) is not initialized yet then
5 M ′ ← Applicable(s, τ ′)

if M ′ = 0 then return 0
Ns,σ(τ ′)← 0
for m′ ∈M ′ do

Ns,σ(m′)← 0, Qs,σ(m′)← 0
Untriedm ← {m′ ∈M ′|Ns,σ(m′) = 0}
if Untriedm 6= ∅ then

mc ← randomly select from Untriedm
6 else mc ← argmaxm∈M ′φ(m, τ ′)

σ′ ← push((τ ′,mc, 1), next(σ, s))
u← D-UPOM(s, σ′, d− 1)

Qs,σ(mc)← Ns,σ(mc)×Qs,σ(mc)+u
1+Ns,σ(mc)

Ns,σ(mc)← Ns,σ(mc) + 1
return u

if m[i] is an assignment then
s′ ← state s updated according to m[i]
return D-UPOM(s′, next(σ, s′), d)

if m[i] is a command c then
s′ ← Sample(s, c)

7 return U(s, c, s′) +
D-UPOM(s′, next(σ, s′), d− 1)

Request-Plan(τ, a):
If never requested, request agent a to call its own
copy of Select-Method to plan for τ and obtain the
estimated utility u and abstract plan π. Otherwise,
use the previously obtained values. Return u and π.

Algorithm 2: D-UPOM and Request-Plan. In line
6, φ(m, τ) = Qs,σ(m) + C

√
logNs,σ(τ)/Ns,σ(m),

where C > 0.

map the search strategy of each agent’s D-UPOM to UCT1,
and map the search space of each agent’s D-UPOM to a MDP
(Section 5.1), given that the task delegation among a ∈ I
is not cyclic or infinitely recursive, the decentralized refine-
ment planning process among a ∈ I is equivalent to a fi-
nite number of MDPs being solved using UCT. Thus Select-
Method should converge with monotonic utility functions.

1The mapping of D-UPOM’s search strategy to an equiva-
lent UCT and with non-additive utility functions is available at
〈https://www.cs.umd.edu/%7epatras/DecRPAETheory.pdf〉.

228

Search Space for D-UPOM rollouts Let Σa =
〈Sa, Ta,Ma, Ca〉 be the local knowledge of agent a ∈
I. Select-Method searches over Σa in a simulator. For each
a ∈ I , Ta, Ma, and Ca are all finite, and every sequence
of steps generated by the methods in Ma (including task
delegation) is finite. For s ∈ Sa and c ∈ Ca, we let
γa(s, c) ⊆ S be the set of all states that may be produced by
simulating c’s execution in s. For each s′ ∈ γa(s, c), we let
P(s, c, s′) be the probability that state s′ will be produced
if we simulate c’s execution in state s. The refinement
planning problem is Πa = (Σa, s0, σ0, Ua), a ∈ I.

Rollouts A rollout in Σa is a sequence of pairs

ρ = 〈(σ0, s0), (σ1, s1), . . . , (σn, sn)〉 (2)

satisfying the following properties:
• each si is a state, and each σi is a refinement stack;
• ∀i > 0 there is a nonzero probability that sj and σj are

the next state and refinement stack after si−1 and σi−1;
• (σn, sn) is a termination point for D-UPOM.

If the final refinement stack is the empty stack σn = 〈〉
then rollout ρ is successful; otherwise ρ fails. In a top-level
call to D-UPOM, the initial refinement stack is σ0. In all sub-
sequent refinement stacks produced by D-UPOM, we will
say that a refinement stack σ is reachable in Σa (i.e., reach-
able from a top-level call to D-UPOM) if there exists a rollout
ρ = 〈(σ0, s0), (σ1, s1), . . . , (σn, sn)〉, such that σ0 satisfies
(1) and σ ∈ {σ0, . . . , σn}. We let R(Σa) be the set of all
refinement stacks that are reachable in Σa. Since every se-
quence of steps generated by the methods (including task
delegations to other agents) in Ma is finite, it follows that
R(Σa) is also finite.

For each pair (σj , sj) in ρ, let (τj ,mj , ij) be the top
element of σj . If mj [ij] is an action, then the next element
of ρ is a pair (σj+1, sj+1) in which sj+1 is the state
produced by executing the action mj [ij]. In Σa, this corre-
sponds to the state transition (sj ,mj [ij], sj+1). Thus the set
of state transitions in ρ is tρ = {(sj ,mj [ij], sj+1) |
(σj , sj) and (σj+1, sj+1) are members of ρ,
(τj ,mj , ij) = top(σj), and mj [ij] is an action }.

Thus if U is additive, then

U(ρ) =
∑

(s,c,s′)∈tρ

U(s, c, s′). (3)

5.1 Defining the MDP for Each Agent
We want to define a MDP Ψ for each agent a such that
choosing among methods in Σa corresponds to choosing
among actions in Ψ. The easiest way to do this is to let all
of Σa’s actions, methods and delegated tasks Tdel (to other
agents) be actions in Ψ. We will write Ψ as

Ψ = (SΨ, CΨ, sΨ
0 , S

Ψ
g , γ

Ψ,PΨ, UΨ) (4)
where

SΨ = R(Σa)× Sa is the set of states,

CΨ =Ma ∪ Ca ∪ Tdel is the set of actions,

sΨ
0 = (σ0, s0) is the initial state,

SΨ
g = {(〈〉, s) | s ∈ S} is the set of goal states,

and the state-transition function γΨ, state-transition proba-
bility function PΨ, and utility function UΨ are as follows.

State transitions To define γΨ and PΨ, we must first de-
fine which actions are applicable in each state. Let (σ, s) ∈
SΨ, and (τ,m, i) = top(σ). Then the set of actions that are
applicable to (σ, s) in Ψ is ApplicableΨ((σ, s))

=


Instances(M,m[i], s), if m[i] is a task,
{m[i]}, if m[i] is an action,
{Delegate to agent i ∈ I}, if m[i] ∈ Tdel.

(5)

Thus if c ∈ ApplicableΨ((σ, s)), then there are three cases
for what γΨ(sΨ, c) and PΨ(s, c, s′) might be:

• Case 1: m[i] is a task in Ma, and c ∈
Instances(Ma,m[i], s). In this case, the next re-
finement stack will be produced by pushing a new stack
frame φ = (m[i], c, 1) onto σ. The state s will remain
unchanged. Thus the next state in Ψ will be (φ + σ, s),
where ‘+’ denotes concatenation. Thus, γΨ((σ, s), c) =
{(φ+ σ, s)}, PΨ[(σ, s), c, (φ+ σ, s)] = 1.

• Case 2: m[i] is an action in Ca, and c = m[i]. Then c’s
possible outcomes in Ψ correspond one-to-one to its pos-
sible outcomes in Σa. More specifically, if γa is the state-
transition function for Σa, then
γΨ((σ, s), c) = {(Next(σ, s′), s′) | s′ ∈ γa(s, c)}, and,
PΨ((σ, s), c, (σ′, s′))) ={

Pa(s, c, s′), if (σ′, s′) ∈ γΨ((σ, s), c),

0, otherwise.

• Case 3: m[i] is a task τd ∈ Tdel delegated to other agents.
Let σ = (m, τd, j) + σ′. Let b ∈ I be a chosen agent
for delegation and s′ be the state resulting from b accom-
plishing τd. Then, γΨ((σ, s), b) = {(m,Next(m, j), j +
1) + σ′, s′)}. PΨ((σ, s), b, (σ′, s′)) ={

Pb(s, τd, s′), if (σ′, s′) ∈ γΨ((σ, s), b),

0, otherwise.

Rollouts A rollout of ΠΨ is any sequence of states
and actions of Ψ, ρΨ = 〈(σ0, s0), c1, (σ1, s1), c2,
. . . , (σn−1, sn−1), cn, (σn, sn)〉, such that for
i = 1, . . . , n, ci ∈ ApplicableΨ(σi−1, si−1) and
PΨ((σi−1, si−1), ci, (σi, si)) > 0. The rollout is suc-
cessful if (σn, sn) ∈ SΨ

g , and unsuccessful otherwise.

Utility We can define UΨ directly from U . If ρΨ is the
rollout given above, then the corresponding rollout in Σa
is ρ = 〈(σ0, s0), (σ1, s1), . . . , (σn−1, sn−1), (σn, sn)〉, and
UΨ(ρΨ) = U(ρ). If U is additive, then so is UΨ. In this
case, Ψ satisfies the definition of an MDP with initial state
(Mausam 2012).

6 Experimental Evaluation
We evaluate Dec-RPAE in two different domains, the Dirt
Collection domain, and the Spring Door domain. Experi-
mental results are illustrated and discussed in this section.

229

Figure 2: The Dirt Collection Simulator.

6.1 Dirt Collection Domain
Multi-agent Foraging is a canonical testbed for cooperative
multi-agent systems, in which a collection of robots has to
search and transport objects to specific locations (Zedadra
et al. 2017). As a special case of this problem, we developed
a Dirt Collection Simulator based on the code from Rus-
sell and Norvig (2009), where multiple roombas and drones
cooperatively clean up a finite amount of dirt objects scat-
tered randomly within an N × N grid. Each dirt object is
associated with a value, which corresponds to the reward for
the roomba when the roomba collects it. Each roomba has a
limited amount of time budget to carry out actions including
moving forward, turning left, turning right, picking up the
dirt right beneath it, and communicating with other agents.
A drone can detect the locations of dirt, communicate with
roombas and delegate cleaning tasks to roombas. Each ac-
tion takes a certain time period to complete. The domain
is nondeterministic, because each action (command) has a
small probability (2 - 4%) of failing. The objective is for
the roomba team to maximize the cumulative reward from
collecting dirt objects with a limited time budget.

The roombas in our experiments have several different
types of decision strategies. In Figures 3, Table 1 and 2, these
are denoted by the following labels:
• The label greedy means that m1-cleanSet(s, l) (see Sec-

tion 3) is the only method that the agent has for the
cleanSet task (though it also has methods for other tasks).
A greedy roomba always pursues the closet target.

• The label simple means that m2-cleanSet(s, l) (see Sec-
tion 3) is the agent’s only method for the cleanSet task. A
simple roomba cleans the dirt in an arbitrary order.

• The label D-UPOM indicates that the agent has the same
methods as a simple agent, but uses D-UPOM to plan for
the choice of the method instances.

• The label n is the number of UCT rollouts that is config-
ured in a D-UPOM agent.

• The label comm indicates that goal communication is en-
abled using a task broadcastGoal(g) in which the agent
broadcasts information about the target it is pursuing.

Within each experiment, all roomba agents (if there are more
than one) use the same strategy.

Each of the first set of experiments (Figure 3) involves
only one agent but no tasks being delegated. D-UPOM in
this case is essentially single-agent UPOM. The experiments

Figure 3: In each experiment there are 1 roomba agent and
16 Dirt objects in a 7× 7 grid. Each roomba agent type’s av-
erage cumulative reward and standard error is obtained and
plotted from solving 50 randomly generated problems, each
problem runs 5 times.

show that a D-UPOM agent performs much better than a sim-
ple agent, since a reactive simple agent would clean the set
of locations in an arbitrary sequence, while the D-UPOM
agent tries to plan for the optimal sequence. The perfor-
mance of a D-UPOM agent further improves as the number
of UCT rollouts increases, which surpasses a greedy agent’s
performance with 50 rollouts.

Multi-agent dirt collection problems

Roomba Greedy Greedy Simple D-UPOM
Comm No Yes Yes Yes
Reward 27.39 33.41 11.92 42.80

SE 2.27 2.61 1.62 2.33

Table 1: In each experiment, there are 4 roomba agents and
16 dirt objects in a 10 × 10 grid. D-UPOM agents has n
= 50. Each roomba team’s average cumulative reward and
standard error (SE) is obtained from solving 30 randomly
generated problems, each problem runs 5 times.

The second set of experiments (Table 1) involves multiple
communicating roombas but no tasks being delegated. With
goal communication enabled, agents would be aware of each
other’s goals, thus, are able to adjust their own goals accord-
ingly to avoid duplication of efforts. We observe a 48.5% im-
provement in the greedy agent team’s performance with goal
communication, compared to the performance without any
communication. The D-UPOM agent team with communica-
tion performs slightly better than a greedy agent team with
communication, which is consistent with the result from the
single-agent experiments.

The third set of experiments (Table 2) shows the perfor-
mance of D-UPOM in situations where tasks are delegated
among heterogeneous agents. In each experiment, 4 room-
bas with the same decision strategy (same denotation as is
shown in previous experiments) await for a drone to locate
a cluster of dirt and delegate the cleaning tasks to one of
them. A reactive drone randomly assigns the cleaning task
to one of the roombas. On the contrary, a D-UPOM drone
has the same methods as a reactive drone does, but uses D-

230

Multi-agent dirt collection problems (task delegation)

Roomba D-UPOM D-UPOM Simple Greedy
Drone D-UPOM Reactive Reactive Reactive

Reward 24.12 21.83 10.28 19.81
SE 0.44 0.41 0.23 0.41

Act # 42.05 40.27 32.44 31.50
Plan time 16.19 7.77 0.00 0.00

Table 2: Each experiment involves 4 roombas and 1 drone,
and approximately 12 dirt in a 10× 10 grid. D-UPOM agents
has n = 100. Each team’s average cumulative reward and
its standard error (SE), total number of actions (act #), and
cumulative planning time (plan time) are obtained from 150
randomly generated problems, each runs 5 times.

UPOM to choose the optimal method instances. It tends to
assign the cleaning task to the roomba that is closest to the
dirt cluster (i.e., the roomba that has the highest estimated
utility of cleaning the cluster). The result shows that a drone
can improve the task performance by using D-UPOM. We
also observe that the team of greedy roombas and a reactive
drone score 114% more than the team of naive roombas and
a reactive drone, but 11.7% less than the team of D-UPOM
(n=100) roombas and a reactive drone. Although the greedy
approach runs instantly since no simulation-based planning
process is needed, the average cumulative planning time in
a task performed by the team of greedy roombas and a reac-
tive drone is only 7.77 seconds on a 2.3 GHz Dual-Core Intel
Core i5 processor. Considering that on average 40.27 actions
are executed in a task, each action only needs 0.19 second of
the planning time. In our experience, the time spent on plan-
ning is negligible in real-world applications.

6.2 Spring Door Domain
The Spring Door domain has several robots trying to move
objects from one room to another in a facility with a mix-
ture of spring doors and ordinary doors. Spring doors close
themselves unless they are held by a robot. A robot cannot
simultaneously carry an object and hold a spring door open,
so it must ask for help from another robot in this situation.
Any robot that’s free can be the helper. Specifically, a man-
ager agent delegates to some robot r1 the task of moving
an object to some location. If r1 needs to pass a spring door
while carrying the object, it will delegate some other robot
r2 to hold the door. The Spring Door domain has 7 tasks,
11 methods, and 9 actions. Each action takes a specific time
period to complete. To add nondeterminism to the domain,
each action has a small probability (3 - 5%) of failing. The
utility of a solution is its efficiency (roughly, 1/cost). As dis-
cussed in (Patra et al. 2019), this requires a minor modifica-
tion to the ”+” operator in Algorithm 2, line 7.

The result (Figure 4) shows that the average efficiency of
relocating an object is the lowest when the agents choose
methods and delegatees reactively (i.e., the number of D-
UPOM rollouts is 0). As the number of rollouts increases,
they make more informed choices, thus achieve higher effi-
ciency.

Figure 4: Each experiment involves one manager and 2 to
3 robots in a facility with 3 to 7 rooms. Each data point is
the average efficiency for 50 randomly generated problems,
running each problem 5 times. The vertical lines indicate
standard error.

This experiment demonstrates Dec-RPAE’s capability of
handling recursively delegated tasks, as the manager dele-
gates a task to a robot r1, and r1 delegates a subtask to an-
other robot r2. We also show that Dec-RPAE can plan for sit-
uations where decentralized agents need to coordinate their
actions. This is made possible by r2 communicating the ex-
pected change of the environment state to r1, so r1 will ex-
pect that the spring door will be held open by r2.

7 Discussion
We don’t yet support asynchronous decentralization (Kuter
and Hamell 2018), instead, only one task is assigned to the
robot team at a time. If multiple tasks are assigned to an
agent, we can easily modify the code to make each agent
buffer those tasks in a queue and process them one after an-
other. Ideally, The task delegator should take into consid-
eration that a busy delegatee may not be able to help with
the delegated task immediately. The most naive way to deal
with such a situation is for the delegator not to prioritize
any candidate agent that is buffered with other tasks. How-
ever, sometimes the busy candidate is so capable that given
the tasks at hand, it can still accomplish the delegated task
efficiently in a timely manner. In order to let the delegator
know so, the busy candidate needs to: 1) estimate when and
on what state will its currently buffered tasks will finish, 2)
plan for the delegated task supposing that the task begins at
that time and on that state, and 3) send the estimated util-
ity of the plan and the abstract plan with timestamps to the
delegatee. We intend to explore this in our future work.

It is also possible that different candidate delegatees may
leave the state of the environment different after finishing
the delegated task, which might affect the delegator’s per-
formance for the rest of the task (if any) after the delegation.
In that case we need to sample different candidate delegtees
in D-UPOM, just like we sample non-deterministic actions.

In our experiments, communication commands are guar-
anteed to succeed. We have not done enough investigations
in cases where communication is not always guaranteed, and
agents might need to proactively look for communication
signals (e.g., by going to a high ground where there is a
better chance to re-establish communication with others).

231

A broader question that automotive agents need to decide
is who, when, how, and what to communicate (Balch and
Arkin 1995; Wei, Hindriks, and Jonker 2014). In our future
work, we hope to make our system more resilient and intel-
ligent in terms of communication.

8 Related Work
The multi-agent systems based on hierarchical task networks
(HTN) (Obst and Boedecker 2006; Dix et al. 2003; Clement,
Durfee, and Barrett 2007; Pellier and Fiorino 2007; Cardoso
and Bordini 2019; Kuter and Hamell 2018), although have
hierarchical deliberations, use abstract descriptive models.
Compared to operational models that are used in Dec-RPAE,
descriptive models (e.g., a classical precondition-and-effects
action models) tell what the action will do, but not how to
do it.

Auctions are the most common task-allocation mecha-
nisms used in market-Based multi-robot coordination (Dias
et al. 2006). Among studies in decentralized hierarchical
planning systems that use market-Based task allocation, Zlot
and Stentz (2006) focuses on how to do auctions of tasks,
and it does not include a planning algorithm to produce the
agents’ bids for those tasks. DOMAP (Cardoso and Bordini
2019) has separate phases for goal allocation and individual
HTN planning, while our approach integrates those phases
by enabling recursive allocation of subtasks.

A Decentralized partially-observable Markov decision
process (Dec-POMDP) is a framework for a team of collab-
orative agents to maximize a global reward based on local
information. Each agent’s individual policy maps from its
action and observation histories to actions (Oliehoek 2012).
Unfortunately, optimally solving Dec-POMDPs is NEXP-
complete (Bernstein, Zilberstein, and Immerman 2013). In
single-agent (i.e., MDP) domains, the options framework
(SMDP) proposed by Sutton, Precup, and Singh (1999) uses
higher-level, temporally extended macro-actions (or op-
tions) to represent and solve problems. Amato et al. (2019)
extend the framework to the multi-agent case by introduc-
ing a Macro Dec-POMDP formulation with macro-actions
modeled as options. It is an offline planner that can generate
a joint policy to select the best option on each state for each
agent, while our approach is a planning and acting engine
that selects the best refinement method for each task online
using operational models.

Our approach is essentially simulation-based planning,
which shares some similarities with reinforcement learn-
ing (RL) (Kaelbling, Littman, and Moore 1996; Sutton and
Barto 1998; Geffner and Bonet 2013; Leonetti, Iocchi, and
Stone 2016; Garnelo, Arulkumaran, and Shanahan 2016),
and MCTS is also a typical technique in RL to increase sam-
ple efficiency in simulation. In model-based RL, the model
(e.g., system dynamics) is learned from real experience and
gives rise to simulated experience. In our work, the simu-
lator is given, and the operational models are much more
complex than the actions used in model-based RL.

Both RAE and architectures based on BDI (Belief-Desire-
Intention) models (De Silva, Meneguzzi, and Logan 2020;
Yao et al. 2020; De Silva, Meneguzzi, and Logan 2018) rely
on a reactive system, but with differences regarding their

primitives as well as their methods or plan-rules. BDI sys-
tems rely on PDDL-like representations (eg. add or del op-
erators) but RAE can handle any type of skill (e.g., physics-
based simulators) with nondeterministic effects.

We know of no prior work on decentralized refinement
(hierarchical) acting and online planning using operational
models.

9 Conclusion
We have described Dec-RPAE, a system for decentralized
multi-agent refinement planning and acting that uses oper-
ational models. We prove that if there are no exogenous
events, D-UPOM’s Monte Carlo rollouts will converge to op-
timal choices of methods for Dec-RAE to use. In our empiri-
cal evaluations of Dec-RPAE’s performance in two domains,
the results show that the system’s performance is improved
by performing additional Monte-Carlo rollouts in D-UPOM,
and allowing agents to communicate. Our experiments also
show D-UPOM’s capability of handling recursive task dele-
gation and action coordination.

Acknowledgments
This work has been supported in part by DARPA task or-
der HR001119F0057, Lockheed Martin research agreement
MRA17001006, NRL grant N00173191G001, and ONR
grant N000142012257. The information in this paper does
not necessarily reflect the position or policy of the funders,
and no official endorsement should be inferred. We thank
Phillip J. Dibona, William C. Regli, Paolo Traverso, and Ma-
lik Ghallab for their inspirations.

References
Amato, C.; Konidaris, G.; Kaelbling, L.; and How, J. 2019.
Modeling and Planning with Macro-Actions in Decentral-
ized POMDPs. JAIR 64: 817–859.

Balch, T.; and Arkin, R. C. 1995. Communication in Re-
active Multiagent Robotic Systems. Auton. Robots 1(1):
27–52.

Bernstein, D. S.; Zilberstein, S.; and Immerman, N. 2013.
The Complexity of Decentralized Control of Markov Deci-
sion Processes.

Best, G.; Forrai, M.; Mettu, R. R.; and Fitch, R. 2018.
Planning-Aware Communication for Decentralised Multi-
Robot Coordination. In ICRA, 1050–1057.

Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A Survey of Monte
Carlo Tree Search Methods .

Cardoso, R. C.; and Bordini, R. H. 2019. Decentralised
Planning for Multi-Agent Programming Platforms. In AA-
MAS, 799–807.

Clement, B.; Durfee, E.; and Barrett, A. 2007. Abstract Rea-
soning for Planning and Coordination. J. Artificial Intelli-
gence Research (JAIR) 28: 453–515.

232

De Silva, L.; Meneguzzi, F.; and Logan, B. 2020. BDI Agent
Architectures: A Survey. International Joint Conferences on
Artificial Intelligence.

De Silva, L.; Meneguzzi, F. R.; and Logan, B. 2018. An
operational semantics for a fragment of PRS. In IJCAI.

Dias, M. B.; Zlot, R.; Kalra, N.; and Stentz, A. 2006.
Market-Based Multirobot Coordination: A Survey and Anal-
ysis. Proceedings of the IEEE 94(7): 1257–1270. doi:
10.1109/JPROC.2006.876939.

Dix, J.; Muñoz-Avila, H.; Nau, D. S.; and Zhang, L. 2003.
IMPACTing SHOP: Putting an AI planner into a multi-agent
environment. Annals of Mathematics and Artificial Intelli-
gence 37(4): 381–407.

Garnelo, M.; Arulkumaran, K.; and Shanahan, M. 2016.
Towards Deep Symbolic Reinforcement Learning. CoRR
abs/1609.05518.

Geffner, H.; and Bonet, B. 2013. A Concise Introduction to
Models and Methods for Automated Planning. Morgan &
Claypool.

Ghallab, M.; Nau, D.; and Traverso, P. 2016. Automated
Planning and Acting.

Kaelbling, L. P.; Littman, M. L.; and Moore, A. W. 1996.
Reinforcement Learning: A Survey. JAIR 4: 237–285.

Kocsis, L.; and Szepesvári, C. 2006. Bandit based Monte-
Carlo Planning. In ECML, 282–293.

Kuter, U.; and Hamell, J. 2018. Assumption-based Decen-
tralized HTN Planning. In Proceedings of the 1st ICAPS
Workshop on Hierarchical Planning.

Leonetti, M.; Iocchi, L.; and Stone, P. 2016. A synthesis
of automated planning and reinforcement learning for effi-
cient, robust decision-making. Artificial Intelligence 241:
103–130.

Mausam, A. K. 2012. Planning with Markov decision pro-
cesses: an AI perspective. Morgan & Claypool Publishers.

Obst, O.; and Boedecker, J. 2006. Flexible Coordination
of Multiagent Team Behavior Using HTN Planning. In
RoboCup 2005, 521–528.

Oliehoek, F. A. 2012. Decentralized POMDPs, 471–503.

Patra, S.; Ghallab, M.; Nau, D.; and Traverso, P. 2019. Act-
ing and Planning Using Operational Models. In AAAI,
7691–7698.

Patra, S.; Mason, J.; Kumar, A.; Ghallab, M.; Traverso, P.;
and Nau, D. 2020. Integrating Acting, Planning and Learn-
ing in Hierarchical Operational Models. In ICAPS, 478–487.

Pellier, D.; and Fiorino, H. 2007. A Unified Framework
Based on HTN and POP Approaches for Multi-Agent Plan-
ning. In IAT, 285–288.

Russell, S.; and Norvig, P. 2009. Artificial Intelligence: A
Modern Approach. 3rd edition.

Sutton, R. S.; and Barto, A. G. 1998. Reinforcement learn-
ing - an introduction. Adaptive computation and machine
learning. MIT Press.

Sutton, R. S.; Precup, D.; and Singh, S. 1999. Between
MDPs and semi-MDPs: A framework for temporal abstrac-
tion in reinforcement learning. Artificial Intelligence .
Wei, C.; Hindriks, K.; and Jonker, C. 2014. The Role of
Communication in Coordination Protocols for Cooperative
Robot Teams. In ICAART, volume 2.
Wichlacz, J.; Höller, D.; Torralba, Á.; and Hoffmann, J.
2020. Applying Monte-Carlo Tree Search in HTN Planning.
In SOCS.
Yao, Y.; Alechina, N.; Logan, B.; and Thangarajah, J. 2020.
Intention Progression under Uncertainty. In Bessiere, C.,
ed., IJCAI, 10–16.
Zedadra, O.; Jouandeau, N.; Seridi, H.; and Fortino, G.
2017. Multi-Agent Foraging: state-of-the-art and research
challenges. Complex Adaptive Systems Modeling 5: 1–24.
Zlot, R.; and Stentz, A. 2006. Market-based Multirobot Co-
ordination for Complex Tasks. IJRR 25(1): 73–101.

233

