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Figure 1: Top: Execution of a plan in a reduced-order planar
biped domain. Colored traces show the past locations of the
body and feet. Bottom: Full-order simulation of Cassie, a
blind-walking robot, in an obstacle-filled environment.

Abstract

Recent progress in legged locomotion research has produced
robots that can perform agile blind-walking with robustness
comparable to a blindfolded human. However, this walking
approach has not yet been integrated with planners for high-
level activities. In this paper, we take a step towards high-level
task planning for these robots by studying a planar simulated
biped that captures their essential dynamics. We investigate
variants of Monte-Carlo Tree Search (MCTS) for selecting an
appropriate blind-walking controller at each decision cycle.
In particular, we consider UCT with an intelligently selected
rollout policy, which is shown to be capable of guiding the
biped through treacherous terrain. In addition, we develop a
new MCTS variant, called Monte-Carlo Discrepancy Search
(MCDS), which is shown to make more effective use of lim-
ited planning time than UCT for this domain. We demonstrate
the effectiveness of these planners in both deterministic and
stochastic environments across a range of algorithm parame-
ters. In addition, we present results for using these planners to
control a full-order 3D simulation of Cassie, an agile bipedal
robot, through complex terrain.
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Introduction

Legged robots have the potential to traverse complex terrain
that fundamentally limits other forms of terrestrial robot lo-
comotion. Unfortunately, motion planning for legged robots
is complicated by unstable underactuated dynamics, high
dimensionality, and uncertain ground contact. Many different
approaches have been tried to make this problem tractable.
This paper explores a combination of robust blind-walking
controllers and Monte-Carlo planning as a novel and com-
pelling approach to agile legged locomotion.

A legged robot that moves around using only propriocep-
tive feedback about the world can be said to be blind-walking.
This level of capability is equivalent to a blindfolded hu-
man, who can be adept at recovering if they stumble but will
haplessly wander into a wall or step into a hole if allowed
to do so. Early examples of robots that could competently
blind-walk can be found in (Raibert 1986). More recently,
the robot ATRIAS used a compliant-gait control approach
to demonstrate robust and agile blind-walking that could be
compared favorably with human performance (Hubicki et
al. 2017). ATRIAS was shown to walk and run over rough
outdoor terrain and take large kicks without falling, and had
an interface through which an operator could adjust its gait
to pilot it around obstacles.

The emergence of agile blind-walking robots that are pi-
lotable by humans raises the possibility that they could by pi-
loted by some planning algorithm. We identify Monte-Carlo
planners as a promising class of candidate planners for this
application (Browne et al. 2012). They place few require-
ments on the system to be controlled beyond the existence of
a simulator. Simulation of legged systems has been consid-
ered difficult because of the complexity of contact dynamics,
but work with ATRIAS showed that a compliant gait made
it possible to match real behavior with a simple and generic
ground model (Hubicki et al. 2017).

Monte-Carlo planners are able to find good plans with
sparse sampling, which will be necessary for tractable real-
time motion planning. However, they still choke on domains
with very large action spaces that require deep planning hori-
zons, which makes them a poor choice for controlling robots
at the joint torque level. In this paper, we show that using a
blind-walking controller below the planner allows the action
space and decision complexity to be greatly reduced while
still allowing for agile movement.



Competing approaches for achieving agile legged loco-
motion include whole-body planning and control archi-
tectures like those used in the DARPA Robotics Chal-
lenge Finals (Kuindersma et al. 2015; Feng et al. 2015;
Johnson et al. 2017). These methods use reduced-order mod-
els of the robot in its environment to generate realistic control
targets for sophisticated optimization-based movement con-
trollers. They excel at performing general movement and
manipulation tasks, but computational and sensory limita-
tions have thus far kept them from displaying the agility and
robustness seen in blind-walking robots like ATRIAS.

Another approach to agile locomotion is to forgo planning
entirely and rely on trained deep networks to make smart
decisions. This was seen in (Peng et al. 2017) and (Heess et al.
2017) for humanoid models, but has not been demonstrated
on robot hardware or a realistic simulation of a physical robot.
We anticipate that future agile robots may use learned feed-
forward policies to accelerate decision making even when a
planner is used to provide accountability.

Blind-walking robots are in need of guidance to help them
avoid obstacles that cannot be handled by brute force and ro-
bust recovery. Conversely, Monte-Carlo planners are in need
of a way to greatly reduce the dimensionality of controlling a
complex robot. In this paper, we show that combining these
elements produces a control architecture capable of agile
movement through treacherous environments. We present
an adaptation of a standard Monte-Carlo Tree Search for
the robust blind-walking robot domain. We also present a
novel type of Monte-Carlo planner, Monte-Carlo Discrep-
ancy Search (MCDS), and demonstrate its performance in
real-time scenarios with severely limited planning time. We
test our algorithms both on a simplified planar biped domain
and on a full-order 3D simulation of Cassie, a successor to
the blind-walking robot ATRIAS (Figure 1). A supplemental
video shows footage from ATRIAS and examples of MCDS
in action on both the planar and 3D domains.

Blind-walking as a Planning Domain

In this section, we discuss how robotic walking using blind-
walking controllers is translated into a format that Monte-
Carlo planners can operate on. We examine two robot models
of varying complexity. Most of our experiments use a planar
model of a reduced-order biped, but we also demonstrate our
planners on a full-order model of Cassie, a blind-walking
robot. The parameters of the planar model, such as leg length
and body mass, are chosen to resemble Cassie.

States. State is represented by the position, velocity, and
orientation of the base of the robot, along with the robot’s
internal joint positions and velocities. Both robots have series
compliance in the legs, which adds an additional position and
velocity to the state for each relevant axis. Terminal states
are reached when the robot is no longer upright and able
to take steps. In our tests, we defined limits for the robot’s
orientation and height above the ground beyond which a state
is considered terminal.

Dynamics. The reduced-order biped is still complex
enough that its dynamics are not closed-form, so it is sim-
ulated numerically using a fixed-step fourth-order integra-
tor and a smooth spring-damper ground contact model. The
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model includes body mass and inertia, foot mass, and spring-
dampers in series with leg length and angle actuators. The
full-order simulation of Cassie uses MuJoCo (Todorov, Erez,
and Tassa 2012) as its physics engine, with modeling param-
eters provided by the robot’s manufacturer, Agility Robotics.
For tests involving a stochastic model, Gaussian noise is
added to state velocities before running the simulator. This
is equivalent to random impulsive forces acting on the robot
and propagating through its dynamics.

Actions. Both the reduced- and full-order robot models
have had robust blind-walking controllers developed for them.
These controllers follow principles developed for the robot
ATRIAS (Hubicki et al. 2017), combining a feed-forward
clock-driven gait cycle with feedback on body velocity for
choosing stabilizing footstep targets. These controllers have
a number of parameters affecting the resulting gait, such as
target speed, step height, and jump height. The controller
for the reduced-order biped has five real-valued parameters.
The controller that we have for the full-order model is more
limited in the behaviors it can perform, and has four real-
valued parameters.

Rewards. Planning the actions of a blind-walking robot is
meant to give them some environmental awareness, allowing
them to avoid obstacles that would otherwise trip them. A
typical planning goal would be to make progress in a desired
direction without falling, rather than to reach a specific state.
To implement this type of goal, we designed reward functions,
operating over complete plans rather than individual states,
with the following terms:

e A reward for approximately matching the goal velocity
e A penalty for pitching the body wildly
e A large penalty for reaching a terminal state

e A penalty for shorter plans before reaching terminal states

Monte-Carlo Planning

We use Monte-Carlo planning to choose actions for a blind-
walking robot that allow it to move through difficult terrain
without falling. We begin with some of the details of using
a Monte-Carlo planner on this domain, then present an ap-
plication of UCT, a standard Monte-Carlo Tree Search. We
also present MCDS, a new type of planner that exhibits better
performance with limited planning time in this domain.

Domain Instantiation for Monte-Carlo Planners

Action Space. The actions considered by the Monte-Carlo
planners will correspond to selecting parameter values for
the blind-walking controller and letting the controller exe-
cute for a short period of time using those parameters. Thus,
the naive action space is continuous and multi-dimensional,
which is difficult to integrate directly into standard Monte-
Carlo planners, which expect discrete action spaces. Thus,
we defined a discrete set of actions by identifying a small
set of parameter values (six for the planar biped, seven for
the full robot) that cover the most common types of behavior.
These actions represent behaviors like walking forward, tak-
ing shorter or longer steps than usual, jumping, sidestepping,
and turning. Using these actions, it is always possible find a



plan for traversing the terrain considered in this work if given
enough planning time.

Rollout Policy. Monte-Carlo planning relies on perform-
ing rollouts to estimate the expected values of decisions.
Randomly selecting actions is a common rollout policy, but
doing so in this domain interferes with the self-stabilizing
properties of blind-walking control, and will often cause the
robot to fall over on flat ground. Instead, a better rollout
policy for this domain is to repeat the previous action until
the horizon or a terminal state is reached. Note that for the
action space of this paper, this rollout policy corresponds to
the continued execution of the blind-walking controller at a
fixed set of parameter values.

Decision Cycles. To discretize the domain in time, we
defined a consistent decision cycle of 0.3 seconds. The robot
executes a particular action for one decision cycle, meanwhile
planning the next action. We found a constant time more
effective than tying actions to the gait cycle, and that this
value balanced permitting frequent action changes against
giving each action a sufficient amount of planning time.

Planning Horizon. A planning horizon equivalent to sev-
eral steps is useful in this domain because there is a minimal
number of steps needed for an underactuated walker to arbi-
trarily change speed and direction (Zaytsev, Hasaneini, and
Ruina 2015), but in realistic scenarios stochasticity makes
predicting far into the future useless. Humans look three steps
ahead while walking in challenging terrain (Matthis and Fa-
jen 2014). We found that a horizon of 3 seconds was broadly
effective in the planar domain, but that longer horizons per-
formed better for the full-order robot.

Simulation Time. Even in the reduced-order domain,
planning is computationally limited by simulation speed. The
maximum real-time simulation rate achievable for the full-
order Cassie model on mobile hardware is approximately
100x real-time. This translates to allowing the planner to
simulate a total of 30 seconds of real time during each deci-
sion cycle (of 0.3 seconds each). Unless otherwise specified,
we restrict planning to this amount of simulated time to eval-
uate the real-time planning performance.

Planning Algorithms

UCT. We use UCT (Kocsis and Szepesvari 2006) as a bench-
mark Monte-Carlo Tree Search algorithm. UCT is a rollout-
oriented planner that uses the UCB1 bandit criterion to
choose where to expand the tree. The results of rollouts are
used to refine value estimates for actions at the root of the
tree. In our instantiation, rollouts continue to a fixed horizon
or until a terminal state is reached, and the plan starting from
the root is evaluated with our reward function and backprop-
agated. As simulation is a more significant bottleneck than
memory in this domain, rollouts are saved in the tree. The ex-
ploration parameter C), used in UCB1 was chosen by testing
across a wide range, but was found to have little impact on
performance in the real-time decision-making setting. This
is because, in the real-time setting, each decision cycle only
allows approximately 10 rollouts per decision cycle. With
six actions to choose from, this generally corresponds to first
trying each action at the root of the tree, followed by rolling
out that action until the horizon. Next, a small number of
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Figure 2: A sequence of search trees generated by MCDS.
The leftmost tree is the result of the initial policy rollout.
Each subsequent tree adds a discrepancy.

rollouts are executed using the UCBI1 rule to expand untried
choices at the second level of the tree.

In an online planning context, it is useful to reuse results
from the previous decision cycle to warm-start the planning
process. For UCT, this can be done by re-rooting the tree
at the child of the root that was previously chosen. Some
nodes in this subtree will already have value estimates, which
can be refined with further rollouts. However, in the domains
explored in this paper, re-rooting UCT has no observable
benefit because the limited simulation time allowed means
that there are very few value estimates for children of the
chosen action. Because of this, the results presented in the
results section reflect UCT without re-rooting the tree to
warm-start the search.

MCDS. We designed Monte-Carlo Discrepancy Search
(MCDS) to address some of the shortcomings of UCT and
similar planners that we encountered in this domain. Namely,
UCT does not make effective use of results from previous
decision cycles to warm-start its search, and it makes few
decisions using UCB1 when given severely limited planning
time, making it little better than trying a single rollout from
each of the actions available at the root.

In contrast to planners like UCT that estimate values of
root actions, MCDS is oriented around finding and main-
taining a current best path out to a receding horizon across
iterations of re-planning. This path may be invalidated as
the horizon recedes or by stochasticity, necessitating addi-
tional searching, but if this happens infrequently, planning
costs can be amortized over multiple decision cycles. MCDS
searches among discrepancies from its initial plan, and when
the planner terminates at the end of a cycle it chooses the
highest-scoring plan that it found.

Our implementation of MCDS begins a decision cycle with
a tree rooted at the state predicted to result from the action
being executed by the robot. The first rollout it performs fol-
lows the actions along the best plan identified in the previous
cycle, with an additional action selected at the end using the
rollout policy 7 due to the receding horizon. When a rollout
completes, by reaching the horizon or a terminal state, a dis-
crepancy generator A chooses a node in the tree to branch
from and a new action to try as the start of a rollout, as shown
in Figure 2. For our experiments, we select this node by first
randomly selecting a depth, then choosing uniformly among
all nodes at this depth. The action is selected randomly from
among the actions that have not been tested from this node.

When the planning time runs out, MCDS evaluates each
of the plans represented by leaf nodes in the planning tree



with our reward function and returns the first action along the
highest value plan, saving the remaining actions in the plan
as the seed for the next decision cycle.

Comparison of MCDS and UCT. MCDS compared to
UCT makes better use of limited planning time in our blind-
walking domain. The biggest difference is that UCT essen-
tially conducts a breadth first expansion of the search tree.
That is, UCT will always try all actions available from a deci-
sion node at least once before enumerating the action choices
of the node’s children. Thus, even if UCT uses a warm-start
and initializes the next decision cycle with the best trajectory
(or sub-tree) found in the previous cycle, UCT will focus on
trying all actions at the root that were not in the warm-start
trajectory. The remaining simulation time will then be spent
enumerating and rolling out all depth-two action choices
under the root.

This focus on “searching at the top” by UCT has been ob-
served to be fairly unproductive in our blind-walking domain
with limited decision time. In particular, searching at the top
of the tree corresponds to very frequent switching (every 0.3
seconds) between parameters of the blind-walking controller,
which usually is not required or desirable. Rather, switching
between control parameters is more important when the robot
enters a qualitatively different type of terrain or dynamic state.
This is the main motivation for allowing MCDS to introduce
anew discrepancy at any depth of a trajectory currently in the
tree. MCDS is effectively searching over possible switching
points for control parameters. While this selection of switch-
ing points is currently random, we believe that future work
that incorporates learning to inform these decisions will be
able to dramatically improve the efficiency of the search.

Experimental Results

The effects of horizon length and planning time were ex-
amined for both UCT and MCDS on the reduced-order pla-
nar biped domain. All tests use a deterministic version of
the model during the planning phase, but some tests use a
stochastic model for advancing the state of the robot, showing
how re-planning after each decision cycle affects algorithm
performance in the event of an imperfect model. We also
show that these planners can be used successfully without
modification on a full-order robot simulation. A supplemental
video shows test runs of MCDS controlling both the reduced-
and full-order robot models.

Terrain. Blind-walking controllers can be very robust to
rough terrain, but can not natively avoid stepping in holes or
tripping on steps. To test how our planners provide these ca-
pabilities, we generated randomized terrain consisting of plat-
forms of varying height with gaps between them. Height dif-
ferences between adjacent platforms range between £0.1m,
platform width ranges from 0.3—1 m, and gap width is be-
tween 0.1-0.2 m. For tests with the full-order model, we set
up a course with regularly spaced barriers that the robot has
to weave through.

Stochasticity. Stochasticity in legged locomotion can take
the form of constant noise from ground height and stiffness
variations as well as large, infrequent disturbances like a
foot slipping or the robot being pushed. The latter type of
disturbance is handled well by blind-walking control alone,
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Figure 3: Success rate (solid blue) and velocity error (dashed
red) for varying planning horizons with fixed simulation time.
UCT on left, MCDS on right, deterministic simulation on
top, stochastic simulation on bottom.

so this paper examines the former’s impact on deterministic
planning. Constant noise is modeled by adding a small ran-
dom impulse to the robot’s velocity at the beginning of each
simulator call. The magnitude of the impulse is scaled such
that longer plans are frequently invalidated, but the robot is
not thrown irrecoverably towards a fall.

Metrics. For each configuration of planner and domain,
several hundred trials were run in which the biped was di-
rected to walk over randomly generated terrain for 30 seconds
or until falling. The results are compiled into the percentage
of trials that do not fall before the end of the run (success
rate) and the root-mean-square velocity error averaged over
the successful trials (velocity error). Plots show 95% confi-
dence intervals. Real-world usage will generally prioritize a
high success rate over low velocity error.

Varying Horizon. Figure 3 shows results from tests in
which the planning horizon was varied for a fixed amount of
planning time. Longer horizons have an increased ability to
identify upcoming terminal states, but create sparser trees that
sample fewer possible action sequences. We see that the suc-
cess rate increases with horizon length but reaches a plateau
after about two seconds, while velocity error increases with
horizon length. MCDS outperforms UCT in terms of veloc-
ity error in all cases, and has a slightly better success rate
with short horizons. Tests using a stochastic model show a
reduced success rate compared to the deterministic case, but
equivalent velocity error.

Varying Planning Time. Figure 4 shows results from
varying the planning time available during each decision
cycle. To separate the effects of stochasticity from those of
plan quality on our metrics, these tests used only a determin-
istic model. MCDS has a notably better success rate than
UCT with small planning budgets, and continues the trend of
lower velocity error in all tests.

Full-order Model. Finally, UCT and MCDS were used
to guide a full-order 3D model of Cassie through a grid of
obstacles. The algorithm parameters were kept the same,
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Figure 4: Success rate (solid blue) and velocity error (dashed
red) for varying amounts of simulated time allowed per de-
cision cycle. UCT on left, MCDS on right. Both cases use a
deterministic simulator.
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Figure 5: Results from the full-order robot model. Success
rate (solid blue) and velocity error (dashed red) for varying
planning horizons with fixed simulation time. UCT on left,
MCDS on right.

including the simulated time budget of 30 seconds per 0.3
second decision cycle. Figure 5 shows results for different
planning horizons. We found that increasing the planning
horizon beyond three seconds greatly improved MCDS’ suc-
cess rate, and that MCDS significantly outperformed UCT
on this domain. With a fixed planning time budget, MCDS
reached near-100% success with a horizon of 4.5 seconds,
while UCT’s performance peaked near 50% at a 7.5 second
horizon, requiring more planning time to reach a comparable
success rate to MCDS.

Conclusions and Future Work

This paper presents an example and a strong argument for a
control hierarchy that combines a self-stable blind-walking
controller at the base level with a fast Monte-Carlo planner
that guides it through and around obstacles. Despite having a
very small action space, a planning rate of about 3 Hz, and a
realistic planning time budget, our MCDS planner was able
to reach a nearly 100% success rate on the planar domain and
a 95% success rate on the full-order domain.

Future work will look towards a more comprehensive treat-
ment of stochasticity. MCDS as described in this paper is
appropriate for deterministic domains, but we show that it
achieves passable performance on our stochastic domain
through a combination of frequent re-planning and the self-
stability of the underlying blind-walking controllers. With
explicit consideration of stochasticity, MCDS may be suit-
able for a broader range of domains, such as blind-walking
with underlying controllers that are less self-stable.

Elaborations of MCDS as applied to the blind-walking
domain will investigate more sophisticated versions of the
discrepancy generator used to start new rollouts. The ex-
periments in this paper show reasonable performance with

450

random selection of nodes and actions, but MCDS may be
able to find good plans in even less time if learning is used to
make informed decisions about where to introduce a discrep-
ancy and which actions to sample.
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