
S∗: A Heuristic Information-Based Approximation Framework for Multi-Goal
Path Finding

Kenny Chour,1 Sivakumar Rathinam,1 Ramamoorthi Ravi 2

1 Mechanical Engineering, Texas A & M University, College Station
2 Tepper School of Business, Carnegie Mellon University, Pittsburgh

ckennyc@tamu.edu, srathinam@tamu.edu, ravi@cmu.edu

Abstract

We combine ideas from uni-directional and bi-directional
heuristic search, and approximation algorithms for the Trav-
eling Salesman Problem, to develop a novel framework for
a Multi-Goal Path Finding (MGPF) problem that provides a
2-approximation guarantee. MGPF aims to find a least-cost
path from an origin to a destination such that each node in a
given set of goals is visited at least once along the path. We
present numerical results to illustrate the advantages of our
framework over conventional alternates in terms of the num-
ber of expanded nodes and run time.

Introduction
Multi-Goal Path Finding (MGPF) aims to find a least-cost
path in a graph G = (V,E) with non-negative edge costs
such that the path starts from an origin (s ∈ V ) and ends at
a destination (d ∈ V ), and each node in a given set of goals
(T̄ ⊆ V ) is visited at least once along the path. In the special
case when the goal set is empty (T̄ = ∅), MGPF reduces to
the least-cost path problem and is polynomial time solvable
(Dijkstra 1959; Lawler 2001). For the general case, we must
also determine the sequence in which the goals must be vis-
ited, and therefore, MGPF is a generalization of the Steiner1

Traveling Salesman Problem (Rodriguez-Pereira et al. 2019)
and is NP-Hard. MGPF arises in numerous aerial robot and
logistics applications as discussed in recent surveys (Otto
et al. 2018; Macharet and Campos 2018).

Existing 2-approximation algorithms for the MGPF and
its variants (Kou, Markowsky, and Berman 1981; Mehlhorn
1988) rely on three steps (Fig. 1): (i) find a suitable Steiner
tree spanning the origin, goals and the destination, (ii) dou-
ble the edges in the Steiner tree to obtain an Eulerian graph,
and then finally (iii) find a path in the Eulerian graph that is
feasible for the MGPF problem. The 2-approximation ratio
and the computational complexity of these algorithms pri-
marily relies on the Steiner tree construction in step (i); this
construction must be done so that the cost of the Steiner tree
constructed is at most the optimal cost of the MGPF. Well

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Any node that is not required to be visited is referred to as a
Steiner node. A path may choose to visit a Steiner node if it helps
in either finding feasible solutions or reducing the cost of travel.

known primal-dual (Ravi 1994; Agrawal, Klein, and Ravi
1995; Goemans and Williamson 1997) or minimum span-
ning tree based algorithms (Kou, Markowsky, and Berman
1981; Mehlhorn 1988) can be used to find such a Steiner
tree.

The objective of this article is to propose a new approx-
imation framework that fuses existing methods for Steiner
tree construction with heuristic information to develop new
algorithms for step (i) of the approximation algorithm for
MGPF (Fig. 1). As a consequence, this framework provides
new efficient 2-approximation algorithms for MGPF. Our
work follows the spirit of the A* (Hart, Nilsson, and Raphael
1968) (or the bi-directional (Pohl 1969)) heuristic search
methods where a best-first search procedure from the origin
(or the origin and the destination) was combined with heuris-
tic information to develop new algorithms for the least-cost
path problem. In fact, in the special case when the goal set is
empty, the primal-dual algorithm (Agrawal, Klein, and Ravi
1995) for the Steiner tree problem, depending on how it is
applied, reduces to either the uni-directional search (Dijkstra
1959) or bi-directional search (Nicholson 1966) algorithm
available for the least-cost path problem. Therefore, one can
view our work in this article as a direct generalization of
the A* and the bi-directional heuristic search procedures to
Steiner tree computation and to MGPF.

We refer to the proposed framework as Steiner∗ (S∗)
and present its two variants. In the first variant, we use
A∗ to grow closed and open sets from each node in T :=
{s, d}

⋃
T̄ and simultaneously construct a Steiner tree when

relevant bounding conditions are satisfied. We refer to this
variant as S∗-unmerged since we do not merge the closed
sets corresponding to distinct nodes in T even when they
overlap with each other. The second variant is referred to as
S∗-merged where the closed sets are merged when appropri-
ate bounding conditions are satisfied akin to what happens
in the Kruskal’s minimum spanning tree algorithm (Kruskal
1956). The S∗-merged framework is agnostic to the under-
lying optimality conditions used for the least-cost path com-
putations during the search process; specifically, one can
use the optimality conditions from A* (Hart, Nilsson, and
Raphael 1968) or bi-directional search (Nicholson 1966) or
Meet in the Middle (MM) (Holte et al. 2017) algorithms
in the S∗-merged framework and guarantee the required
properties. We note here that while there are several bi-

Proceedings of the Thirty-First International Conference on Automated Planning and Scheduling (ICAPS 2021)

85



Figure 1: An approximation algorithm for MGPF: (i) Construct a suitable Steiner tree, (ii) Double the edges in the Steiner tree
to form an Eulerian graph and (iii) Find a path in the Eulerian graph from the origin to destination that visits each goal at least
once, while discarding remaining edges.

Figure 2: Each shaded region shows our expectation on the
set of expanded nodes for conventional solvers and the pro-
posed framework. Here, naive Kruskal is the popular ap-
proach (Kou, Markowsky, and Berman 1981) described in
the Background and Preliminaries section.

directional heuristic search methods (De Champeaux 1983;
Kwa 1989; Eckerle 1994; Kaindl and Kainz 1997; Barker
and Korf 2015; Holte et al. 2017; Chen et al. 2017), we
use MM (Holte et al. 2017) as a representative bi-directional
search method for least-cost path computations in our frame-
work as our goal is to address the MGPF; other methods
will be considered in the future. Like uni-directional and bi-
directional heuristic search, the expectation here is that com-
bining existing algorithms with heuristic information will re-
duce the number of expanded nodes and possibly the com-
putation time (Fig. 2).2

After describing the new algorithms with theoretical per-
formance guarantees for the Steiner tree construction, we
provide extensive computational results on the performance
on the proposed framework for instances derived from the

2Counterexamples to this expectation is presented in the ap-
pendix of (Chour, Rathinam, and Ravi 2021).

Multi-Agent Path Finding (MAPF) library3 (Stern et al.
2019). While these numerical results clearly illustrate the
benefits of the proposed framework in several scenarios, we
do not claim that the proposed framework is superior to con-
ventional solvers for each and every instance of the MGPF
problem. Nevertheless, the proposed framework is the first
of its kind for MGPF and provides a new line of research for
related problems.

Background and Preliminaries
Let c(u, v) ≥ 0 denote the cost of the edge joining two dis-
tinct vertices u and v in G = (V,E). The cost of a path is
defined as the sum of the edges in the path. Let cost∗(u, t)
denote the cost of the least-cost path from u to t in G. Let
h̄t(u) be an underestimate on cost∗(u, t). To simplify our
presentation and proofs, we assume h̄t(u) is obtained using
a consistent heuristic (Hart, Nilsson, and Raphael 1968).

A Steiner tree is a connected subgraph of edges that spans
a subset of relevant nodes T = {s, d}

⋃
T̄ ⊆ V also com-

monly referred to as terminals. Finding a Steiner tree which
minimizes the sum of the cost of the edges in the tree is NP-
Hard (Karp 1972). Therefore, a popular approach for finding
a suitable Steiner tree in step (i) of the approximation algo-
rithm (Fig. 1) is to find a Minimum Spanning Tree (MST)
in the metric completion4 of the terminals, and then replace
each edge in the MST by the corresponding least-cost path in
G. There are several implementations of this approach (Kou,
Markowsky, and Berman 1981; Mehlhorn 1988; Ravi 1994;
Goemans and Williamson 1997). Irrespective of the specific
implementation used, the Steiner tree construction relies on
satisfying the following key properties:

(SP) Ensure that when a path between a pair of terminals in
T is confirmed by a path finding algorithm, it is indeed
a least-cost path in G between them.

(K) When a path P between two terminals is included in
the Steiner tree, it obeys Kruskal’s condition (Kruskal

3https://movingai.com/benchmarks
4The metric completion of the terminals is a complete weighted

graph on the terminals T where the weight of an edge between a
pair of terminals is the minimum cost of a path between them in G.

86



Algorithm 1: S*-unmerged
1 Inputs:
2 G = (V,E), c(u, v) ∀u, v ∈ V , T ⊆ V

3 h̄t(u) ∀t ∈ T, u ∈ V // consistent lower
bounds on c∗(u, t)

4 Output:
5 ST // Steiner tree spanning T
6 Initialization:
7 Ct := {t} ∀t ∈ T // Closed sets
8 Ot := {u : (u, t) ∈ E} ∀t ∈ T // Open sets
9 Dt := T \ {t} ∀t ∈ T // Destination sets

10 gt(u) := c(t, u) ∀u ∈ V, t ∈ T
11 ft(u) := gt(u) + h(u,Dt), ∀u ∈ V, t ∈ T
12 Q = ∅ // Paths eligible for ST

13 ST := ∅
14 Main Loop:
15 while all the terminals are not connected in ST do
16 ut := arg minu∈Ot

ft(u) ∀t ∈ T // t
nominates best node

17 t∗ = arg min{ft(ut) : t ∈ T} // Choose
nominator with least f cost

18 Ct∗ := Ct∗ ∪ {ut∗}; Ot∗ := Ot∗ \ {ut∗}
19 for v ∈ {v : (v, ut∗) ∈ E, v /∈ Ct∗} do
20 Ot∗ := Ot∗ ∪ {v}
21 gt∗(v) := min(gt∗(v), gt∗(ut∗) + c(ut∗ , v))
22 ft∗(v) := gt∗(v) + h(v,Dt∗), ∀v ∈ Ot∗

23 end
24 if ut∗ ∈ Dt∗ then
25 Q := Q ∪ {PATH(t∗, ut∗)}
26 Dt∗ := Dt∗ \ {ut∗}
27 ft∗(v) := gt∗(v) + h(v,Dt∗), ∀v ∈ Ot∗

28 Dut∗ := Dut∗ \ {t∗}
29 fut∗ (v) := gut∗ (v) + h(v,Dut∗ ), ∀v ∈ Out∗

30 end
31 ST := UpdateSteinerTree(ST , Q, f)
32 end
33 return ST

1956) for inclusion in the MST of the metric com-
pletion of T . This requires that all paths between any
pair of terminals with costs lower than the cost of P
have been considered, and P does not create any cy-
cles when added to the current tree.

If a Steiner tree algorithm satisfies the above key proper-
ties, then it is known that the cost of the Steiner tree ob-
tained using the algorithm is at most equal to the optimal
MGPF cost which leads to a 2-approximation algorithm
for MGPF (Kou, Markowsky, and Berman 1981; Mehlhorn
1988). The variants of the S* framework ensures that these
two key properties are maintained thus proving the approxi-
mation guarantee of the final MGPF solution obtained using
this approach.

S*-unmerged
S*-unmerged (Algorithm 1) uses A∗ to build closed and

Algorithm 2: UpdateSteinerTree(ST , Q, f)

1 f∗ := mint minu∈Ot
ft(u)

2 Q′ = Q // Process paths locally
3 while Q′ is nonempty do
4 Choose a path p ∈ Q′ with the cheapest cost

joining components C1, C2 ∈ ST

5 if adding p to ST does not form a cycle AND
cost(p) ≤ f∗ then

6 Add p to ST

7 C̄ := C1 ∪ C2

8 for t ∈ C̄ ∩ T do
9 Dt := T \ C̄

10 ft(v) := gt(v) + h(v,Dt), ∀v ∈ Ot

11 end
12 end
13 Delete p from Q′

14 end
15 return ST

open sets from each terminal in T . We borrow the usual def-
initions of f , g and h costs from A∗; however, in this frame-
work, each terminal maintains its own version of the f , g
and h costs for each of the nodes in its closed and open sets.
Each terminal t ∈ T maintains a destination list Dt which
includes all the terminals not yet connected to t in the Steiner
tree. In Algorithm 1, for any S ⊂ V , h(u, S) is defined as
the underestimate from node u to reach any terminal in S,
i.e., h(u, S) := min{h̄t(u) : t ∈ T ∩ S}.

After the initialization step, during each iteration of the
the main loop, S*-unmerged proceeds to let each terminal
nominate a node with the least f -cost from its open set. The
best nominated node ut∗ with the smallest f value is then
moved to the corresponding terminal(t∗)’s closed set. Next,
ut∗ is expanded and the corresponding g and f costs of its
neighbors are updated (lines 19-23 in Algorithm 1). If paths
are confirmed between two distinct terminals, they are also
added to Q (line 25 in Algorithm 1) which maintains a list
of paths eligible for the Steiner tree construction. Lines 26-
29 in Algorithm 1 are referred as re-prioritization steps and
are not mandatory; however, they may help in reducing the
total number of expanded nodes during the search process
at the expense of additional computation time. Finally, S*-
unmerged checks (line 31 in Algorithm 1) if the Steiner tree
(ST ) needs to be updated based on the changes in Q or the
bounding function f .

The procedure in Algorithm 2 ensures paths are added to
ST only if they satisfy the property (K). First, we consider
the minimum f -value (f∗) among all the nodes in the open
sets of all the terminals. Note that this will be f -cost of the
next best nominated node in the algorithm. Therefore, all
confirmed paths with costs at most equal to f∗ from all ter-
minals have been explored by now. We then process the con-
firmed paths in Q locally in increasing order of cost in the
following way:

• If a path is between two terminals that are not connected
in ST and its cost is at most f∗ (line 5 of Algorithm 2),

87



we include it in ST . We also update the destination sets of
the terminals due to changes in ST and correspondingly
change the f -costs for nodes in the open sets of these ter-
minals (lines 8-11 of Algorithm 2).

• If a path doesn’t satisfy the conditions in line 5 of Algo-
rithm 2, we ignore and delete it locally since it does not
obey property (K).

Correctness of S∗-unmerged
First, we observe that the open and closed sets of terminals
are updated in the same manner as the A∗ algorithm. Fur-
thermore, as the heuristic costs are consistent, gt(u) for any
node u ∈ Ct is equal to cost∗(t, u). Moreover, the shortest
paths found between t and any node in Ct, and their corre-
sponding g costs remain valid even after the changes in Dt

since we recompute the lower bounds h to remain consistent,
and use them in updating the bounds on the open sets. This
shows that the paths finalized by the algorithm obey the (SP)
property. As a result of the condition used in Algorithm 2,
S∗-unmerged also satisfies the (K) property. Hence, we have
the following theorem.
Theorem 1. S*-unmerged finds a Steiner tree of cost at most
equal to the optimal MGPF cost. This Steiner tree can then
be used to obtain a 2-approximation algorithm for MGPF.

S*-merged
Rather than carry out search from single terminals,
S*-merged (Algorithm 3) keeps track of the connectivity
structure among the terminals in ST using a set C of com-
ponents which are initialized to singleton terminals. When
two components merge, we simply merge the set of termi-
nals in these components in C. We also carefully extend the
definition of open and closed sets to subsets of terminals and
ensure we update them so that they obey the conditions that
the g-values of nodes in the closed sets give optimal paths
from the node to some terminal in the component, and that
the f -values remain lower bounds on reaching a terminal in
another component. For this we will also need to ensure that
the destination set of the merged components are updated
appropriately.

Unlike S*-unmerged where each terminal nominates
its best node, in S*-merged, each component nominates
a node with the least f -cost from its open set. The best nom-
inated node uA∗ with the least f value is then moved to the
corresponding components (A∗) closed set. Next, uA∗ is ex-
panded and the corresponding g and f costs of its neighbors
are updated (lines 20-24 in Algorithm 3). If paths are con-
firmed between terminals in two distinct components, they
are also added to Q (line 27 in Algorithm 3). Similar to
S*-unmerged, the re-prioritization steps in lines 28-31 of
Algorithm 3 are not mandatory and can be used to speed up
the implementation as needed. Finally, S*-merged checks
(line 35 in Algorithm 3) if the Steiner tree (ST ) and the com-
ponent structure needs to be updated based on changes in Q
or the bounding functions of these components.

We derive three versions of S*-merged based on the
method used to confirm the least-cost paths between com-
ponents (line 26 in Algorithm 3). These methods are drawn

Algorithm 3: S*-merged
1 Input:
2 G = (V,E), c(u, v) ∀u, v,∈ V , T ⊆ V

3 h̄t(u) ∀t ∈ T, u ∈ V // consistent lower
bounds on c∗(u, t)

4 Output:
5 ST // Steiner tree spanning T
6 Initialization:
7 C := {{t}, ∀t ∈ T}
8 CA := A, ∀A ∈ C // Closed sets of A
9 OA := {u : (u, t) ∈ E, t ∈ A}, ∀A ∈ C // Open

sets of A
10 DA := T \ A, ∀A ∈ C// Destination sets

of A ∈ C
11 gA(u) := min{c(t, u) : t ∈ A, t ∈ T}, ∀u ∈

V,A ∈ C
12 fA(u) := gA(u) + h(u,DA), ∀u ∈ V,A ∈ C

// Lower bound on cost∗(u,DA)
13 Q = ∅ // Paths eligible for ST

14 ST = ∅

15 Main Loop:
16 while all the terminals are not connected in ST do
17 uA = arg minu∈OA fA(u) ∀A ∈ C // A

nominates best node
18 A∗ = arg min{fA(uA) : A ∈ C} // Choose

nominator with least f cost
19 CA∗ = CA∗ ∪ {uA∗}; OA∗ = OA∗ \ {uA∗}
20 for v ∈ {v : (v, uA∗) ∈ E, v /∈ CA∗} do
21 OA∗ = OA∗ ∪ {v},
22 gA∗(v) =

min{gA∗(v), gA∗(uA∗) + c(uA∗ , v)}
23 fA∗(v) = gA∗(v) + h(v,DA∗)
24 end
25 for A ∈ C,A 6= A∗ do
26 if Path Confirmation Condition between A∗

and A is satisfied then
27 If terminalA(u) denotes a terminal in A

that is nearest to u, Q := Q ∪
PATH∗(terminalA(u), terminalA∗(u))

28 DA∗ := DA∗ \ {t : t ∈ A ∩ T}
29 ∀v ∈ OA∗ , fA∗(v) = gA∗(v)+h(v,DA∗)
30 DA := DA \ {t : t ∈ A∗ ∩ T}
31 ∀v ∈ OA, fA(v) = gA(v) + h(v,DA)
32 end
33 end
34 Let C̄ denote all the info pertaining to C
35 [ST , C̄] =

UpdateSteinerTree Merge(ST , Q, C̄)
36 end

88



Algorithm 4: UpdateSteinerTree Merge(ST , Q, C̄)

1 f∗ =
max{minA(minu∈OA fA(u)),minA6=A′(rminA +
rminA′)}

2 Q′ = Q // Process paths locally
3 while Q′ is nonempty do
4 Choose a path p ∈ Q′ with the cheapest cost

joining components C1, C2 ∈ ST

5 if adding p to ST does not form a cycle AND
cost(p) ≤ f∗ then

6 Suppose p connects components A1,A2 ∈ C
7 C̄ = ComponentMerge(A1,A2, C̄)
8 end
9 Delete p from Q′

10 end
11 return [ST , C̄]

Algorithm 5: ComponentMerge(A1,A2, C̄)

1 A12 = A1 ∪ A2 // merge components
2 DA12

= DA1
∪DA2

\ {t : t ∈ A12 ∩ T}
3 OC1 := OA1

∪ CA1
, OC2 := OA2

∪ CA2

4 gA12
(u) = min{gA1

(u), gA2
(u)} for all

u ∈ OC1 ∪OC2 // merge g costs
depending on the set it is in

5 CA12 = (CA1 ∪ CA2) \ {u : gA1(u) < gA2(u), u ∈
OA1 ∩ CA2

∨
gA2(u) < gA1(u), u ∈

OA2 ∩ CA1} // Remove nodes from
the closed set if the g cost is
lower in the open sets

6 OA12
= (OC1 ∪OC2) \ CA12

7 fA12
(u) = gA12

(u) + h(u,DA12
) ∀u ∈ OA12

// update fcosts
8 Remove Ā1, Ā2 from C̄ and add Ā12 to C̄
9 return C̄

from three well-known variants, namely the bidirectional
Heuristic Search (HS) with the fmin rule (Pohl 1969),
bidirectional Best-first Search (BS) with the gmin-based
rule (Nicholson 1966) which also mimics the classic primal-
dual algorithms (Agrawal, Klein, and Ravi 1995; Goe-
mans and Williamson 1997), and Meet-in-the-Middle (MM)
Search (Holte et al. 2017). These versions are correspond-
ingly referred to as S∗-HS, S∗-BS and S∗-MM. The follow-
ing discussion presents the path criterion used in each of
them.

• Path confirmation criterion for S∗-HS: In this ver-
sion, we check if there is a node u such that the sum
of the g-values of the shortest paths to u from two dif-
ferent components A and A∗ is at most the larger of
the lower bounds for reaching any terminal in the des-
tination sets for A and A∗; in other words, we test if
minu∈V (gA∗(u) + gA(u)) ≤ max(fA∗(uA∗), fA(uA)).
If this is the case, the path we have found via u repre-
sents a least-cost path between A and A∗. This stopping

condition is also commonly referred to as the “fmin con-
dition” for bidirectional heuristic search (Bi-HS) (Pohl
1969; Sturtevant and Felner 2018).

• Path confirmation criterion for S∗-BS: Let gminA de-
note the smallest g-value among the nodes in the open set
of A. Note that this is the node in the open set that can be
confirmed next according to Djikstra’s algorithm. We can
then use the sum of the values of gminA and gminA∗ to
check if there is a least-cost path between any terminal in
A and any terminal in A∗: minu∈V (gA∗(u) + gA(u)) ≤
gminA∗ + gminA. This is exactly the stopping condition
to confirm a path in bidirectional best-first search (Nichol-
son 1966; Sturtevant and Felner 2018) which ensures that
property (SP) holds for paths confirmed using this rule.
Using this criterion also reduces S∗-BS to the conven-
tional primal-dual algorithm (Agrawal, Klein, and Ravi
1995) for the Steiner tree problem.

• Path confirmation criterion for S∗-MM: For MM,
we need more definitions. Define cmin to be the min-
imum cost of any edge in the graph. Let the priority
of a node u for component A be defined as prA(u) =
max{fA(u), 2gA(u)} where the first term denotes a
lower bound on the cost to any other component and the
second is twice the confirmed cost of connecting a ter-
minal in the component to node u. Now, let prminA =
minu∈OA prA(u) for any A. When a pair of components
A and A∗ are evaluated for a path between them, we de-
fine C = min{prminA, prminA∗}. We can now use the
path criterion from MM (Holte et al. 2017) to confirm a
least-cost path between any terminal in A and any ter-
minal in A∗ as follows: minu∈V (gA∗(u) + gA(u)) ≤
max{C, fA∗(uA∗), fA(uA), gminA∗+gminA+cmin}.
This ensures property (SP) holds for paths confirmed us-
ing this version.

The procedure in Algorithm 4, similar to the UpdateStein-
erTree procedure in Algorithm 2, ensures paths are added
to ST only if they satisfy the property (K). A key differ-
ence in Algorithm 4 is the addition of new bounds to f∗

to ensure different versions of S*-merged can be han-
dled efficiently. To do this, for a component A, we first
define rminA as the minimum g-value over all nodes in
the boundary of A, namely those nodes in its closed set
with a neighbor in its open set. Intuitively, if we draw a
ball of this radius around the terminals in A, every bound-
ary node will occur only at this distance or later, so if we
drew such balls around two different componentsA andA′,
they would be disjoint. We then generalize the definition of
f∗ used in the Steiner Tree updating algorithm as follows:
f∗ = max{minA(minu∈OA fA(u)),minA6=A′(rminA +
rminA′)}. By the disjointness of these two balls represented
by the last term, we can see that using this definition to pick
paths satisfies property (K).

Correctness of S∗-merged
Since the path confirmation criteria for these three algo-
rithms are directly drawn from the stopping conditions in
the corresponding Bi-HS, Bi-BS and MM algorithms, it fol-

89



lows that the three algorithms obey the (SP) property when
they confirm paths between components.

The main point of difference in the merged methods
from regular source-destination path-finding algorithms is
the definition of open and closed sets since they are now
for components rather than just the source or destination.
But this is precisely what is handled in the careful redefini-
tion of these sets for a merged component in Algorithm 5. In
particular, when components A and A′ merge, if a node is
present in the current closed sets of both A and A′, we use
the smaller of the two confirmed g-estimates for the shortest
path to it. However, if it is present in the closed set ofA and
the open set of A′ but the g-estimate is smaller to A′, then
we remove it from the closed set of the merged component
since we have a potentially better path from A′ and since
it is still in the open set and not confirmed for its shortest
path toA′. The open set of the merged component is simply
those nodes in the union of the open sets of both merging
components that are not retained in the closed set. Once the
f and g costs of the merged components are updated cor-
rectly, it also follows that the update Steiner tree method in
Algorithm 4 ensures all the three versions of S*-merged
satisfy property (K). This leads to the following theorem.
Theorem 2. The S*-merged framework when special-
ized to any of the three path confirmation criteria (S*-HS,
S*-BS, S*-MM) finds a Steiner tree of cost at most equal to
the optimal MGPF cost. This Steiner tree can then be used
to obtain a 2-approximation algorithm for MGPF.

Numerical Results
Setup: Computational experiments were conducted on a
computer with a 2.80 GHz Intel Core i7-7700HQ proces-
sor. All algorithms were implemented in Python 3.6 un-
der Ubuntu 18.04. We compared the number of expanded
nodes and runtimes of the proposed algorithms, namely
S*-unmerged, S*-HS, and S*-MM, against two conven-
tional solvers, the primal-dual (or S*-BS) and the naive
Kruskal’s approach5. Each of the algorithms was evaluated
on five separate 8-neighbor type grid maps, obtained via
the MAPF benchmark library. These maps (see Table 1)
were chosen based on the shape of the obstacles (maze or
randomized) or their absence. Within each map, a vary-
ing number of terminals (N = 10, 20, 30, 40, 50) was ran-
domly generated and placed. For each map and N , 10 prob-
lem instances were generated. Comparisons were also made
with respect to factors such as merging, reprioritization, and
heuristic strengths. Due to space constraints, we first present
the results for the “den312d” map in the MAPF library with
and without the re-prioritization steps; later, in Table 1, we
present results for all the maps for a fixed number of termi-
nals with no re-prioritization.
Heuristics via landmarks: Each map was pre-processed to
provide a fast look-up table for heuristic lower-bound esti-
mates between any pair of nodes in the map. Each of these

5Here, we implement the approach described in the Background
and Preliminaries section. First, we compute the least-cost paths
between any pair of terminals to find the metric completion. Then
use Kruskal’s algorithm to find a MST for the metric completion.

heuristic estimates was then scaled by a weighting factor
w to understand its impact on the overall performance of
the algorithms. For small maps, heuristic estimates were
obtained by computing the least-costs between any pair of
nodes in the map using Dijkstra’s algorithm. However, for
moderately-sized maps, estimates were obtained using the
ALT method (Goldberg and Harrelson 2005) in combination
with the octile distance. To implement the ALT method, one
hundred “landmarks” were randomly chosen throughout the
maps such that the landmarks were “border nodes” in the
graph (with node degree < 8). Dijkstra’s algorithm was then
used to find the least-cost from each landmark to the remain-
ing nodes in the map; these least-costs were in turn used to
compute a lower bound on the least-cost between any pair
of nodes in the map.

Comparisons Based on Expanded Nodes and Time
Fig. 3 shows the average number of expanded nodes and
computational time (in secs) as a function of the num-
ber of terminals for all the algorithms. The weighting fac-
tor w for the heuristics in these results was set to 1. The
three heuristic-based algorithms (S*-unmerged, S*-HS,
and S*-MM), expanded fewer nodes on average than the
conventional solvers which did not use any heuristic infor-
mation. The merged algorithms (S*-HS, S*-MM) outper-
formed the others in terms of expanded nodes. This trend
was consistent across all maps and weighting factors (see
Table 1). On the other hand, with respect to average compu-
tation times, the primal-dual algorithm (S*-BS) was com-
petitive in comparison to the other merged versions and
S*-unmerged on the tested instances (this can also be ob-
served in Table 1). These runtimes were also dependent on
whether the re-prioritization steps (both in S*-unmerged
and S*-merged) were switched on or off. This will be ex-
amined in the next subsection.

Impact of Re-prioritization
The results in Fig. 3 show that the number of ex-
panded nodes, on average, reduced by nearly 50% with re-
prioritization for algorithms (S*-unmerged, S*-HS, and
S*-MM) at the expense of some additional computation time;
these reductions also become more pronounced as the num-
ber of terminals increased. While re-prioritization did not
significantly affect the computation times, the trends show
that this will be a factor for a larger number of terminals.
This overhead is likely linked to the data structures used for
the open sets in the algorithms. Presently, each open-set is
implemented using a binary heap based priority queue. More
efficient data structures will be investigated in future work.

Impact of Quality of Heuristics
Results are reported here for problem instances with 50 ter-
minals. Fig. 4 shows the average number of expanded nodes
and computational times for each algorithm as a function of
the weighting factor (w) used for the heuristics. w = 0 is
equivalent to using no heuristic estimates and w = 1 corre-
sponds to using the best possible estimates (computed using
the landmark based algorithms described earlier). In gen-
eral, we observed that S*-MM expanded the least number of

90



10 20 30 40 50

Terminals (N)

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

A
v
g.

N
o.

of
E

x
p

an
d

ed
N

o
d

es

Re-prioritization on, w = 1

Expanded:

Time:

S*-unmerged S*-HS S*-BS S*-MM

10 20 30 40 50

Terminals (N)

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

A
v
g.

N
o.

of
E

x
p

an
d

ed
N

o
d

es

Re-prioritization off, w = 1

0

1

2

3

A
v
g.

T
im

e
(s

ec
s)

0

1

2

3

A
v
g.

T
im

e
(s

ec
s)

Figure 3: “den312d” map: Average number of expanded nodes and computational times as a function of number of terminals
and re-prioritization. w is fixed at 1. For these instances, Naive Kruskal expands between 22005− 119805 nodes with runtimes
in 4.01− 21.27 secs as N varies from 10 to 50 terminals.

0.0 0.25 0.5 0.75 1

Heuristic Weight (w)

0

2500

5000

7500

10000

12500

15000

17500

20000

22500

A
v
g.

N
o.

of
E

x
p

an
d

ed
N

o
d

es

Re-prioritization on, N = 50

Expanded:

Time:

S*-unmerged S*-HS S*-BS S*-MM

0.0 0.25 0.5 0.75 1

Heuristic Weight (w)

0

2500

5000

7500

10000

12500

15000

17500

20000

22500

A
v
g.

N
o.

of
E

x
p

an
d

ed
N

o
d

es

Re-prioritization off, N = 50

0

2

4

6

8

10

12

14

16

18

A
v
g.

T
im

e
(s

ec
s)

0

2

4

6

8

10

12

14

16

18

A
v
g.

T
im

e
(s

ec
s)

Figure 4: “den312d” map: Average number of expanded nodes and computation times as a function of heuristic strength and
re-prioritization. N is fixed at 50.

nodes with lower computational times compared to all the
other algorithms (this can also be inferred in Table 1). While
the algorithms (S*-unmerged, S*-HS, and S*-MM) ex-
panded significantly a fewer number of nodes in comparison

to S*-BS when w = 1 (particularly when re-prioritization
is turned on), S*-BS performed better than other algorithms
when w = 0.

There are also subtle differences between the two merged

91



Map Algorithm
Avg. No. of Expanded Nodes (Avg. runtime in secs)

w = 0 w = 0.25 w = 0.50 w = 0.75 w = 1

0 64
0

80
den312d Kruskal 119805 (21.29) 119805 (21.26) 119805 (21.26) 119805 (21.26) 119805 (21.26)

S*-unmerged 21334.6 (14.80) 11064.8 (7.89) 7269.6 (5.66) 5019.7 (21.26) 2444.9 (2.07)
S*-HS 4635.2 (4.32) 4139.7 (3.82) 3412.2 (3.37) 2723.2 (2.60) 1221.0 (1.26)
S*-BS 2262.6 (1.68) 2262.6 (1.69) 2262.6 (1.69) 2262.6 (1.67) 2262.6 (1.68)
S*-MM 2262.6 (2.32) 2310.6 (2.33) 2223.8 (2.35) 1906.7 (1.93) 1227.6 (1.25)

0 31
0

31
empty-32-32 Kruskal 50176 (9.08) 50176 (9.08) 50176 (9.08) 50176 (9.08) 50176 (9.08)

S*-unmerged 6201.6 (4.52) 4022.6 (3.01) 2805.6 (2.27) 2026.6 (1.69) 1159.2 (1.05)
S*-HS 1881.8 (1.84) 1657.4 (1.62) 1231.2 (1.28) 939.9 (0.99) 489.2 (0.55)
S*-BS 702.0 (0.55) 702.0 (0.57) 702.0 (0.56) 702.0 (0.55) 702.0 (0.56)
S*-MM 702.0 (0.78) 714.2 (0.80) 776.4 (0.85) 702.3 (0.78) 492.4 (0.54)

0 31
0

31
maze-32-32-4 Kruskal 38710 (6.70) 38710 (6.70) 38710 (6.70) 38710 (6.70) 38710 (6.70)

S*-unmerged 8808.8 (6.17) 4740.3 (3.38) 3178 (2.40) 2361.8 (1.84) 1751.9 (1.44)
S*-HS 1461.7 (1.39) 1379.7 (1.32) 1138.3 (1.14) 980.7 (0.97) 584.3 (0.59)
S*-BS 768.9 (0.58) 768.9 (0.58) 768.9 (0.58) 768.9 0.58) 768.9 (0.59)
S*-MM 768.9 (0.79) 775.8 (0.80) 759.8 (0.80) 710.3 (0.73) 583.0 (0.59)

0 106
0

46
orz601d

Kruskal 92610 (16.48) 92610 (16.48) 92610 (16.48) 92610 (16.48) 92610 (16.48)
S*-unmerged 14639.7 (10.42) 8503.5 (6.26) 5745.9 (4.54) 3828.9 (3.10) 1994.1 (1.76)
S*-HS 3569.2 (3.35) 3152.9 (2.99) 2515.6 (2.54) 1949.4 (1.96) 927.3 (0.99)
S*-BS 1672.7 (1.25) 1672.7 (1.25) 1672.7 (1.26) 1672.7 (1.24) 1672.7 (1.26)
S*-MM 1672.7 (1.68) 1723.5 (1.74) 1684.3 (1.26) 1424.9 (1.48) 931.7 (0.97)

0 63
0

63
random-64-64-10 Kruskal 180663 (31.31) 180663 (31.31) 180663 (31.31) 180663 (31.31) 180663 (31.31)

S*-unmerged 24270.9 (17.41) 12976.3 (9.57) 8055.3 (6.36) 4951.1 (2.25) 1981 (1.78)
S*-HS 6869.7 (6.45) 5779.4 (5.49) 4366.9 (4.38) 2981.1 (3.01) 1111.3 (1.25)
S*-BS 2792.7 (2.07) 2792.7 (2.08) 2792.7 (2.10) 2792.7 (2.09) 2792.7 (2.09)
S*-MM 2792.7 (2.87) 2899.5 (3.03) 2794.2 (2.97) 2171.2 (2.25) 1137.2 (1.24)

Table 1: Summary of results for N = 50 terminals and varying heuristic weights with no re-prioritization.

Map Min Avg Max

den312d 1.780 1.872 1.966
empty-32-32 1.788 1.900 1.976
maze-32-32-4 1.680 1.846 1.977

orz601d 1.693 1.835 1.962
random-64-64-10 1.815 1.882 1.939

Table 2: Minimum, average and maximum a-posteriori
guarantees obtained for all the test instances.

heuristic-based algorithms. Figure 4 shows that using
stronger heuristics have a greater effect on S*-HS than with
S*-MM. This is because in general, we observe that MM con-
firms paths more aggressively than HS especially for less ac-
curate heuristics. When w = 0, S*-MM behaves identically
to S*-BS, and outperforms S*-HS. When w = 1, the per-
formance of both S*-HS and S*-MM are quite similar.

A-posteriori Guarantees of Proposed Algorithms
The quality of the solutions obtained by any of the pro-
posed algorithms for MGPF can be inferred by computing
the a-posteriori guarantee, i.e., for a given instance, the a-
posteriori guarantee is defined as the ratio of the cost of

the feasible solution obtained by an algorithm and a lower
bound to the optimal cost. The minimum, average and max-
imum a-posteriori guarantees obtained for the tested in-
stances is shown in Table 2. These guarantees are generally
lower than the approximation ratio which is a (worst-case)
theoretical bound for any instance of the problem. A feasi-
ble path is constructed by following the procedure in Fig. 1.
The lower bound to the optimal cost used here is simply the
cost of the Steiner tree obtained using any of the proposed
algorithms.

Conclusions

In this article, a framework called S∗ was presented for de-
veloping a suite of efficient 2-approximation algorithms for
MGPF. Additionally, numerical results were also presented
to compare the algorithms from the proposed framework
with the conventional solvers in terms of the number of
expanded nodes and computation time. Overall, the results
show that the version of the proposed framework which uses
the MM algorithm (Holte et al. 2017) performed the best.
Future work can explore decentralized implementations and
alternate data structures for faster implementations of S∗.

92



Acknowledgements
This material is based upon work supported by the Air Force
Office of Scientific Research under award number FA9550-
20-1-0080, and the Army Research Office under Cooper-
ative Agreement Number W911NF-19-2-0243. The views
and conclusions contained in this document are those of
the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the Air
Force Office, Army Research Office or the U.S. Govern-
ment. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding
any copyright notation herein.

References
Agrawal, A.; Klein, P.; and Ravi, R. 1995. When trees col-
lide: an approximation algorithm for the generalized Steiner
problem on networks. SIAM J. Comput. 24(3): 440–456.

Barker, J. K.; and Korf, R. E. 2015. Limitations of Front-to-
End Bidirectional Heuristic Search. In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence,
AAAI’15, 10861092. AAAI Press. ISBN 0262511290.

Chen, J.; Holte, R. C.; Zilles, S.; and Sturtevant, N. R.
2017. Front-to-End Bidirectional Heuristic Search with
Near-Optimal Node Expansions. In Proceedings of the
Twenty-Sixth International Joint Conference on Artificial In-
telligence, IJCAI-17, 489–495.

Chour, K.; Rathinam, S.; and Ravi, R. 2021. S∗: A Heuris-
tic Information-Based Approximation Framework for Multi-
Goal Path Finding. arXiv 2103.08155.

De Champeaux, D. 1983. Bidirectional Heuristic Search
Again. J. ACM 30(1): 2232.

Dijkstra, E. W. 1959. A note on two problems in connexion
with graphs. Numerische mathematik 1(1): 269–271.

Eckerle, J. 1994. An optimal bidirectional search algorithm.
In Nebel, B.; and Dreschler-Fischer, L., eds., KI-94: Ad-
vances in Artificial Intelligence, 394–394. Berlin, Heidel-
berg: Springer Berlin Heidelberg. ISBN 978-3-540-48979-
5.

Goemans, M. X.; and Williamson, D. P. 1997. The primal-
dual method for approximation algorithms and its applica-
tion to network design problems. Approximation algorithms
for NP-hard problems 144–191.

Goldberg, A. V.; and Harrelson, C. 2005. Computing the
shortest path: A search meets graph theory. In SODA, vol-
ume 5, 156–165.

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
netics SSC-4(2): 100–107.

Holte, R. C.; Felner, A.; Sharon, G.; Sturtevant, N. R.; and
Chen, J. 2017. MM: A bidirectional search algorithm that
is guaranteed to meet in the middle. Artificial Intelligence
252: 232 – 266.

Kaindl, H.; and Kainz, G. 1997. Bidirectional Heuristic
Search Reconsidered. J. Artif. Int. Res. 7(1): 283317. ISSN
1076-9757.
Karp, R. M. 1972. Reducibility among combinatorial prob-
lems. In Complexity of computer computations (Proc. Sym-
pos., IBM Thomas J. Watson Res. Center, Yorktown Heights,
N.Y., 1972), 85–103.
Kou, L.; Markowsky, G.; and Berman, L. 1981. A fast algo-
rithm for Steiner trees. Acta Informatica 15(2): 141–145.
Kruskal, J. B. 1956. On the Shortest Spanning Subtree of a
Graph and the Traveling Salesman Problem. Proceedings of
the American Mathematical Society 7(1): 48–50.
Kwa, J. B. 1989. BS∗: An admissible bidirectional staged
heuristic search algorithm. Artificial Intelligence 38(1): 95
– 109. ISSN 0004-3702.
Lawler, E. L. 2001. Combinatorial optimization: networks
and matroids. Dover Pubns. ISBN 0486414531.
Macharet, D. G.; and Campos, M. F. M. 2018. A survey
on routing problems and robotic systems. Robotica 36(12):
17811803. doi:10.1017/S0263574718000735.
Mehlhorn, K. 1988. A faster approximation algorithm for
the Steiner problem in graphs. Information Processing Let-
ters 27(3): 125–128.
Nicholson, T. A. J. 1966. Finding the Shortest Route be-
tween Two Points in a Network. The Computer Journal 9(3):
275–280.
Otto, A.; Agatz, N.; Campbell, J.; Golden, B.; and Pesch,
E. 2018. Optimization approaches for civil applications of
unmanned aerial vehicles (UAVs) or aerial drones: A survey.
Networks 72(4): 411–458.
Pohl, I. 1969. Bidirectional and heuristic search in path
problems. Technical Report 104, Stanford Linear Accelera-
tor Center .
Ravi, R. 1994. A primal-dual approximation algorithm for
the Steiner forest problem. Information Processing Letters
50(4): 185–189.
Rodriguez-Pereira, J.; Fernandez, E.; Laporte, G.; Benavent,
E.; and Martinez-Sykora, A. 2019. The Steiner Traveling
Salesman Problem and its extensions. European Journal of
Operational Research 278(2): 615 – 628.
Stern, R.; Sturtevant, N.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T.; et al.
2019. Multi-Agent Pathfinding: Definitions, Variants, and
Benchmarks. arXiv preprint arXiv:1906.08291 .
Sturtevant, N. R.; and Felner, A. 2018. A Brief History
and Recent Achievements in Bidirectional Search. In AAAI,
8000–8007.

93


