Proceedings of the Thirty-First International Conference on Automated Planning and Scheduling (ICAPS 2021)

Approximate Bi-Criteria Search by Efficient Representation of Subsets of the
Pareto-Optimal Frontier

Boris Goldin, Oren Salzman

Technion, Israel Institute of Technology
Haifa 32000, Israel
boris.goldin @campus.technion.ac.il, osalzman @cs.technion.ac.il

Abstract

We consider the bi-criteria shortest-path problem where we
want to compute shortest paths on a graph that simultaneously
balance two cost functions. While this problem has numerous
applications, there is usually no path minimizing both cost
functions simultaneously. Thus, we typically consider the set
of paths where no path is strictly better than the others in both
cost functions, a set called the Pareto-optimal frontier. Unfor-
tunately, the size of this set may be exponential in the number
of graph vertices and the general problem is NP-hard. While
existing schemes to approximate this set exist, they may be
slower than exact approaches when applied to relatively small
instances and running them on graphs with even a moderate
number of nodes is often impractical. The crux of the problem
lies in how to efficiently approximate the Pareto-optimal fron-
tier. Our key insight is that the Pareto-optimal frontier can be
approximated using pairs of paths. This simple observation
allows us to run a best-first search while efficiently and effec-
tively pruning away intermediate solutions in order to obtain
an approximation of the Pareto frontier for any given approx-
imation factor. We compared our approach with an adapta-
tion of BOA™, the state-of-the-art algorithm for computing
exact solutions to the bi-criteria shortest-path problem. Our
experiments show that as the problem becomes harder, the
speedup obtained becomes more pronounced. Specifically, on
large roadmaps, when using an approximation factor of 10%
we obtain a speedup on the average running time of more
than x19.

1 Introduction & Related Work

We consider the bi-criteria shortest-path problem, an exten-
sion to the classical (single-criteria) shortest-path problem
where we are given a graph G = (V, E) and each edge
has two cost functions. Here, we are required to compute
paths that balance between the two cost functions. The well-
studied problem (Chinchuluun and Pardalos 2007) has nu-
merous applications. For example, given a road network,
the two cost functions can represent travel times and dis-
tances and we may need to consider the set of paths that
allow to balance between these costs. Other applications in-
clude planning of power-transmission lines (Bachmann et al.
2018) and planning how to transport hazardous material in

Copyright (© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

149

order to balance between minimizing the travel distance and
the risk of exposure for residents (Bronfman et al. 2015).

There usually is no path minimizing all cost functions si-
multaneously. Thus, we typically consider the set of paths
where no path is strictly better then the others for both cost
functions, a set called the Pareto-optimal frontier. Unfortu-
nately, the problem is NP-hard (Serafini 1987) as the car-
dinality of the size of the Pareto-optimal frontier may be
exponential in |V| (Ehrgott 2005; Breugem, Dollevoet, and
van den Heuvel 2017) and even determining whether a path
belongs to the Pareto-optimal frontier is NP-hard (Papadim-
itriou and Yannakakis 2000).

Existing methods either try to efficiently compute the
Pareto-optimal frontier or to relax the problem and only
compute an approximation of this set.

Efficient computation of the Pareto-optimal frontier.
To efficiently compute the Pareto-optimal frontier, adapta-
tions of the celebrated A* algorithm (Hart, Nilsson, and
Raphael 1968) were suggested. Stewart et al. (1991) intro-
duced Multi-Objective A* (MOA™*) which is a multiobjec-
tive extension of A*. The most notable difference between
MOA* and A* is in maintaining the Pareto-optimal frontier
to intermediate vertices. This requires to check if a path 7
is dominated by another path 7. Namely, if both of 7’s costs
are smaller than 7’s costs. As these dominance checks are re-
peatedly performed, the time complexity of the checks play
a crucial role for the efficiency of such bi-criteria shortest-
path algorithms. MOA* was later revised (Mandow and
De La Cruz 2005, 2010; Pulido, Mandow, and Pérez-de-
la Cruz 2015) with the most efficient variation, termed bi-
Objective A* (BOA*) (Hernandez et al. 2020) allowing to
compute these operations in O(1) time when a consistent
heuristic is used.’

Approximating the Pareto-optimal frontier. Initial
methods in computing an approximation of the Pareto-
optimal frontier were directed towards devising a Fully

'A heuristic function is said to be consistent if its estimate is
always less than or equal to the estimated distance from any neigh-
bouring vertex to the goal, plus the cost of reaching that neighbour.

Polynomial Time Approximation Scheme? (FPTAS) (Vazi-
rani 2001). Warburton (1987) proposed a method for finding
an approximate Pareto-optimal solution to the problem
for any degree of accuracy using scaling and rounding
techniques. Perny and Spanjaard (2008) presented another
FPTAS given that a finite upper bound L on the numbers
of arcs of all solution-paths in the Pareto-frontier is known.
This requirement was later relaxed (Tsaggouris and Zaro-
liagis 2009; Breugem, Dollevoet, and van den Heuvel 2017)
by partitioning the space of solutions into cells according to
the approximation factor and, roughly speaking, taking only
one solution in each grid cell. Unfortunately, the running
times of FPTASs are typically polynomials of high degree,
and hence they may be slower than exact approaches when
applied to relatively-small instances and running them
on graphs with even a moderate number of nodes (e.g.,
~ 10,000) is often impractical (Breugem, Dollevoet, and
van den Heuvel 2017).

A different approach to compute a subset of the Pareto-
optimal frontier is to find all extreme supported non-
dominated points (i.e., the extreme points on the convex hull
of the Pareto-optimal set) (Sedeno-Noda and Raith 2015).
Taking a different approach Legriel et al. (2010) suggest a
method based on satisfiability/constraint solvers. Alterna-
tively, a simple variation of MOA*, termed MOA? allows
to compute an approximation of the Pareto-optimal frontier
by pruning intermediate paths that are approximately dom-
inated by already-computed solutions (Perny and Spanjaard
2008). However, as we will see, this allows to prune only a
small subset of paths that may be pruned.

Finally, recent work (Bokler and Chimani 2020) conducts
a comprehensive computational study with an emphasis on
multiple criteria. Similar to the aforementioned FPTASs,
their framework still partitions the space prior to running the
algorithm.

Key contribution. To summarize, exact methods compute
a solution set whose size is often exponential in the size of
the input. While one would expect that approximation al-
gorithms will allow to dramatically speed up computation
times, in practice their running times are often slower than
exact solutions for FPTAS’s because they partition the space
of solutions into cells according to the approximation factor
in advance. Alternative methods only prune paths that are
approximately dominated by already-computed solutions.
Our key insight is that we can efficiently partition the
space of solutions into cells during the algorithm’s execu-
tion (and not a-priori). This allows us to efficiently and
effectively prune away intermediate solutions in order to
obtain an approximation of the Pareto-optimal frontier for
any given approximation factor ¢ (this will be formalized
in Sec. 2Problem Definitionsection.2). This is achieved by
running a best-first search on path pairs and not individ-
ual paths. Such path pairs represent a subset of the Pareto-
optimal frontier such that any solution in this subset is ap-

2An FPTAS is an approximation scheme whose time complex-
ity is polynomial in the input size and also polynomial in 1/e
where ¢ is the approximation factor.

150

proximately dominated by the two paths. Using concepts
that draw inspiration from a recent search algorithm from
the robotics literature (Fu et al. 2019), we propose Path-Pair
A* (PP-A*). PP-A* dramatically reduces the computational
complexity of the best-first search by merging path pairs
while still ensuring that an approximation of the Pareto-
optimal frontier is obtained for any desired approximation.
For example, on a roadmap of roughly 1.5 million
vertices, PP-A* approximates the Pareto-optimal frontier
within a factor of 1% in roughly 13 seconds on average on
a commodity laptop. We compared our approach with an
adaptation of BOA* (Hernandez et al. 2020), the state-of-
the-art algorithm for computing exact solutions to the bi-
criteria shortest-path problem, which we term BOA?Y. BOA?
computes near-optimal solutions by using the approach sug-
gested in (Perny and Spanjaard 2008). Our experiments
show that as the problem becomes harder, the speedup that
PP-A* may offer becomes more pronounced. Specifically,
on the aforementioned roadmap and using an approximation
factor of 10%, we obtain a speedup on the average running
time of more than x 19 and a maximal speedup of over x25.

2 Problem Definition

Let G = (V,E)beagraph,c; : E - Randcy : E — R
be two cost functions defined over the graph edges. A path
T = v1,...Vk is a sequence of vertices where consecutive
vertices are connected by an edge. We extend the two cost
functions to paths as follows:

k—1 k—1
C1 (71') = Z C1 (’Ui, Ui—i—l) and CQ(?T) = Z Cg(Ui,Ui+1).
i=1 i=1

Unless stated otherwise, all paths start at the same specific
vertex vstart and m, will denote a path to vertex .

Definition 1 (Dominance). Let m, and 7, be two paths
to vertex u. We say that m, weakly dominates 7, if
(i) c1(my) < e1(7ry) and (i) ca(my) < co(Ty). We say
that T, strictly dominates 7, if (i) m,, weakly dominates T,
and (ii) ¢1(my) < e1(Ty) or ca(my) < ca(Tw).

Definition 2 (Approximate dominance). Let m, and 7, be
two paths to vertex u and let €1 > 0 and €2 > 0 be two real
values. We say that m,, (g1, €2)-dominates 7, if (i) ¢1 (7,) <
(14¢1) - e1(7y) and (ii) ca(my) < (14 ¢€2) - ca(7y). When
€1 = €9, we will sometimes say that 7, (£1)-dominates 7,
and call €, the approximation factor.

Definition 3 ((approximate) Pareto-optimal frontier).
The Pareto-optimal frontier II,, of a vertex w is a set of
paths connecting vVsiarty and u such that (i) no path in 11,
is strictly dominated by any other path from vsgart 0 u
and (ii) every path from vsiary to u is weakly dominated
by a path in 11,,. Similarly, for ¢4 > 0 and €3 > 0 the
approximate Pareto-optimal frontier® 1L, (¢1,&2) C Il is a
subset of u’s Pareto frontier such that every path in I1,, is
(e1,€2)-dominated by a path in 11, (1, £2).

30ur definition of an approximate Pareto-optimal frontier
slightly differs from existing definitions (Breugem, Dollevoet, and
van den Heuvel 2017) which do not require that the approximate
Pareto frontier is a subset of the Pareto-optimal frontier.

costsg |

28

20§)

| L L

|
20 22 3‘5 ! 6‘5 8‘2
2% 50

|
>
costy

Figure 1: (approximate) Dominance and (approximate)
Pareto frontier. Given start and target vertices, we consider
each path 7, as a 2D point (c¢;(m,), c2(7,)) according to
the two cost functions (points and squares). The set of all
possible paths dominated and approximately dominated by
path 7, are depicted in blue and green, respectively (for
€1 = €9 = 1). The Pareto frontier 11, is the set of all black
points that collectively dominate all other possible paths
(squares in grey region). Finally, an approximate Pareto
frontier I1,,(1,1) = {m,, 7.} is depicted by the two purple
circles.

For brevity we will use the terms (approximate) Pareto fron-
tier to refer to the (approximate) Pareto-optimal frontier.
For a visualization of these notions, see Fig. 1(approximate)
Dominance and (approximate) Pareto frontier. Given start
and target vertices, we consider each path 7, as a 2D point
(c1(my), ca(my,)) according to the two cost functions (points
and squares). The set of all possible paths dominated and ap-
proximately dominated by path ,, are depicted in blue and
green, respectively (for e; = €9 = 1). The Pareto frontier
I1,, is the set of all black points that collectively dominate all
other possible paths (squares in grey region). Finally, an ap-
proximate Pareto frontier I1,,(1,1) = {m,, 7, } is depicted
by the two purple circles.figure.caption.4.

We are now ready to formally define our search problems.

Problem 1 (Bi-criteria shortest path). Let G be a graph,
c1,c2 : B — R two cost functions and Vsgary and Vgoa1 be
start and goal vertices, respectively. The bi-criteria shortest

path problem calls for computing the Pareto frontier 11, ..

Problem 2 (Bi-criteria approximate shortest path). Let G
be a graph, c1,co : E — R two cost functions and vsgart
and Vgoa1 be start and goal vertices, respectively. Given e, >
0 and €5 > 0, the bi-criteria approximate shortest path
problem calls for computing an approximate Pareto fron-
tier I, (€1, €2).

3 Algorithmic Background

In this section we describe two approaches to solve the bi-
criteria shortest-path problem (Problem 1Bi-criteria shortest
pathprob.1). With the risk of being tedious, we start with a
brief review of best-first search algorithms as both state-of-
the-art bi-criteria shortest path algorithms, as well as ours,
rely heavily on this algorithmic framework. We note that the

151

Algorithm 1 Best First Search
Input: (G = (V, E), Ustart, Ugoals - -)
1: OPEN < new node m,,,, .
2: while OPEN +# () do
3: m, + OPEN.extract_min()

if is_dominated(m,) then
continue

if 4 = vgoq1 then > reached goal
merge_to_solutions(m,, solutions)
continue

9: for e = (u,v) € neighbors(u, G) do

A

10: Ty < extend(my, e)

11: if is_dominated(w,) then
12: continue

13: insert(m,, OPEN)

14: return all extreme paths in solutions

description of best-first search we present here can be op-
timized but this version will allow us to better explain the
more advanced algorithms.

A Dbest-first search algorithm (Alg. 1Best First
Searchalgorithm.1) computes a shortest path from vgtart
t0 Vgoa1 by maintaining a priority queue, called an OPEN
list, that contains all the nodes that have not been expanded
yet (line 1Algorithmic Backgroundsection.3). Each node
is associated with a path 7, from vg,¢ to some vertex
u € V (by a slight abuse of notation we will use paths and
nodes interchangeability which will simplify algorithm’s
descriptions in the next sections). This queue is ordered
according to some cost function called the f-value of
the node. For example, in Dijkstra and A*, this is the
computed cost from v,y (also called its g-value) and the
computed cost from v, added to the heuristic estimate to
reach vgqa1, respectively.

At each iteration (lines 3Algorithmic
Backgroundsection.3-13Algorithmic Backgroundsection.3),
the algorithm extracts the most-promising node from OPEN
(line 3Algorithmic Backgroundsection.3), checks if it has
the potential to be a better solution than any found so far
(line 4Algorithmic Backgroundsection.3). If this is the
case and we reached vgo,1, the solution set is updated
(in single-criteria shortest path, once a solution is found,
the search can be terminated). If not, we extend the path
represented by this node to each of it’s neighbors (line 10Al-
gorithmic Backgroundsection.3). Again, we check if it has
the potential to be a better solution than any found so far
(line 11Algorithmic Backgroundsection.3). If this is the
case, it is added to the OPEN list.

Different single-criteria search algorithms such as Dijk-
stra, A*, A¥ as well as bi-criteria search algorithms such
BOA* fall under this framework. They differ with how
OPEN is ordered and how the different functions (high-
lighted in Alg. 1Best First Searchalgorithm.1) are imple-
mented.

Bi-Objective A* (BOA*) To efficiently solve Prob-
lem 1Bi-criteria shortest pathprob.1, bi-Objective A*
(BOA*) runs a best-first search. The algorithm is endowed
with two heuristic functions hi, hy estimating the cost to
reach vg0,1 from any vertex according to ¢; and co, respec-
tively. Here, we assume that these heuristic functions are
admissible and consistent. This is key as the efficiency of
BOA* relies on this assumption.

Given a node 7, we define g;(m,) to be the computed
distance according to c;. It can be easily shown that in best-
first search algorithms ¢; := ¢;(m,). Additionally, we de-
fine f;(my) := gi(my) + hi(my). Although the cost and the
g-value of a path can be used interchangeably, we will use
the former to describe general properties of paths and the
latter to describe algorithm operations. Nodes in OPEN are
ordered lexicographically according to (f1, f2) which con-
cludes the description of how extract min and insert
(lines 3Algorithmic Backgroundsection.3 and 13Algorith-
mic Backgroundsection.3, respectively) are implemented.

Domination checks, which are typically time-consuming
in bi-criteria search algorithms are implemented in O(1) per
node by maintaining for each vertex v € V the minimal
cost to reach u according to co computed so far. This value
is maintained in a map g§® : V — R which is initialized
to oo for each vertex. This allows to implement the function
is_dominated for a node 7, by testing if

> g9 (u) or fo(my) > g8 (vgout). (1)

The first test checks if the node is dominated by an
already-extended node and replaces the CLOSED list typ-
ically used in A*-like algorithms. The second test checks if
the node has the potential to reach the goal with a solution
whose cost is not dominated by any existing solution. Fi-
nally, the function merge_to_solutions simply adds a
newly-found solution to the solution set.

g2(7u)

Computing the approximate Pareto frontier Perny and
Spanjaard (2008) suggest to compute an approximate Pareto
frontier by endowing the algorithm with an approximation
factor e. When a node is popped from OPEN, we test if
its f-value is e-dominated by any solution that was al-
ready computed. While this algorithm was presented be-
fore BOA* and hence uses computationally-complex dom-
inance checks, we can easily use this approach to adapt
BOA* to compute an approximate Pareto frontier. This is
done by replacing the dominance check in Eq. 1Bi-Objective
A* (BOA*)equation.3.1 with the test

92(7ru) 2 ganin(v) or (]— + 5) : f2(7ru) Z ggﬂin(vgoal)~ (2)
We call this algorithm BOA?.

4 Algorithmic Framework
4.1 Preliminaries

Recall that (single-criteria) shortest-path algorithms such as
A* find a solution by computing the shortest path to all nodes
that have the potential to be on the shortest path to the goal
(namely, whose f-value is less than the current estimate of

152

costsy A

v

-
costy

Figure 2: The partial Pareto frontier of two paths m&!
and 727 is the set of all paths (blue dots) on the
Pareto frontier (blue and black dots) between these paths.
Lemma llem.1 implies that any path represented by a blue
dot is approximately dominated by 75! and 72% for &1 =
a(my)—er(r)) ca(my)—ca(myy)

e - and &2 = T

the cost to reach vgoa1). Similarly, bi-criteria search algo-
rithms typically compute for each node the subset of the
Pareto frontier that has the potential to be in IT,,_,,.

Now, near-optimal (single-criteria) shortest-path algo-
rithms such as AZ (Pearl and Kim 1982) attempt to speed up
this process by only approximating the shortest path to in-
termediate nodes. Similarly, we suggest to construct only an
approximate Pareto frontier for intermediate nodes which, in
turn, will allow to dramatically reduce computation times.
Looking at Fig. 1(approximate) Dominance and (approx-
imate) Pareto frontier. Given start and target vertices, we
consider each path 7, as a 2D point (c1(my,), c2(m,)) ac-
cording to the two cost functions (points and squares). The
set of all possible paths dominated and approximately dom-
inated by path 7, are depicted in blue and green, respec-
tively (for 1 = €2 = 1). The Pareto frontier I, is the set
of all black points that collectively dominate all other pos-
sible paths (squares in grey region). Finally, an approximate
Pareto frontier IT,,(1,1) = {m,, 7, } is depicted by the two
purple circles.figure.caption.4, one may suggest to run an
A*-like search and if a path 7, on the Pareto frontier IT,, of u
is approximately dominated by another path 7, € II,, then
discard 7,. Unfortunately, this does not account for paths
in II,, that may have been approximately dominated by 7,
and hence discarded in previous iterations of the search. Ex-
isting methods use very conservative bounds to prune in-
termediate paths. For example, as stated in Sec. 1Introduc-
tion & Related Worksection.1, if a bound L on the length of
the longest path exists, we can use this strategy by replac-
ing (1 + ¢) with (1 + £)'/* to account for error propaga-
tion (Perny and Spanjaard 2008).

In contrast, we suggest a simple-yet-effective method to
prune away approximately-dominated solutions using the
notion of a partial Pareto frontier which we now define.

Definition 4 (Partial Pareto frontier PPF). Ler 75!, 5" €
II,, be two paths on the Pareto frontier of vertex u such
that c1(mtt) < ¢ (wE*) (here, t1 and br are shorthands

for “top left” and “bottom right” for reasons which will

'u.’7r

soon be clear). Their partial Pareto frontier PPF], C
1L, is a subset of a Pareto frontier such that lf T, €
11, and cl(Y < c(my) < c(nh?) then 7, €

PPqu "Tu The paths wt*,

of PPFZ'tf’Wfir For a visualization, see Fig. 2The partial
Pareto frontier of two paths w51 and ©5F is the set of all
paths (blue dots) on the Pareto frontier (blue and black
dots) between these paths. Lemma llem.l implies that any
path represented by a blue dot is approximately domi-

1 ci(mi)—ei(ri))
c1(mih)

2% are called the extreme paths

nated by wt! and wk* for ey = and g9 =

ca(mi!)— Fz(ﬂ 9
co(mhr)

Jigure.caption.7.
Definition 5 (Bounded PPF). A partial Pareto frontier
PPE™« ™ C I, is (¢1,&2)-bounded if

a(my’) —ea(my’)
B ci(myt)

€1 and g9 >

ca(m3")
Lemma 1. If PPF”EI’ ™ is an (51,52) bounded partial

Pareto frontier then any path in PPF”H s (e1,€2)-

dominated by both w5* and 7%
Proof. Let w, € PPF”il’”zr By definition, we have that
c1(mht) < ei(my,) and thate; > % Thus,

<(I+er)-alm’) < (1+e)-alm).

As co(mh7) < ca(my,), we have that 757 approximately dom-
inates 7.
Similarly, by definition, we have that co(m,) > co(757)

and that e > 0
CQ(’/Ttl) < (1 + 62) . Cl(’/Tbr) < (1 + 62) . Cl(’lTu).

As ¢y (m8t) < ¢1(my,), we have that 75 approximately dom-
inates 7. 0

1 (ﬂ,br)

> clm)—elm) . Thus,

4.2 Algorithmic Description

In contrast to standard search algorithms which incremen-
tally construct shortest paths from vggay¢ to the graph ver-
tices, our algorithm will incrementally construct (£1,€2)-
bounded partial Pareto frontiers. Lemma llem.1 suggests
a method to efficiently represent and maintain these fron-
tiers for any approximation factors £; and e». Specifically,
for a vertex u, PP-A* will maintain path pairs correspond-
ing to the extreme paths in partial Pareto frontiers. For each
path pair (wEr, wP¥) we have that ¢;(75t) < ¢q(72%) and
ca(myt) = ea(my).

Before we explain how path pairs will be used let us de-
fine operations on path pairs The first operation we consider
is extending a path pair (7}', 727) by an edge ¢ = (u,v),
which simply corresponds to extending both 75* and 75~
by e. The second operatlon we consider is merging two path
pairs (75, 70)and(7L, 57). This operation constructs a
new path pair (751, #°%) such that

e {7751 if ¢1 (7t

Ty ~tl
T 1f61< T

)<01(")

)<cl(u)7

Algorithm 2 PP-A*

Input: (G = (V7 E)7 Ustart 'Ugoaly C1,Cg, h17 h27 €1, 82)
1: solutions_pp+— 0 > path pairs
2: OPEN < new path pair (Vstart, Ustart)

3: while OPEN # () do

4: (wEr, w2F) « OPEN. extractmln()

5: if is_dominated PP-A*(z>!, 72%) then

6: continue

7. if u = vgoa then > reached goal

8: merge_to_solutions_PP-A*(ztt 2%, solu-
tions_pp)

9: continue

10: fore = (u v) € neighbors(s(n), G) do
11: (w5*, m57) « extend_PP- A*((u , TR, e)
12: if is_dominated_PP-A*(xt!, 7°7) then

13: continue
14: insert PP-A*((nt

15: solutrons<— 0
16: for (z5t w°*) € solutions_pp do

oal’ * Ugoal
17: solutions ¢ solutions U{my

v o) ’L)

b5y OPEN)

’U ? ’U

18: return solutions

and

)<C(i)
) < ea(myr).

For a visualization, see Fig. 3Operations on path pairs.
(a)Subﬁgure 3asubﬁgure 3.1 Extend operation. The path
pair (mtt, wR) (blue) is extended by edge ¢ = (u,v)

to obtain the path pair (w5*, 75%) (green). (b)Subfigure
3bsubfigure.3.2 Merge operatron Two examples of merg-
ing the path pair (w5', 75%) (blue) with the path pair

(5L, 707) (green) to obtain the path pair (7%, 727) (pur-
ple). ﬁgure caption.8.

We are finally ready to describe PP-A*, our algo-
rithm for bi-criteria approximate shortest-path computa-
tion (Problem 2Bi-criteria approximate shortest pathprob.2).
We run a best-first search similar to Alg. 1Best First
Searchalgorithm.1 but nodes are path pairs. We start with
the trivial path pair (Usgart, Ustart) and describe our al-
gorithm by detailing the different functions highlighted
in Alg. 1Best First Searchalgorithm.1. For each function,
we describe what needs to be performed and how this
can be efficiently implemented when consistent heuris-
tics are used (see Sec. 3Algorithmic Backgroundsection.3).
Finally, the pseudocode of the algorithm is provided in
Alg. 2PP-A* algorithm.2 with the efficient implementa-
tions provided in Alg. 3is_dominated_PP-A* algorithm.3-
6merge_to_solutions_PP-A* algorithm.6.

b
br _ {Wur if co(m®

u ~br
T lfCQ(T

Orderlng nodes in OPEN: Recall that a node is a path
pair (75, 757) and that each path 7 has two f values which
Correspond to the two cost functions and the two heuristic
functions. Nodes are ordered lexicographically according to

(fr(myh), fa (7). 3)

costo A
ﬂ_Ll
i C2 (Wf;l} ””””” !
ca(e) (] ﬂ,é?% v)

Ty, br
Wy
2 iCQ(’]T,ZT)f ******** T h €= GU7 ’U)
— >
() e(xl) aldr) o(xr)cost;

cile) ae)
(@)

costo

costa

costo

costo

f—

costy

(b)

Figure 3: Operations on path pairs. (a)Subfigure 3asubfigure.3.1 Extend operation. The path pair (75!, 7°7) (blue) is extended
by edge e = (u,v) to obtain the path pair (751, 727) (green). (b)Subfigure 3bsubfigure.3.2 Merge operation. Two examples of

tl
u

merging the path pair (7

Domination checks: Recall that there are two types of
domination checks that we wish to perform (i) checking if
a node is dominated by a node that was already expanded
and (ii) checking if a node has the potential to reach the goal
with a solution whose cost is not dominated by any existing
solution.

In our setting a path pair PP, is dominated by another
path pair PP, if the partial Pareto frontier represented by
PP, is contained in the partial Pareto frontier represented
by PP, (see Fig. 4Testing dominance of partial Pareto fron-

tl br
tiers using path pairs. The partial Pareto frontier IT;,* "™ is
~tl ~br
contained in the partial Pareto frontier IT,* "™ . Thus, the re-
gion represented by 75', °* is contained in the region rep-
resented by 751, 7o, figure.caption.11). We can efficiently
test if PP, = (w5, 7h*) is dominated by any path to u

found so far, by checking if

92(m") = 95" (w). “
This only holds when using the assumption that our heuristic
functions are admissible and consistent and using the way
we order our OPEN list.

We now continue to describe how we test if a path pair
has the potential to reach the goal with a solution whose
cost is not dominated by any existing solution. Given a
path pair PP, = (7', 72%) a lower bound on the partial
Pareto frontier at vgoa1 that can be attained via PP, is ob-
tained by adding the heuristic values to the costs of the two

paths in PP,. Namely, we consider two paths 7! ., 7p" |
such that ¢;(my;) = ¢;(m,") + hi(u) and ¢; (737) =

¢;(m2%) + h;(u). Note that these paths may not be attain-
able and are a lower bound on the partial Pareto frontier that
can be obtained via PP,,. Now, if the partial Pareto frontier

T T L .
PPF, 2" "> is contained in the union of the currently-
computed partial Pareto frontiers at vgoa1, then PPy, is dom-
inated. Similar to the previous dominance check, this can be

efficiently implemented by testing if

(1 + 52) . (fQ(ﬂ'Br)) > ggﬁn(vgoal)- 4)

154

727) (blue) with the path pair (75!, 757) (green) to obtain the path pair (75, 7°%) (purple).

costsy A

costy

Figure 4: Testing dominance of partial Pareto frontiers using
tl br
path pairs. The partial Pareto frontier IT;,* "™ is contained

~tl ~br
in the partial Pareto frontier II;;* "™ . Thus, the region rep-
resented by 75', 7°* is contained in the region represented
by wtt, wor.

Inserting nodes in OPEN: Recall that we want to use the
notion of path pairs to represent a partial Pareto frontier. Key
to the efficiency of our algorithm is to have every partial
Pareto frontier as large as possible under the constraint that
they are all (g1, €2)-bounded. Thus, when coming to insert
a path pair PP, into the OPEN list, we check if there exists
a path pair P~Pu such that PP, and P~Pu can be merged and
the resultant path pair is still (g1, £2)-bounded.

If this is the case, we remove P~Pu and replace it with the
merged path pair.

Merging solutions: Since we want to minimize the num-
ber of. pgth .pairs representing. vaoal (€1,€2) we suggest
an optimization that operates similarly to node insertions.
When a new path pair PP,_, representing a partial Pareto
frontier at vgq4 is obtained, we test if there exists a path pair

in the solution set P~PVg such that PP, and PP can be

oal Vgoal

Algorithm 3 is_dominated_PP-A*
Input: (PP, = (w1, 72%))

u u
1 if (1 +&2) - f2(727) > g5 (vgoa1) then
2: return true > dominated by solution
3: if go(727) > g% (u) then
4: return true > dominated by existing path pair
5: return false

Algorithm 4 extend_PP-A*
Input: (PP, = (75!, 727), e = (u,v))

u u
I: wtt «—extend(nh)
2: o +—extend(m")

3: return (751, 70%)

Algorithm 5 insert_PP-A*
Input: (PP, OPEN)
1: for each path pair PP, € OPEN do

2: PP™e°d « merge(PPy, PPy)

3 if PPi,ne"ged.is,bounded(gl7 £7) then

4 OPEN.remove(PP,) > remove existing path pair
5. OPEN.insert(Ppmereed)

6 return

7: OPEN.insert(PPy)

8: return

Algorithm 6 merge_to_solutions_PP-A*
Input: (PP solutions_pp)

1: for each path pair PP
PPmerged

Vgoal

if PP’vn;‘fed.is,bounded(el, €2) then

Vgoal?
€ solutions_pp do
PPy)

Vgoal

— merge(P~P

Vgoal ?

solutions,pp.remove(P~PVgoal)

return
: solutions_pp.insert(PPy, ;)

2

3

4

5: solutions,pp.insert(PPiflg:%Ed)
6

7

8: return

merged and the resultant path pair is still (1, £2)-bounded.

If this is the case, we remove P~Pvgoal and replace it with
the merged path pair.

Returning solutions: Recall that our algorithm stores so-
lutions as path pairs and not individual paths. To return an
approximate Pareto frontier, we simply return one path in
each path pair. Here, we arbitrarily choose to return ngloa

br
ﬂ’“goal) :

1

for each path pair (775;0&17

4.3 Analysis

Showing that PP-A* indeed computes an approximate
Pareto frontier using the domination checks suggested
in Eq. 4Domination checks:equation.4.4 and SDomination
checks:equation.4.5, may be done by using similar argu-

155

ments as those presented in (Hernandez et al. 2020). How-
ever, such a proof is omitted due to lack of space and we
refer the reader to the extended version of this text (Goldin
and Salzman 2020).

5 Evaluation

Experimental setup. To evaluate our approach we com-
pare it to BOAZ as BOA* was recently shown to dramat-
ically outperform other state-of-the-art algorithms for bi-
criteria shortest path (Hernandez et al. 2020). All experi-
ments were run on an 1.8GHz Intel(R) Core(TM) 17-8565U
CPU Windows 10 machine with 16GB of RAM. All algo-
rithm implementations were in C++.* We use road maps
from the 9°th DIMACS Implementation Challenge: Shortest
Path®. The cost components represent travel distances (c;)
and times (c2). The heuristic values are the exact travel dis-
tances and times to the goal state, computed with Dijkstra’s
algorithm. Since all algorithms use the same heuristic val-
ues, heuristic-computation times are omitted.

General comparison. Similar to the experiments of Her-
nandez et al (2020) we start by comparing the algorithms
for four different roadmaps containing between roughly
250K and 1M vertices. Table 1Runtime (in ms) com-
paring BOA? and PP-A* on 50 random queries sampled
for four different roadmaps for different approximation
factors.table.caption.16 summarizes the number of solutions
in the approximate Pareto frontier and average, minimum
and maximum running times of the two algorithms using
the following values® ¢ € {0,0.01,0.025,0.05,0.1}. Here,
approximation values of zero and 0.01 correspond to com-
puting the entire Pareto frontier and approximating it using
a value of 1%, respectively.

When computing the entire Pareto frontier BOA* is
roughly three times faster than PP-A* on average. This is
to be expected as PP-A* stores for each element in the pri-
ority queue two paths and requires more computationally-
demanding operations. As the approximation factor is in-
creased, the average running time of PP-A* drops faster,
when compared to BOA? and we observe a significant av-
erage speedup. Interestingly, when looking at the minimal
running time, BOA? significantly outperforms PP-A*. This
is because in such settings the approximate Pareto frontier
contains one solution, which BOA is able to compute very
fast. Other nodes are approximately dominated by this solu-
tion and the algorithm can terminate very quickly. PP-A*,
on the other hand, still performs merge operations which in-
cur a computational overhead. When looking at the maximal
running time, we can see an opposite trend where PP-A*
outperforms BOA by a large factor.

*Our code is publicly available at https:/github.com/CRL-
Technion/path-pair-graph-search.

>http://users.diag.uniromal.it/challenge9/download.shtml.

SWhile PP-A* allows a user to specify two approximation fac-
tors corresponding to the two cost functions, this is not the case
for BOA*. Thus, in all experiments we use a single approximation
factorc and sete; = €2 = €.

10| &= PP-A"
—2— BOA.

average speedup
S (=)}
NP.i

(b)

© (d)

Figure 5: North East (NE) plots. (a)Subfigure Sasubfigure.5.1 The average number of expanded nodes (1cxp). (b)Subfigure
Sbsubfigure.5.2 and (c)Subfigure Scsubfigure.5.3 the time (arithmetic-mean and geometric mean, respectively) for both algo-
rithms as a function of the approximation factor. Notice the logarithmic scale in the y-axis for the first three plots. (d)Subfigure
Sdsubfigure.5.4 The average speedup of PP-A* when compared to BOA? as a function of the approximation factor. Error bars
denote one standard error (error bars in (a)Subfigure Sasubfigure.5.1 through (c)Subfigure Scsubfigure.5.3 are not visible due

to the logarithmic scale).

Pinpointing the performance differences between PP-A*
and BOA?. The first set of results suggest that as the prob-
lem becomes harder, the speedup that PP-A* may offer be-
comes more pronounced. We empirically quantify this claim
by moving to a larger map called the North East (NE) map
which contains 1,524,453 states and 3,897,636 edges where
we obtain even larger speedups (see Table 2Runtime (in sec-
onds) comparing BOA* and PP-A* on 50 random queries
sampled for the NE map.table.caption.20).

We plot the number of nodes expanded (which typi-
cally is proportional to the running time of A*-like algo-
rithms) of each algorithm as a function of the approxima-
tion factor (see, Fig. SaSubfigure Sasubfigure.5.1. Here we
used ¢ € {0,0.01,0.025,0.05,0.1,0.25,0.5, 1}. Addition-
ally, we plot both the arithmetic mean (Fig. SbSubfigure
Sbsubfigure.5.2) as well as the geometric mean (Fig. ScSub-
figure Scsubfigure.5.3) of each algorithm as a function of the
approximation factor.”

We observe that the number of nodes expanded monoton-
ically decreases when the approximation factor is increased
for both algorithms. This is because additional nodes may be
pruned which in turn, prunes all nodes in their subtree. It is
important to discuss how these nodes are pruned: Recall that
BOA? prunes nodes according to Eq. 2Computing the ap-
proximate Pareto frontierequation.3.2. Thus, increasing the
approximation factor only allows to prune more nodes ac-
cording to the already-computed solutions and not accord-
ing to the paths computed to intermediate nodes. In con-
trast, PP-A* prunes nodes according to Eq. 4Domination
checks:equation.4.4 and 5Domination checks:equation.4.5.
Thus, in addition to more path pairs being merged, increas-
ing the approximation allows to prune more path pairs ac-
cording to the already-computed solutions as well as the path
pairs computed to intermediate vertices. Thus, for relatively-
small approximation factors that are greater than zero (in
our setting, 0 < & < 0.5, we see that BOA* expands a

"We used both arithmetic and geometric mean as the arithmetic
mean can be misleading skewing the mean towards the results on
larger instances. Together, both means better capture the results.

156

significantly higher number of nodes than PP-A* which ex-
plains the speedups we observed. However, for large approx-
imation factors, there is typically only one solution in the
approximate Pareto frontier. This solution, which is found
quickly by BOA, allows to prune almost all other paths
which results in BOA? running much faster than PP-A*.
This trend is visualized in Fig. SdSubfigure 5dsubfigure.5.4.

6 Future Research
6.1 Bidirectional Search

We presented PP-A* as a unidirectional search algorithm,
however a common approach to speed up search algo-
rithms is to perform two simultaneous searches: a forward
search from Vggart t0 Ugoa1 and a backward search from vgga1
to Vgtart (Pohl 1971). Thus, an immediate task for future re-
search is to suggest a bidirectional extension of PP-A*. Here
we can build upon recent progress in bi-directional search
algorithms for bi-criteria shortest-path problems (Sedefio-
Noda and Colebrook 2019).

6.2 Beyond Two Optimization Criteria

We presented PP-A* as a search algorithm for two opti-
mization criteria, however the same concepts can be used for
multi-criteria optimization problems. Unfortunately, it is not
clear how to perform operations such as dominance checks
efficiently since the methods presented for BOA* do not ex-
tend to such settings.

Acknowledgements

We wish to thank Carlos Hernandez, William Yeoh, Jorge
Baier and Sven Koenig for insightful discussions regard-
ing BOA* and Ariel Felner for comments on early drafts of
this paper. In addition, we thank the anonymous reviewers
of the ICAPS 2020 Workshop on Heuristics and Search for
Domain-independent Planning (HSDIP 2020) for insightful
comments on an early version of this paper.

Finally, this research was partially supported by grants
No. 102583, 2028142 from the Isaeli Ministry of Science

. avg t min t max t
PP-A* BOA* PP-A* BOA* PP-A* BOA*
0 1,047 405 2 0 13,563 5,038
0.01 291 353 3 0 3,662 4,577
0.025 168 295 2 0 2,207 4,101
0.05 111 240 3 0 1,523 3,538
0.1 69 174 2 0 932 2,694
. avg t min t max t
PP-A* BOA* PP-A* BOA* PP-A* BOA*
0 1,213 423 3 0 21,751 7,584
0.01 222 369 4 0 2,927 6,805
0.025 127 321 3 0 1,530 5,614
0.05 85 272 3 0 1,109 4,570
0.1 54 199 3 0 576 3,056
. avg t min t max t
PP-A* BOA* PP-A* BOA* PP-A* BOA*
0 3,368 1,144 5 1 56,153 17,348
0.01 372 944 5 1 3,633 16,304
0.025 192 768 5 1 1,690 15,037
0.05 116 608 5 1 991 13,718
0.1 69 470 4 1 593 11,977
. avgt min t max t
PP-A* BOA* PP-A* BOA* PP-A* BOA*
0 12,177 3,545 12 3 270,450 68,467
0.01 1,000 3,228 12 3 17,092 64,642
0.025 479 2,738 11 3 8,060 59,908
0.05 263 1,985 12 3 3,945 39,214
0.1 144 1,172 11 2 1,780 21,665

Table 1: Runtime (in ms) comparing BOA* and PP-A* on
50 random queries sampled for four different roadmaps for
different approximation factors.

& Technology (MOST), and by grant No. 1018193 from the
United States-Israel Binational Science Foundation (BSF).

References
Bachmann, D.; Bokler, F.; Kopec, J.; Popp, K.; Schwarze,
B.; and Weichert, F. 2018. Multi-Objective Optimisation
Based Planning of Power-Line Grid Expansions. ISPRS In-
ternational Journal of Geo-Information 7(7): 258.

Bokler, F.; and Chimani, M. 2020. Approximating Multiob-

jective Shortest Path in Practice. In Symposium on Algorithm
Engineering and Experiments, (ALENEX), 120—133.

Breugem, T.; Dollevoet, T.; and van den Heuvel, W. 2017.
Analysis of FPTASes for the multi-objective shortest path
problem. Computers & Operations Research 78: 44-58.

Bronfman, A.; Marianov, V.; Paredes-Belmar, G.; and Liier-
Villagra, A. 2015. The maximin HAZMAT routing problem.
European Journal of Operational Research 241(1): 15-27.

Chinchuluun, A.; and Pardalos, P. M. 2007. A survey of
recent developments in multiobjective optimization. Annals
of Operations Research 154(1): 29-50.

157

. avg t min t max t
PP-A* BOA* PP-A* BOA* PP-A* BOA¥*
0 1926 595 0.04 0.02 2,4189.9 592.6
001 13.1 68.3 0.03 0.01 111.6 600.9
0.025 5.6 573 0.02 0.01 46.9 510.9
005 2.7 40.8 0.02 0.01 22.6 345.1
01 13 25.8 0.02 0.01 9.0 229.8

Table 2: Runtime (in seconds) comparing BOA* and PP-A*
on 50 random queries sampled for the NE map.

Ehrgott, M. 2005.
Springer.

Fu, M.; Kuntz, A.; Salzman, O.; and Alterovitz, R. 2019. To-
ward Asymptotically-Optimal Inspection Planning Via Effi-
cient Near-Optimal Graph Search. In Robotics: Science and
Systems (RSS).

Goldin, B.; and Salzman, O. 2020. Approximate bi-criteria
search by efficient representation of subsets of the Pareto-
optimal frontier. CoRR abs/2006.10302. URL http://arxiv.
org/abs/XxXXX.yyyy.

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cyber-
netics 4(2): 100-107.

Hernandez, C.; Yeoh, W.; Baier, J. A.; Zhang, H.; Suazoy,
L.; and Koenig, S. 2020. A Simple and Fast Bi-Objective
Search Algorithm. In International Conference on Auto-
mated Planning and Scheduling (ICAPS).

Legriel, J.; Le Guernic, C.; Cotton, S.; and Maler, O. 2010.
Approximating the pareto front of multi-criteria optimiza-
tion problems. In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems,
69-83.

Mandow, L.; and De La Cruz, J. L. P. 2005. A new approach
to multiobjective A* search. In International Joint Confer-
ences on Artificial Intelligence (IJCAI), 218-223.

Mandow, L.; and De La Cruz, J. L. P. 2010. Multiobjective
A* search with consistent heuristics. Journal of the ACM
(JACM) 57(5): 1-25.

Papadimitriou, C. H.; and Yannakakis, M. 2000. On the
approximability of trade-offs and optimal access of web
sources. In Symposium on Foundations of Computer Science
(FoCS), 86-92.

Pearl, J.; and Kim, J. H. 1982. Studies in semi-admissible
heuristics. IEEE transactions on pattern analysis and ma-
chine intelligence (4): 392-399.

Perny, P.; and Spanjaard, O. 2008. Near Admissible Algo-
rithms for Multiobjective Search. In European Conference
on Artificial Intelligence (ECAI), volume 178, 490-494.

Pohl, I. 1971. Bi-directional search. Machine intelligence 6:
127-140.

Multicriteria Optimization (2. ed.).

Pulido, F.-J.; Mandow, L.; and Pérez-de-la Cruz, J.-L. 2015.
Dimensionality reduction in multiobjective shortest path
search. Computers & Operations Research 64: 60-70.

Sedefio-Noda, A.; and Colebrook, M. 2019. A biobjective
Dijkstra algorithm. European Journal of Operational Re-
search 276(1): 106-118.

Sedeno-Noda, A.; and Raith, A. 2015. A Dijkstra-like
method computing all extreme supported non-dominated so-
lutions of the biobjective shortest path problem. Computers
& Operations Research 57: 83-94.

Serafini, P. 1987. Some considerations about computational
complexity for multi objective combinatorial problems. In
Recent advances and historical development of vector opti-
mization, 222-232. Springer.

Stewart, B. S.; and White III, C. C. 1991. Multiobjective A*.
Journal of the ACM (JACM) 38(4): 775-814.

Tsaggouris, G.; and Zaroliagis, C. D. 2009. Multiobjective
Optimization: Improved FPTAS for Shortest Paths and Non-
Linear Objectives with Applications. Theory Comput. Syst.
45(1): 162-186.

Vazirani, V. V. 2001. Approximation algorithms. Springer.

Warburton, A. 1987. Approximation of Pareto optima in
multiple-objective, shortest-path problems. Operations re-
search 35(1): 70-79.

158

