
Handling Model Uncertainty and Multiplicity
in Explanations via Model Reconciliation

Sarath Sreedharan, Tathagata Chakraborti, Subbarao Kambhampati
Arizona State University, Tempe, AZ 85281 USA

{ ssreedh3, tchakra2, rao } @ asu.edu

Abstract

Model reconciliation has been proposed as a way for an agent
to explain its decisions to a human who may have a different
understanding of the same planning problem by explaining
its decisions in terms of these model differences. However,
often the human’s mental model (and hence the difference) is
not known precisely and such explanations cannot be readily
computed. In this paper, we show how the explanation gen-
eration process evolves in the presence of such model uncer-
tainty or incompleteness by generating conformant explana-
tions that are applicable to a set of possible models. We also
show how such explanations can contain superfluous infor-
mation and how such redundancies can be reduced using con-
ditional explanations to iterate with the human to attain com-
mon ground. Finally, we will introduce an anytime version of
this approach and empirically demonstrate the trade-offs in-
volved in the different forms of explanations in terms of the
computational overhead for the agent and the communication
overhead for the human. We illustrate these concepts in three
well-known planning domains as well as in a demonstration
on a robot involved in a typical search and reconnaissance
scenario with an external human supervisor.

In (Chakraborti et al. 2017) we looked at how a robot can ex-
plain its decisions to a human in the loop who might have a
different understanding of the same problem (either in terms
of the agent’s knowledge or intentions, or in terms of its ca-
pabilities). These explanations are intended to bring the hu-
man’s mental model closer to the robot’s estimation of the
ground truth – this is referred to as the model reconcilia-
tion process, by the end of which a plan that is optimal in
the robot’s model is also estimated to be optimal in the hu-
man’s updated mental model. It was also shown how this
process can be achieved successfully while transferring the
minimum number of model updates possible via what are
called minimally complete explanations or MCEs.

Explanations of this form have been inspired by works
like (Lombrozo 2006; 2012; Miller 2017) which iden-
tify properties of explanations in terms of selectivity, con-
trastiveness and mental modeling of the explainee, and our
recent work (Chakraborti et al. 2018) also demonstrated the
usefulness of such explanations. Such techniques can thus be
essential contributors to the dynamics of trust and teamwork
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in human-agent collaborations by significantly lowering the
communication overhead between agents while at the same
time providing the right amount of information to keep the
agents on the same page with respect to their understanding
of each others’ beliefs, intentions and capabilities – thereby
reducing the cognitive burden on the human teammates and
increasing their situational awareness.

This process of model reconciliation is illustrated in Fig-
ure 1. The robot’s model, which is its estimate of the ground
truth, is represented by MR (note: “model” of a planning
problem includes the state and goals information as well as
the domain or action model) and π∗

MR is the optimal plan
in it. A human H who is interacting with it may have a dif-
ferent model MR

h of the same planning problem, and the
optimal plan π∗

MR
h

in the human’s model can diverge from
that of the robot’s leading to the robot needing to explain its
decision to the human. As explained above, an explanation
is an update or correction to the human’s mental model to
a new intermediate model M̂R

h where (according to cost or
some other suitable measure of similarity) the optimal plan
π∗
M̂R

h

is equivalent to the original plan π∗
MR .

However, this process is only feasible if inconsistencies
of the robot’s model with the human’s mental model are

Figure 1: An illustration of the model reconciliation process
in case of model uncertainty or multiple explainees.
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known precisely. Although we made this assumption be-
fore (Chakraborti et al. 2017) as a first step towards for-
malizing the model reconciliation process, this can be hard
to achieve in practice. Instead, the agent may end up hav-
ing to explain its decisions with respect to a set of pos-
sible models which is its best estimation of the human’s
knowledge state learned in the process of interactions. Sets
of possible models can be concisely represented as plan-
ning models with annotations for possible preconditions
and effects (Nguyen, Sreedharan, and Kambhampati 2017;
Bryce, Benton, and Boldt 2016). In this situation, the robot
can compute MCEs for each possible configuration. How-
ever, this can result in situations where the explanations
computed for individual models independently are not con-
sistent across all the possible target domains. Thus, in the
case of model uncertainty, such an approach cannot guaran-
tee that the resulting explanation will be acceptable.

Instead, we want to find an explanation such that
∀i π∗

M̂R
hi

≡ π∗
MR . This is a single model update that makes

the given plan optimal (and hence explained) in all the up-
dated domains (or in all possible domains). At first glance, it
appears that such an approach, even though desirable, might
turn out to be prohibitively expensive especially since solv-
ing for a single MCE involves search in the model space
where each search node is an optimal planning problem.
However, it turns out that the same search strategy can be
employed here as well by modifying the way in which the
models are represented and the equivalence criterion is com-
puted during the search process. Thus, in this paper, we –

(1) show how uncertainty over the human mental model can
be represented in the form of annotated models;

(2) outline how the concept of an MCE becomes one of con-
formant explanations in the revised setting and the search
for these can be compiled to the original MCE search;

(3) show how superfluous information in conformant expla-
nations can be reduced interactively via conditional ex-
planations which can be computed in an anytime manner;

(4) demonstrate how the model reconciliation process in the
presence of multiple humans in the loop can be viewed as
a special case of uncertain models

Background

In this section, we provide a brief introduction to classical
planning and incompleteness of planning models.

A Classical Planning Problem is a tuple M = 〈D, I,G〉
with domain D = 〈F,A〉 – where F is a finite set of flu-
ents that define a state s ⊆ F , and A is a finite set of ac-
tions – and initial and goal states I,G ⊆ F . Action a ∈ A
is a tuple 〈ca, pre(a), eff±(a)〉 where ca is the cost, and
pre(a), eff±(a) ⊆ F are the preconditions and add/delete
effects, i.e. δM(s, a) |= ⊥ if s 	|= pre(a); else δM(s, a) |=
s ∪ eff+(a) \ eff−(a) where δM(·) is the transition
function. The cumulative transition function is given by
δM(s, 〈a1, a2, . . . , an〉) = δM(δM(s, a1), 〈a2, . . . , an〉).
This forms the classical definition of a planning problem
(Russell and Norvig 2003) whose models are represented in

the syntax of PDDL (McDermott et al. 1998). The solution to
the planning problem is a sequence of actions or a (satisfic-
ing) plan π = 〈a1, a2, . . . , an〉 such that δM(I, π) |= G.
The cost of a plan π is given by C(π,M) =

∑
a∈π ca

if δM(I, π) |= G; ∞ otherwise. The cheapest plan π∗ =
argminπ C(π,M) is the (cost) optimal plan. We refer to
the cost of the optimal plan in the model M as C∗

M.
In previous work (Nguyen, Sreedharan, and Kambham-

pati 2017) we introduced an updated representation of plan-
ning problems in the form of annotated models or APDDL to
account for uncertainty or incompleteness over the definition
of a classical planning model. In addition to the standard pre-
conditions and effects associated with actions, it introduces
the notion of possible preconditions and effects which may
or may not be realized in practice.

An Incomplete (Annotated) Model is the tuple M =
〈D, I,G〉 with a domain D = 〈F, A〉 – where F is a finite
set of fluents that define a state s ⊆ F , and A is a finite set
of annotated actions – and annotated initial and goal states
I = 〈I0, I+〉, G = 〈G0,G+〉; I0,G0, I+,G+ ⊆ F . Ac-
tion a ∈ A is a tuple 〈ca, pre(a), p̃re(a), eff±(a), ẽff ±(a)〉
where ca is the cost and, in addition to its known precondi-
tions and add/delete effects pre(a), eff±(a),⊆ F each action
also contains possible preconditions p̃re(a) ⊆ F contain-
ing propositions that action a might need as preconditions,
and possible add (delete) effects ẽff ±(a) ⊆ F ) contain-
ing propositions that the action a might add (delete, respec-
tively) after execution. Similarly, I0,G0 (and I+,G+) are
the known (and possible) parts of the initial and goal states.

Each possible condition f ∈ p̃re(a) ∪ ẽff ±(a) also has a
probability p(f) associated with it denoting how likely it is
to appear as a known condition in the ground truth model –
i.e. p(f) measures the confidence with which that condition
has been learned. The sets of known and possible conditions
of a model M is called Sk(M) and Sp(M) respectively.

An instantiation of an annotated model M is a classical plan-
ning model where a subset of the possible conditions have
been realized, and is thus given by the tuple inst(M) =
〈D, I,G〉 with domain D = 〈F,A〉, initial and goal states
I = I0 ∪ χ; χ ⊆ I+ and G = G0 ∪ χ; χ ⊆ G+ respec-
tively, and action A � a = 〈ca, pre(a) ← pre(a) ∪ χ; χ ⊆
p̃re(a), eff±(a) ← eff±(a)∪χ; χ ⊆ ẽff ±(a)〉. Given an an-
notated model with k possible conditions, there may be 2k

such instantiations, which forms its completion set (Nguyen,
Sreedharan, and Kambhampati 2017).

The Likelihood L of an instantiation inst(M) of the an-
notated model M is given by –

L(inst(M)) =
∏

f∈Sp(M)∧Sk(inst(M)) p(f)

×∏
f∈Sp(M)\Sk(inst(M))(1− p(f))

Such models turn out to be especially useful for the repre-
sentation and learning of human (mental) models from ob-
servations, where uncertainty after the learning process can
be represented in terms of model annotations as in (Nguyen,
Sreedharan, and Kambhampati 2017; Bryce, Benton, and
Boldt 2016). Let MR

H be the culmination of a model learn-
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ing process and {MR
hi
}i be the completion set of MR

H . Note
that one of these models is the actual ground truth (i.e. the
human’s real mental model). We refer to this as g(MR

H).
The representation itself is general enough to handle all

model differences including initial and goal states in addi-
tion to precondition/effects. Cases with unknown actions, as
long as their existence is known (but possibly uncertain),
can just appear with empty conditions if the action is in the
robot’s model but not in the human’s (or with a special in-
dicator condition if the action is in the human’s model but
not in the robot’s) and are thus subsumed by the current rep-
resentation. Thus the representation does not preclude situ-
ations where the robot is completely unaware of the human
mental model (as long as the robot is aware of the list of
action names that the human may expect). An approach to
capturing this would be to consider all possible predicates
as preconditions and effects as in (Bryce, Benton, and Boldt
2016) where authors used this to model the mental model of
expert users. A more efficient method to handle empty hu-
man models would be to learn or refine an annotated model
from training data collected from the human teammate as
in (Nguyen, Sreedharan, and Kambhampati 2017). The cur-
rent work specifically focuses on the explanation generation
problem once such a model has already been learned.

The Human-Aware Planning Setting

The human-aware planning paradigm (Chakraborti, Sreed-
haran, and Kambhampati 2017) introduces the mental model
of the human in the loop into a planner’s deliberative pro-
cess, in addition to the planner’s own model in the classical
sense. In such settings, when a planner’s optimal plans di-
verge from human expectations due to differences in these
models, the planner can attempt corrections to the human’s
mental model to resolve the perceived inoptimality by par-
ticipating in what we call the model reconciliation process.

A Human-Aware Planning (HAP) Setting is the tuple
Φ = 〈MR,MR

H〉, where MR = 〈DR, IR,GR〉 is the
planner’s model of a planning problem, while MR

H =
〈DR

H , IR
H ,GR

H〉 is the robot’s (annotated) estimate of the hu-
man’s knowledge of the same1.

The Model Reconciliation Problem (MRP) is the tuple
Ψ = 〈π,Φ〉, given an MMP Φ, where C(π,MR) = C∗

MR ,
i.e. π is the optimal plan in MR.

A solution to an MRP (Chakraborti et al. 2017) is the set of
model changes E or an explanation, such that the given plan
π is optimal in both the robot model MR and the updated
human model M̂R

H . Thus –

(1) M̂R
H ←− MR

H + E ; and

(2) C(π, g(MR
H)) = C∗

g(MR
H

)
.

1Note that the robot model need not be the ground truth. How-
ever, the robot can only explain with respect to what it believes to
be true. This can, of course, be wrong and be refined iteratively
through interaction with the human (Sengupta et al. 2017).

Figure 2: USAR scenario with an internal robot and an exter-
nal human. The robot plan is marked in blue, uncertain parts
of the human model is marked with red question marks.

A Minimally Complete Explanation (MCE) is the short-
est explanation that satisfies conditions (1) and (2).

Condition (2) is hard to achieve since it is not known with
certainty which is the actual mental model. So we want to
preserve (2) for all (or as many) instantiations of the in-
complete estimation of the explainee’s mental model. In the
following discussion, we are going to show how this can
be achieved by modified versions of the model-space MCE-
search in (Chakraborti et al. 2017) using annotated models.

Use Case: The USAR Domain

We will now introduce a Urban Search And Reconnaissance
(USAR) domain (Murphy 2000) which we will use as an il-
lustrative purposes throughout the rest of the paper. A video
demonstrating the different scenarios play out is provided
at https://youtu.be/bLqrtffW6Ng. Here a robot is involved
in a typical disaster response operation, controlled partly or
fully by an external human commander (Bartlett 2015). The
robot’s job is to infiltrate areas that may be otherwise inac-
cessible to humans, and report on its surroundings as and
when instructed by the external, or required by its team. The
external has a map of the environment, but this map may
no longer be accurate in a disaster scenario - e.g. new paths
may have opened up, or older paths may no longer be avail-
able, due to rubble from collapsed structures like walls and
doors. The robot (internal), however, does not need to inform
the external of all these changes so as not to cause informa-
tion overload of the commander who is usually otherwise
engaged in orchestrating the entire operation, and it must do
this keeping in mind its estimate of the latter’s mental model
which may be uncertain.

In this particular scenario, we have a robot located at P1
(blue), that needs to collect data from point P5. While the hu-
man commander understands the goal, she is confused about
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the current status of the scenario. The commander is under
the false impression that the paths from P1 to P9 and P4 to
P5 are unusable (red question marks). The human is also un-
aware of the robot’s inability to use its hands.

While the robot does not have a complete picture of the
human’s mental model, it understands that any differences
between the models would be related to (1) Path from P1
to P9; (2) Path from P4 to P5; (3) Robot’s ability to use its
hands; and (4) Whether the Robot needs its arm to clear rub-
ble. As far as the robot is concerned, the human model can be
one of sixteen possible models (one of which is the human’s
actual mental model). The robot can now possibly adopt one
of the two approaches; namely, it can try to reduce the uncer-
tainty over the human mental models or try to come up with
an explanation that would work in any one of these possible
models. We call the latter Conformant Explanations which
can explain the plan to the human irrespective of their actual
mental model (provided it lies in the set of possible mod-
els). In the above scenario, a conformant explanation for the
optimal robot plan (blue) is as follows –
remove-known-INIT-has-add-effect-hand_capable

add-annot-clear_passage-has-precondition-hand_capable

remove-annot-INIT-has-add-effect-clear_path P1 P9

Notice that the second explanation (regarding the need of
the hand to clear rubble) was already known to the human
and was thus superfluous information. We will now formally
define conformant explanations and introduce an algorithm
to generate the same. We will also look at methods to reduce
possibly superfluous information in such explanations.

Conformant Explanations

Given the above discussion, we define robustness of an ex-
planation for an incomplete mental models as the probability
mass of models where it is a valid explanation. Formally,

Robustness of an explanation E for an MRP Ψ =
〈π, 〈MR,MR

H〉〉 is given by –

R(E) =
∑

inst(M̂R
H

) s.t. C(π,inst(M̂R
H

))=C∗
inst(M̂R

H
)

L(inst(M̂R
H))

A Conformant Explanation is such that R(E) = 1.

This means a conformant explanation ensures that the given
plan is explained in all the models in the completion set of
the human model. The above example in the USAR domain
is in fact such an explanation.

MRP with Model Uncertainty – Mmax & Mmin

We begin by defining two models – the most relaxed model
possible Mmax and the least relaxed one Mmin. The for-
mer is the model where all the possible add effects and none
of the possible preconditions and deletes hold, the state has
all the possible conditions set to true, and the goal is the
smallest one possible; while in the latter all the possible pre-
conditions and deletes and none of the possible adds are re-
alized and with the minimal start state and the maximal goal.
This means that, if a plan is executable in Mmin it will be
executable in all the possible models. Also, if this plan is
optimal in Mmax, then it must be optimal throughout the
set. Of course, such a plan may not exist, but we are not try-
ing to find one either. Instead, we are trying to find a set of

model updates which when applied to the annotated model,
produce a new set of models where a given plan is optimal.
In providing these model updates, we are in effect reducing
the set of possible models to a smaller set. The new set need
not be a subset of the original set of models but will be equal
or smaller in size to the original set. For any given annotated
model, such an explanation always exists (entire model dif-
ference in the worst case), and we intend to find the smallest
one. MR

H thus affords the following two models –

Mmax = 〈D, I,G〉 with domain D = 〈F,A〉 and

- initial state I ← I0 ∪ I+; given I

- goal state G ← G0; given G

- ∀a ∈ A

- pre(a) ← pre(a); a ∈ A

- eff+(a) ← eff+(a) ∪ ẽff
+
(a); a ∈ A

- eff−(a) ← eff−(a); a ∈ A

Mmin = 〈D, I,G〉 with domain D = 〈F,A〉 and

- initial state I ← I0; given I

- goal state G ← G0 ∪ G+; given G

- ∀a ∈ A

- pre(a) ← pre(a) ∪ p̃re(a); a ∈ A

- eff+(a) ← eff+(a); a ∈ A

- eff−(a) ← eff−(a) ∪ ẽff
−
(a); a ∈ A

As explained before, Mmax is a model where all the add
effects hold and it is easiest to achieve the goal, and simi-
larly Mmin is the model where it is the hardest to achieve
the goal. Note that these definitions might end up creating
inconsistencies in the models (e.g. in an annotated model for
the BlocksWorld domain, the definition of unstack ac-
tion may have add effects to make the block both holding
and ontable at the same time), but the model reconcilia-
tion process will take care of these.

Proposition 1 For a given MRP Ψ = 〈π, 〈MR,MR
H〉〉, if

the plan π is optimal in Mmax and executable in Mmin,
then conditions (1) and (2) hold for all i.

This now becomes the new criterion to satisfy in the course
of search for an MCE for a set of models.

MEGA∗-Conformant
Similar to (Chakraborti et al. 2017) we define a state repre-
sentation over planning problems with a mapping function
Γ : aM �→ F which represents any planning problem in the
new state space by transforming every condition (including
the possible conditions) in the model of a planning problem
into a predicate. The set Λ of actions contains unit model
change actions λ : F → F which make a single change to a
domain at a time, as defined in (Chakraborti et al. 2017).

We start the search (Algorithm 1) by first creating the cor-
responding Mmax and Mmin model for the given anno-
tated model MR

H . While the goal test for the original MCE
only included an optimality test, here we need to both check
the optimality of the plan in Mmax and verify the correct-
ness of the plan in Mmin. As stated in Proposition 1, the
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Algorithm 1 MEGA∗-Conformant
1: procedure MCE-SEARCH

2: Input: MRP 〈π∗, 〈MR,MR
h 〉〉

3: Output: Explanation EMCE

4: Procedure:

5: fringe ← Priority Queue()

6: c list ← {} � Closed list
7: π∗

R ← π∗ � Optimal plan being explained
8: Mmax, Mmin ←(MR

h ) � Proposition 2
9: fringe.push(〈Mmin,Mmax, {}〉, priority = 0)

10: while True do

11: 〈M̂min,M̂max, E〉, c ← fringe.pop()
12: if C(π∗

R,M̂max)=C∗
M̂max

∧ δ(IM̂min
, π∗

R) |= GM̂min
then

13: return E � Proposition 1
14: else

15: c list ← c list ∪ 〈M̂max,M̂min〉
16: for f ∈ {Γ(M̂min) ∪ Γ(M̂max)} \ Γ(MR) do

17: λ ← 〈1, 〈M̂min,M̂max〉, {}, {f}〉 � Removes f from M̂
18: if δMH,MR (〈Γ(M̂min),Γ(M̂max)〉, λ) 	∈ c list then

19: fringe.push(〈δMH,MR (〈Γ(M̂min),Γ(M̂max)〉, λ),
E ∪ λ〉, c + 1)

20: for f ∈ Γ(MR) \ {Γ(M̂min) ∪ Γ(M̂max)} do

21: λ ← 〈1, {〈M̂min,M̂max〉, {f}, {}〉 � Adds f to M̂
22: if δMH,MR (〈Γ(M̂min),Γ(M̂max)〉, λ) 	∈ c list then

23: fringe.push(〈δMH,MR (〈Γ(M̂min),Γ(M̂max)〉, λ),
E ∪ λ〉, c + Cλ)

plan is only optimal in the entire set of possible models if it
satisfies both tests. Since the correctness of a given plan can
be verified in polynomial time with respect to the plan size,
this is a relatively easy test to perform.

The other important point of difference between the al-
gorithm mentioned above and the original MCE is how we
calculate the applicable model updates. Here we consider
the superset of model differences between the robot model
and Mmin and the differences between the robot model and
Mmax. This could potentially mean that the search might
end up applying a model update that is already satisfied in
one of the models but not in the other. Since all the model
update actions are formulated as set operations, the origi-
nal MRP formulation can handle this without any further
changes. The models obtained by applying the model update
to Mmin and Mmax are then pushed to the open queue.

Proposition 2 Mmax and Mmin only need to be com-
puted once before the search – i.e. with a model update E to
M: Mmax ← Mmax + E and Mmin ← Mmin + E .

Following Proposition 2, these models form the new
Mmin and Mmax models for the set of models obtained
by applying the current set of model updates to the original
annotated model. This proposition ensures that we no longer
have to keep track of the current list of models or recalculate
Mmin and Mmax for the new set.

We saw earlier that conformant explanations can contain
superfluous information – i.e. asking the human to remove
non-existent conditions or add existing ones. Such redundant
information can be annoying and may end up reducing the
human’s trust in the robot. This can be avoided by –

- Increasing the cost of model updates involving uncertain
conditions relative to those involving known precondi-
tions or effects. This ensures that the search prefers ex-
planations that contain known conditions. By definition,
such explanations will not have superfluous information.

- However, sometimes such explanations may not exist. In-
stead, we can convert conformant explanations into con-
ditional ones. This can be achieved by turning each model
update for an annotated condition into a question and only
provide an explanation if the human’s response warrants it
– e.g. instead of asking the human to update the precondi-
tion of clear passage, the robot can first ask if the hu-
man thinks that action has a precondition hand usable.
This is the topic of the next section.

Conditional Explanations

One way of removing superfluous explanations is to engage
the human in conversation and ask questions that can reduce
the size of the completion set. To this end, we define –

A Conditional Explanation is represented by a policy
that maps the annotated model (represented by a Mmin and
Mmax model pair) to either a question regarding the exis-
tence of a condition in the human ground model or a model
update request. The resultant annotated model is produced,
by either applying the model update directly into the cur-
rent model or by updating the model to conform to human’s
answer regarding the existence of the condition.

We can generate these conditional explanations by either
performing post-processing on conformant explanations or
by performing an AND-OR graph search with AO∗(Nilsson
1980). Here each model update related to a known condition
forms an OR successor node while each possible condition
can be applied on the current state to produce a pair of AND
successors, where the first node reflects a node where the an-
notated condition holds while the second one represents the
state where it does not. So the number of possible conditions
reduces by one in each one of these AND successor nodes.
This AND successor relates to the answers the human could
potentially provide when asked about the existence of that
particular possible condition. Note that this AND-OR graph
will not contain any cycles as we only provide model up-
dates that are consistent with the robot model and hence we
can directly use the AO∗ search here.

MEGA∗-Conditional
The possibility of asking humans for clarification on un-
certain predicates opens the door to generating potentially
cheaper explanations. Consider the following exchange –

R : Are you aware that the path from P1 to P4 has collapsed?

H : Yes.

> R realizes the plan is optimal in all possible human models.

> It does not need to explain further.

Unfortunately, if we used the standard AO∗ search, it will
not produce a conditional explanation that contains this “less
robust” explanation as one of the potential branches in the
conditional explanation. This is because, if the human had
said that the path was free, the robot would need to revert
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to the original conformant explanation. Thus the cost of the
subtree containing this solution will be higher than the one
that only includes the original conformant explanation.

To overcome this shortcoming, we introduce a discounted
version of the AO∗ search. Where the cost contributed by a
pair of AND successors is calculated as –

min(node1.h val, node2.h val) + γ ∗ max(node1.h val, node2.h val)

where node1 and node2 are the successor nodes and
node1.h val, node2.h val are their respective h-values. Here
γ represents the discount fact and controls how much the
search values short paths in its solution subtree. When
γ = 1, the search becomes standard AO∗ search and when
γ = 0, the search myopically optimizes for short branches
(at the cost of the depth of the solution subtree). The rest
of the algorithm stays the same as the standard AO∗ search.
We skip the pseudocode due to space limitations2.

Remark. Note that in asking questions such as these, the
robot is trying to exploit the human’s (lack of) knowledge of
the problem in order to provide more concise explanations.
This can be construed as a case of lying by omission and
can raise interesting ethical considerations (Chakraborti and
Kambhampati 2018) Humans, during an explanation pro-
cess, tend to undergo this same “selection” process (Miller
2017) as well in determining which of the many reasons that
could explain an event is worth highlighting. It is worthwhile
investigating similar behavior for autonomous agents.

MEGA∗-Anytime
Both the algorithms discussed above can be computationally
expensive. However, we can relax the minimality require-
ment of explanation for shorter explanation generation time.
For this we introduce an anytime depth first explanation gen-
eration algorithm. Here, for each state, the successor states
include all the nodes that can be generated by applying the
model edit actions on all the known predicates and two pos-
sible successors for each possible condition – one where the
condition holds and one where it does not. Once the search
reaches a goal state (a new model where the target plan is op-
timal throughout its completion set), it queries the human to
see if the assumptions it has made regarding possible con-
ditions hold in the human mental model (the list of model
updates made related to possible conditions). If all the as-
sumptions hold in the human model, then we return the cur-
rent solution as the final explanation (or use the answers to
look for smaller explanations), else continue the search after
pruning the search space using the answers provided by the
human. The pruning can be performed efficiently by keeping
track of all the human answers and enforcing these specifica-
tions only at the time of expansion of new nodes. Algorithm
2 presents a depth-first search approach for an anytime so-
lution. Here we add an additional variable A to the search
node to keep track of the possible assumptions that we have
made for any given search path. The TEST ASSUMPTION
denotes the function responsible for testing the set of as-
sumptions during the goal test. TEST ASSUMPTION re-
turns the set of assumptions that were invalidated by the

2A more detailed version of the paper can be accessed at
http://rakaposhi.eas.asu.edu/icaps18.pdf

Algorithm 2 MEGA∗-Anytime
1: procedure ANYTIME-EXPLANATION

2: Input: MRP 〈π∗, 〈MR,MR
h 〉〉

3: Output: Explanation E
4: Procedure:

5: fringe ← Stack()

6: π∗
R ← π∗ � Optimal plan being explained

7: Mmax, Mmin ←(MR
h ) � Proposition 2

8: A ← {} � Current assumptions
9: fringe.push(〈Mmin,Mmax,A, {}〉)
10: while True do

11: 〈M̂min,M̂max,A, E〉 ← fringe.pop()
12: if C(π∗

R,M̂max)=C∗
M̂max

∧ δ(IM̂min
, π∗

R) |= GM̂min
then

13: Avalid,Ainvalid ← TEST ASSUMPTION(A)
14: Avalid ← A \ Ainvalid

15: if |Ainvalid| = 0 then

16: return E � Proposition 1
17: else

18: UPDATE STACK(fringe, Avalid,Ainvalid)

19: else

20: c list ← c list ∪ 〈M̂max,M̂min〉
21: for f ∈ {Γ(M̂min) ∪ Γ(M̂max)} \ Γ(MR) do

22: λ ← 〈1, 〈M̂min,M̂max〉, {}, {f}〉 � Removes f from M̂
23: if δMH,MR (〈Γ(M̂min),Γ(M̂max)〉, λ) 	∈ c list then

24: if f 	∈ {Γ(M̂min) ∩ Γ(M̂max)} \ Γ(MR) then

25: A ← A ∪ f � Add to assumptions if possible condition

26: fringe.push(〈δMH,MR (〈Γ(M̂min),Γ(M̂max)〉, λ),
E ∪ λ〉,A)

27: for f ∈ Γ(MR) \ {Γ(M̂min) ∪ Γ(M̂max)} do

28: λ ← 〈1, {〈M̂min,M̂max〉, {f}, {}〉 � Adds f to M̂
29: if δMH,MR (〈Γ(M̂min),Γ(M̂max)〉, λ) 	∈ c list then

30: fringe.push(〈δMH,MR (〈Γ(M̂min),Γ(M̂max)〉, λ),
E ∪ λ〉, A)

human Ainvalid and we can return the current search path
as a solution if the invalid set is empty. We will use the
validated and invalidated assumption to update our current
search stack (via the UPDATE STACK function).

Remark. The purpose of the paper is to demonstrate how
existing notions of conditional and conformant solutions in
planning can be adopted for the explanation process equally
well in the presence of uncertainty over the human mental
model. While there are significant differences between how
conditional or conformant explanations work with respect
to their planning counterparts, it may be worth exploring the
state-of-the-art (Albore, Palacios, and Geffner 2009; Bonet
and Geffner 2005) in those fields to further develop on the
concepts introduced in the paper.

Evaluation

We have already seen a demonstration of the algorithms
in action in the USAR use case. In this section, we will
evaluate the algorithms on three well-known IPC (Interna-
tional Planning Competition 2011) domains. For each do-
main, we chose five problems (generated through standard
problem generators), and for each domain and problem pair,
we create a new domain and problem by removing five ran-
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Table 1: Runtime and solution size for the algorithms introduced in the paper.

Domain Problem
Conformant explanations Conditional Explanations Anytime Explanations

Question Explanation Time Question Explanation Time Question Explanation Time
Size Size (secs) Size Size (secs) Size Size (secs)

Blocksworld

p1 – 3 (6) 134.84 3 5 140.75 3 3 19.97
p2 – 1 (1) 1.64 0 1 9.19 0 2 2.37
p3 – 2 (3) 20.56 1 3 55.90 3 2 17.74
p4 – 1 (2) 11.23 1 2 128.50 3 3 21.24
p5 – 3 (6) 130.63 3 5 150.60 3 3 24.66

Logistics

p1 – 2 (4) 62.30 2 4 99.78 4 2 26.29
p2 – 2 (5) 61.45 3 5 80.73 3 2 23.09
p3 – 3 (5) 246.23 2 4 297.71 4 4 17.57
p4 – 2 (5) 54.79 3 5 72.69 3 2 22.07
p5 – 2 (5) 59.87 3 5 86.72 3 2 24.49

Rover

p1 – 2 (2) 3.83 0 1 8.63 0 3 3.24
p2 – 2 (3) 26.93 1 2 141.20 4 3 9.11
p3 – 2 (3) 99.01 2 3 165.82 3 3 20.42
p4 – 3 (4) 102.56 1 3 253.41 1 4 3.97
p5 – 1 (2) 14.87 0 1 10.58 3 3 18.75

dom predicates. This new domain and problem represent the
ground truth human model. Next, we generate the uncertain
estimate of this model by moving random predicates into
the annotated list. By doing this, we ensure that the ground
truth model remains in the completion list of this incomplete
model. For these tests, we assume all the possible conditions
are equally likely. We will now evaluate each of the proposed
algorithms using the problems produced above.

Table 1 shows the runtime3 and the size4 of the ex-
planations generated by each of the algorithms eval-
uated on these domain problem pairs. Note that the
MEGA∗-Conditional was run with γ set to 0.4 and
the results for the anytime algorithm only presents the
time and size of the first solution found. Also note
that both the MEGA∗-Conditional search and the
MEGA∗-Anytime algorithm expect that it can query
the human about its ground truth. So each question
that the algorithm comes up with is tested against the
ground model. The “Question Size” column represents
the number of questions that were produced by the
search, where each question is related to a single an-
notated condition. While the “Explanation Size” repre-
sents the actual explanation presented to the human.
Unlike MEGA∗-Conditional and MEGA∗-Anytime,
MEGA∗-Conformant generates no questions but may
produce superfluous explanations. Thus, in the “Explana-
tion Size” column for MEGA∗-Conformant, we present
both the size of the non-superfluous component of the ex-
planation (model updates involving only the known con-
ditions) and the total size of the explanation generated

3The experiments were run on a Linux workstation with 12 core
Intel(R) Xeon(R) CPU and 64G RAM.

4There can be more sophisticated measures of the complexity of
explanations, other than size, to model cognitive load. However, the
techniques introduced here remain largely unchanged since such
metrics mainly determine the stopping condition of the search.

Table 2: Runtime for MEGA∗-Conformant and the time
needed to run MCE for every member of the completion set.

# of models → 2 4 8 16

Baseline 10.95 41.71 195.81 936.30
MEGA∗-Conformant 11.11 37.01 117.26 291.88

(within parenthesis). The results closely follow intuition.
MEGA∗-Anytime takes considerably shorter time in most
cases, but ends up producing explanations that are longer.
While MEGA∗-Conformant terminates slightly faster
than MEGA∗-Conditional, the latter produces shorter
explanations whenever possible.

Finally, as we mentioned in the introduction, one of the
major advantages of compiling the set of possible models
into Mmax and Mmin is that we no longer need to com-
pute explanations over each individual model in the set of
possible models separately (baseline). Table 2 illustrates the
significant scale-ups we can achieve as a result of this.

Model Uncertainty versus Multiplicity:

The Case of Multiple Humans in the Loop

While generating explanations for a set of models, the robot
is essentially trying to cater to multiple human models at the
same time. We posit then that the same approaches can be
adopted to situations when there are multiple humans in the
loop instead of a single human whose model is not known
with certainty. As before, computing separate explanations
(Chakraborti et al. 2017) for each agent can result in situa-
tions where the explanations computed for individual mod-
els independently are not consistent across all the possible
target domains. In the case of multiple teammates being ex-
plained to, this may cause confusion and loss of trust, es-
pecially in teaming with humans who are known (Cooke et
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al. 2013) to rely on shared mental models. Thus conformant
explanations can find useful applications in dealing with not
only model uncertainty but also model multiplicity.

In order to do this, from the set of target human mental
models we construct an annotated model so that the precon-
ditions and effects that appear in all target models become
necessary ones, and those that appear in just a subset are
possible ones. As before, we find a single explanation that is
a satisfactory explanation for the entire set of models, with-
out having to repeat the standard MRP process over all pos-
sible models while coming up with an explanation that can
satisfy all of them and thus establish common ground.

While the explanation generation technique may be
equivalent, the explanation process may be different depend-
ing on the setup. For example, while in the case of model
uncertainty, the safest approach might be to generate expla-
nations that work for the largest set of possible models, in
scenarios with multiple explainees, the robot may have to
decide whether it needs to save computational and commu-
nication time by generating one explanation to fit all models,
or if it needs to tailor the explanation to each human. This
choice may depend on the particular domain and the nature
of the teaming relationship with the human.

Demonstration on the USAR domain

We go back to our use case, now with two human teammates,
one external and one internal. A video of the demonstration
is available at https://youtu.be/hlPTmggRTQA. The robot
is now positioned at P1 and is expected to collect data from
location P5. Before the robot can perform its surveil ac-
tion, it needs to obtain a set of tools from the internal human
agent. The human agent is initially located at P10 and is ca-
pable of traveling to reachable locations to meet the robot for
the handover. Here the external commander incorrectly be-
lieves that the path from P1 to P9 is clear and while the one
from P2 to P3 is closed. The internal human agent, on the
other hand, not only believes in the errors mentioned above
but is also under the assumption that the path from P4 to P5
is not traversable. Due to these different initial states, each of
these agents ends up generating a different optimal plan. The
plan expected by the external commander requires the robot
to move to location P10 (via P9) to meet the human. After
collecting the package from the internal agent, the comman-
der expects it to set off to P5 via P4. The internal agent, on
the other hand, believes that he needs to travel to P9 to hand
over the package. As he believes that the corridor from P4 to
P5 is blocked, he expects the robot to take the longer route
to P5 through P6, P7, and P8 (orange). Finally, the optimal
plan for the robot (blue) involves the robot meeting the hu-
man at P4 on its way to P5. Using MEGA∗-Conformant,
we find the smallest explanation, which can explain this plan
to both humans.

In this particular case, since the models differ from each
other with respect to their initial states, the initial state of the
corresponding annotated model, will be defined as –

I0 = {(at P1), (at human P10), ...,

(clear path P10 P9), (clear path P9 P1)}

I+ = {(clear path P4 P5), (collapsed path P4 P5)}

where I+ represents the state fluents that may or may not
hold in human’s model. The corresponding initial states for
Mmin and Mmax will be as follows –

Imax = {(at P1), (at human P10), ...,

(clear path P10 P9), (clear path P9 P1),

(clear path P4 P5), (collapsed path P4 P5)}
Imin = {(at P1), (at human P10), ...,

(clear path P10 P9), (clear path P9 P1)}

MEGA∗-Conformant generates the following explanation
add-INIT-has-clear_path P4 P5

remove-INIT-has-clear_path P1 P9

add-INIT-has-clear_path P2 P3

While the last two model changes are equally relevant for
both the agents, the first change is specifically designed to
help the internal. The first update helps convince the human
that the robot can indeed reach the goal through P4, while
the next two help convince both agents as to why the agents
should meet at P4 rather than other locations.

Conclusion & Future Work

We showed how recently developed techniques for expla-
nation generation as a model reconciliation process can be
extended to account for multiple possible models of the ex-
plainee – this is useful both in cases where the model of the
explainee is uncertain as well as there are many explainees
to explain to. We demonstrated this with a robot involved in
a typical USAR scenario with an external supervisor whose
model of the environment might have drifted in course of
time, as well as provided empirical evaluations of the trade-
offs between different kinds (conformant versus conditional
versus anytime) of such explanations.

Two immediate directions for future work are (1) de-
veloping efficient methods for learning annotated human
mental models; and (2) extending the algorithms to work
with scenarios where the human mental model is at a dif-
ferent level of abstraction. For (1) it is unrealistic to have
access to a large set of plan traces. So it would be inter-
esting to investigate whether we can learn annotated mod-
els through data collected from less intrusive and more
practical sources than in (Bryce, Benton, and Boldt 2016;
Nguyen, Sreedharan, and Kambhampati 2017). There has
been some recent work (Nikolaidis et al. 2015; Hadfield-
Menell et al. 2016) that aims to learn human mental mod-
els iteratively during the course of interactions especially
when there is uncertainty about human preferences. With
regards to (2), one of the assumptions made in this work
is that both the robot and the human represent the world at
the same level of fidelity. In recent work (Sreedharan, Sri-
vastava, and Kambhampati 2018), we have started looking
at how the robot can deal with human mental models at dif-
ferent level of abstractions (e.g. expert versus non-expert).
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