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Abstract

This paper introduces a technique for planning in hierarchi-
cal belief spaces and demonstrates the idea in an autonomous
assembly task. The objective is to effectively propagate be-
lief across multiple levels of abstraction to make control de-
cisions that expose useful state information, manage uncer-
tainty and risk, and actively satisfy task specifications. This
approach is demonstrated by performing multiple instances
of a simple class of assembly tasks using the uBot-6 mobile
manipulator with a two-level hierarchy that manages uncer-
tainty over objects and assembly geometry. The result is a
method for composing a sequence of manual interactions that
causes changes to the environment and exposes new informa-
tion in order to support belief that the task is satisfied. This
approach has the added virtue that it provides a natural way
to accomplish tasks while simultaneously suppressing errors
and mitigating risk. We compare performance in an example
assembly task against a baseline hybrid approach that com-
bines uncertainty management with a symbolic planner and
show statistically significant improvement in task outcomes.
In additional demonstrations that challenge the system we
highlight useful artifacts of the approach—risk management
and autonomous recovery from unexpected events.

Introduction

Autonomy in robot systems is a valuable attribute that re-
mains an elusive goal. Noisy sensors, stochastic actions, and
variation in unstructured environments all lead to unavoid-
able errors that can be inconsequential or catastrophic de-
pending on the circumstances. Developing techniques capa-
ble of mitigating uncertainty at runtime has, therefore, been
a significant and challenging focus of the robotics commu-
nity. Tasks such as opening doors, picking up objects, or
turning valves require adequate levels of situational certainty
that varies over instances of the same task and introduces
enough risk to jeopardize the task, the robot, and the envi-
ronment (Atkeson et al. 2015; Correll et al. 2016).

In these tasks, in addition to stochastic actions and ob-
servations, there is often uncertainty over object identity
and pose. Most work in task planning considers spatial
uncertainty given object identities or considers uncertainty
over object identities given spatial certainty. Using a tra-
ditional flat Partially Observable Markov Decision Process
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(POMDP) to address both of these problems at once is dif-
ficult. As a result, traditional approaches in this setting are
prohibitively costly for realistic systems and tasks.

To address this problem, we propose a hierarchical be-
lief space planning framework that manages uncertainty and
risk autonomously at different levels of abstraction as run-
time situations require. The approach is demonstrated using
a mobile manipulator to reliably perform multiple instances
of a simple class of assembly tasks.

Related Work

Examples of robot control in the literature often require that
all behavior be anticipated by the system designer (Atkeson
et al. 2015; Correll et al. 2016) leading to problems when
system reliability depends on subtle details of the runtime
environment. In these cases, models of expected behavior
can be used to compare predicted future states to observa-
tions and, thus, to identify cases when plans may fail un-
expectedly. Rodriguez et al. build empirical models called
“grasp signatures” that are used with PCA and a Bayesian
SVM to detect grasps that lead probabilistically to failure
(Rodriguez et al. 2011). The authors demonstrated an “early
abort and retry” recovery technique using Markov chains
that reset the system to a fixed state if the predicted grasps
are likely to be unsatisfactory. Similarly, Ku ef al. demon-
strate how Aspect Transition Graphs are used to predict
when run-time observations are incompatible with the be-
lief state of manipulation tasks and avoids unintended con-
sequences of future actions by aborting execution (Ku et
al. 2015). Di Lello et al. use Bayesian nonparametric time
series via a sticky-Hierarchical Dirichlet Process Hidden
Markov Model to detect the unexpected outcomes of actions
during execution (Di Lello et al. 2013). However, they do
not propose mechanisms for automatic recovery.

Belief Space Planning

In general, robot systems operate under partially observable
conditions—the complete state required for making optimal
control decisions is not available to any single sensor ge-
ometry. In fully observable systems, state estimation is fully
determined for each sensor geometry and the dynamics of
the underlying state space is assumed to be Markovian. The
underlying state space in partially observable systems is a



POMDP (Kaelbling, Littman, and Cassandra 1998), a six-
tuple < S, A, T, R, ), O > where: S is a set of states, A is a
set of actions, 7" is a conditional transition probability func-
tion between states Pr(s’[s,a), R: S x A — R is a reward
function, € is a set of observations with elements z € €,
and O is an observation function, Pr(z’|s’).

In a POMDP, perceptual states cannot be completely dif-
ferentiated using the current observation alone. Memory
over a history of actions and observations is required and
in some cases, the problem of perception (or acting on per-
cepts) becomes much harder. Papadimitriou and Tsitsiklis
proved that finding exact optimal solutions to POMDP prob-
lems is PSPACE-complete and thus, intractable (Papadim-
itriou and Tsitsiklis 1987). A common approach to approx-
imating solutions to POMDPs at runtime involves belief
space planning, which transforms a POMDP into an MDP in
belief space (Kaelbling, Littman, and Cassandra 1998). As a
consequence, the full range of techniques for solving MDPs
can be applied. Although the newly formed belief state is
fully observable, it is defined over continuous space and thus
infinite.

To find solutions in belief space in spite of the state-space
explosion, several methods have been proposed. Roy pro-
posed a belief-compression algorithm (Roy, Gordon, and
Thrun 2005) that allows planning to be performed in a lower-
dimensional belief space than the original belief space.
Maximum likelihood approaches maintain distributions over
state but act greedily on the most likely underlying state
(Platt et al. 2010; Ruiken et al. 2016b). Sampling based
techniques have been leveraged to explore belief space ef-
ficiently (Hauser 2010; Bry and Roy 2011).

Belief space planning approaches generally combine in-
formation gathering with belief condensation to states that
solve a task. Heuristic techniques have been used to select
actions that address the task while minimizing the impact
of uncertainty (Smith and Simmons 2004). “Dual-control”
techniques use actions that explicitly reduce uncertainty and
actions that explicitly maximize reward (Cassandra, Kael-
bling, and Kurien 1996). These approaches work well in set-
tings with state-dependent rewards. Instead of rewards de-
pendent on a particular state-action pair (as is common in
POMDPs), pPPOMDPs reward the system with respect to the
belief distribution (Araya et al. 2010).

Active Perception and Active Belief

In order to actively improve belief in perceptual feedback,
Aloimonos (Aloimonos, Weiss, and Bandyopadhyay 1988)
and Bajcsy (Bajcsy 1988) introduced the general framework
of active perception. With similar intentions, Denzler et al.
demonstrated how to deal with field-of-view limitations and
occlusions in a scene by using an information theoretic ap-
proach to actively select optimal sensor configurations (Den-
zler and Brown 2000). Inspired by these approaches, Ruiken
et al. proposed an Active Belief Planner (ABP) (Ruiken et
al. 2016b) that relies on models called Aspect Transition
Graphs (ATGs) (Sen 2013) to approximate belief transition
dynamics. Aspect Graphs were originally introduced in the
70’s to represent an object’s appearance using multiple view-
points (Koenderink and Doorn 1979) inspired by the hu-
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man vision system (Van Effelterre 1994). ATGs can be con-
structed from extensive, cumulative experience with an ob-
ject under controlled conditions. Probabilistic constellations
of low-level features detected from a single sensor configu-
ration are used to define aspect-nodes. ATGs describe how
an agent can interact with an object using stochastic actions
to transition between these aspect-nodes.

Models such as these support efficient methods for pre-
dicting future states using histories of actions and observa-
tions. Consider the Active Belief Planner shown in Algo-
rithm 1. Given a transition model 71" (such as an ATG), the
algorithm takes actions a € A, to optimize a reward func-
tion r based on the distribution of belief b over the under-
lying POMDP states S. Every execution cycle the planner
computes the next action a* that maximizes expected r to a
fixed search depth with

a” = arg max E[r(b,a)].
acA

To compute a*, all actions are considered given the mod-
els and by, the distribution of belief over states at time k.
This computation considers how each action a; will impact
bit1. The posterior after the control update by is com-
puted given the belief of the current state by and the transi-
tion probability Pr(sy.t1|ak, sx) from T' (Lines 5-6). Given
an expected observation from a forward model through
SIMULATEOBSERVATION (sk1) and an observation func-
tion Pr(z,41/Sx+1), the expected posteriors are computed
(Lines 8-10). These posteriors are then used to evaluate the
metric 7 (Line 12). The action aj that maximizes r is then
chosen to be executed (Line 13). Algorithm 1 shows a search
depth of one. To plan multiple plies in the future, the plan-
ner is simply called recursively using the previous posterior
belief as the new prior.

Algorithm 1 ACTIVE BELIEF PLANNER: A planner that op-
timizes reward r based on the expected belief state by4; over
S given a, € A using a transition function 7" to select ac-
tions. An optional target distribution G can specify a goal
distribution toward which to drive the system. 7 is a nor-
malization constant, O is an observation function, and z is a
simulated observation from a forward model.

1: function ABP(S, A, T,0, b, r,G)

2: scores «+ ()

3 for all a;, € Ado

4: u(ag) <0

5: for gll Sk+1 do

6 b(sk+1) = > Pr(sk+1lak, sk)b(sk)

Sk
7: for all sx41 do
8: Zk+1 < SIMULATEOBSERVATION(S41)
9 for all si41 do

be1(ske1) = nPr(zesa|sir1)b(skir)
11: u(ag) < u(ag) + b(spr1)r(bpsr, ag, G)
12: scores.append(u(ag))
13: return arg max(scores)

ak




Hierarchical approaches to address POMDPs have been
previously investigated (He, Brunskill, and Roy 2011; Kael-
bling and Lozano-Pérez 2011), but generally reason over hi-
erarchies of actions within a single planner to reduce plan-
ning time. Foka et al. investigated using hierarchies of action
and state in a navigation domain (Foka and Trahanias 2007)
where the robot does not actively alter the environment. In
this work, we leverage hierarchies of planners to reduce un-
certainty at many levels of abstraction in a general mobile
manipulation context using multi-modal feedback. Sridha-
ran et al. use a hierarchical formulation but only rely on
actions that expose new information (Sridharan, Wyatt, and
Dearden 2008). In contrast, the proposed approach consid-
ers actions that are both informational and functional—that
is they expose new information and accomplish task objec-
tives simultaneously.

Hierarchical Active Belief Planner

We introduce a hierarchical form of the ABP, Hierarchical-
ABP (HABP). The i** planner in a hierarchy of ABPs of
depth d is defined using: .S;, the set of world states; 73, the
conditional transition probability between states; O;, an ob-
servation function; A;, the set of available actions; by, the
belief distribution over states € S at time k; r;(b;, 4;) — R
a reward function parameterized by the belief distribution
and actions; and Z;, a state abstraction function Z;(b;_1) —
Zi.

For 7 = 0, a distribution of feature positions and covari-
ances fy is computed from raw percepts (in place of by).
The state abstraction function allows each successive layer
of the hierarchy to form observations based on the belief
state of the preceding layer. This creates high-level belief
distributions that have been stabilized by the lower levels of
the hierarchy. Each time step, the hierarchy is updated from
the bottom-up and new observations are fused with the exist-
ing state using a Bayesian update (Algorithm 3). This fused
state is used to plan n-ply forward into the future using 7;
and A;. Future observations zj[;...,,; are estimated using
the forward model. This process is outlined in Algorithm 2
and shown graphically for an arbitrary layer of a hierarchy
in Figure 1.

Algorithm 2 HABP : Algorithm for updating a hierarchy of
depth d at time k and selecting the next action to execute.
function HABP(fy )
bo,k < fox
for ¢ in range 1 to d do
bi i < BAYES(b; k—1, i k—1, Zi(bi—1,1))

1:
2
3
4
5: for 7 in range d to 1 do
6.
7
8

a; <ABP(S;, A;, T;, 04, by i, i, Gi)
if ARBITER (a}) then
return a;

This approach relies on implementing layers of active be-
lief to cause useful, multi-level transitions to shore up be-
lief that a task specification has been achieved. By manag-
ing belief distributions over multi-level abstractions, we in-
vestigate how much a particular robot-object interaction will
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Figure 1: Graphical representation of a layer in the hierarchy.
Belief from the lower level and the previous time step state
of this level are fused into a current state estimate (left side).
This state estimate is used to plan forward into the future
using T; and A; (right side). Leaf nodes are evaluated using
r; to select a sequence of actions to execute. The first action
in this sequence is executed, after which the hierarchy re-
plans with updated state.

Algorithm 3 BAYES FILTER : Algorithm for updating the
state of a planner using the previous state by _1, action ax_1,
and new observation zj. 1 is a normalization constant.

1: function BAYES(by_1,ar_1, 21)

2: for all s;, do

3: bk(sk) = Z Pr(sk|ak,17sk,1)b(sk,1)
Sk—1

4: for all s;, do o

5: bi(si) = nPr(zk|sk)bi(sk)

6: return by,

contribute to the task. Each planner in the hierarchy selects
actions a* that maximize the expected reward r; at level ¢
given actions in set A;,
a* = arg max E[r;(b;, a)].
a€A;

Task-level reward r; depends on the confidence in lower-
level abstractions. If the entropy of the distribution over be-
lief g1 is high, it will support many different possible ob-
servations z4 and, therefore, provide little new information
or guidance to the planner at level d. Actions a € Ay 1
can improve the precision of the state and, thus, enhance the
performance on the task.

Many different strategies exist for coordinating interac-
tions between multiple ABP layers and the external environ-
ment that respect the hierarchical description of the task. For
example, directing actions into the lowest levels where min-
imum confidence levels have not been established and then
advancing is a reasonable, conservative strategy. This is the
approach investigated in this work. In general, these strate-
gies are determined by an ARBITER. How this is achieved



and an example implementation of the hierarchy is described
in the following section.

A Two-Layer Assembly Hierarchy

The assembly domain utilizes objects known as ARcubes
introduced in (Ruiken et al. 2016a). ARcubes are rigid cubes
whose size can be adjusted to meet the requirements of the
task. Each of the six faces of the cube is marked with a single
ARtag.! The natural sparseness of features on any one cube
leads to a large degree of ambiguity with respect to a set of
ARcubes. We use Kalman Filters to track ARtag positions
in R3.

Recent work has started to utilize ARcubes to form simple
assemblies such as towers. In that work, a symbolic planner
manipulated symbols grounded in belief by a belief space
planner to resolve action pre-conditions and resource con-
straints in unstructured environments (Takahashi, Lanighan,
and Grupen 2017). This system demonstrated how sym-
bols grounded in belief lead to more reliable solutions than
using maximum likelihood assumptions alone. However,
assembly-level actions were not risk compensated. As a re-
sult, unexpected outcomes occurred when objects were not
placed precisely in the assembly. Without pro-active man-
agement of uncertainty or special purpose recovery mecha-
nisms, these outcomes require external resets of the system.

In this example domain, we use a two-layer hierarchy. Be-
lief over the assembly state is managed in the top layer of the
hierarchy and belief over objects is managed at the lower
level. Each control step, the belief at each level in the hier-
archy is updated and each layer plans n-plies into the future
after which an ARBITER selects a sequence of actions to ex-
ecute (as per Algorithm 2). The first action in this n-action
sequence is executed, after which the hierarchy re-plans with
updated state. Details of the implemented hierarchy and AR-
BITER are described in the following sections.

Object Level

The bottom of the two-layer hierarchy manages noisy inter-
actions with the environment using ATGs for ARcube as for-
ward models. Given a model-set M, the ATG for object m €
M is a directed multi-graph G.,, = (X,,, Uy, ) where X, is
a set of aspect nodes and U, is a set of actions that repre-
sent edges in the graph. Edges encode the transition proba-
bility 77 between states. An aspect node s € X’ consists of

a set of features, s = ( fbj, é’bj, -+, that can be observed
from a particular sensor configuration. A feature f°%7 is a
tuple of feature id, £, and its location in the object frame de-
scribed using a Gaussian distribution, % = (£, N'(u, %))
where ;1 € R3 and ¥ € R3*3. During the task execution,
the robot updates belief distributions over aspect nodes s for
each hypothesis. A “hypothesis™ is a spatially constrained
volume in R? in which distributions of belief over multiple
object models are maintained. b, are belief distributions over
ATG aspect nodes, by = [b(s0),b(s1),- -+ ,b(s|s,|)] where
S1 = U,, &m and m = 1,2,--- ,|M|. Each aspect node
defines an object frame for its parent ATG.

"https://artoolkit.org/
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ATGs for ARcubes include parameterized mobility and
manipulation actions € A; that change the robot’s relative
position and orientation to features of the object. Manipu-
lation actions can be prehensile or non-prehensile and can
create in-hand rotations that re-orient the object (depending
on the action parameters and object identity). By discretiz-
ing these parameter spaces we can define 4 prehensile and 1
non-prehensile manipulation actions and 7 mobility actions.
When selecting actions, the maximum likelihood object co-
ordinate frame is used to parameterize actions. Actions at
level 1 accrue belief over ATGs that supports classification
and recognition over the history of observations. Observa-
tions z; are produced with the state abstraction function
Zo({f1--- fn}) — =1, which turns environmental features
into candidate aspects. To perform this transformation a gen-
eralized Hough transform is used. This scores candidate as-
pects from the ATG model-set and forms a belief distribu-
tion over candidate aspect-nodes (Ruiken et al. 2016b). Us-
ing these observations, the planner can reason about how to
manage uncertainty in belief distributions at this level.

We use task partitions similar to Ruiken ef al. (Ruiken et
al. 2016a) to encode find tasks for the robot at the object
level. The belief that hypothesis h belongs to a target task
partition cyqrge¢ With goal state s; exceeds belief threshold
B is defined

b(ctarget) > ﬁ|cta7'get = {3]|]1(3]) = 1} (1)

where cqrge 18 the target partition—the subset of objects in
the model space that satisfy task requirements—and 1 (s; ) is
an indicator function that evaluates whether s; € ciarget-
The remainder of the state space populates the non-target
partition defined ¢pon—target-

Find tasks drive the robot to reduce uncertainty among ob-
ject models that do and do not support a task. These classes
are defined by the goal of an assembly, e.g. cubes with a ‘2’
feature and cubes without. By using Information Gain (/G)
as r1, the robot can take actions to condense belief on sub-
sets of the model-set effectively. /G in this setting is defined
as:

r = I1G = H(Ok) - H(C’k+1\ak)

where C' = {Ctarget7 Cnon—target}'

2

Assembly Level

In the top layer of the hierarchy, uncertainty in the spatial
precision of the assembly is managed. This is achieved by
maintaining belief distributions over positions of goal fea-
tures in the environment. This defines s, € R3. In this
implementation, Z5 samples the maximum likelihood state
of b; to “observe” the expected positions of these features
on objects in the environment. This creates observations
29 = {p1, -+ ,pn} where p; ~ N(u, ¥), with 1 € R3, the
mean position and ¥ € R3%3, reflecting positional uncer-
tainty of these features on the maximum likelihood object of
each hypothesis in the environment. Z5 only allows object
belief to be lifted to this level if they exceed a belief thresh-
old (80%). At the assembly level, actions € As consist of
actions that orient and PICK-AND-PLACE objects in the en-
vironment based upon the maximum likelihood ATG. This



is achieved by solving a shortest path problem in this ATG
using the negative log of the transition probability as cost.
Additionally two special actions: a NOP and FIND action are
included € As. NOP allows the robot to stop if it believes
the task has been completed. FIND is returned if not enough
state exists in b; to solve the task. A forward model supports
reasoning over the geometric effects of actions € A, given
by and provides Pr(so 41|S2,k, a2 1), the transition proba-
bility 75 of these actions. Given zo, we compute the observa-
tion probability Pr(z2 ;+1|s2,x+1) with empirical models of
robot performance of PICK-AND-PLACE actions € As. We
assume these models are Gaussian N (1, ¥). The continu-
ous state introduces minor changes to Algorithm 1, which
assumes discrete state. In particular, the belief update (Lines
5-10) is computed with

b(s2,k+1) =1 Pr(z2 kr1|52,k+1)

3
/ Pr(sa ky1]52,k, a2,1)b(52,%), )
S2,k

using the same variables as Algorithm 1.

To quantify performance at the assembly level, we rea-
son over how actions will decrease the Kullback-Leibler di-
vergence Dy (Kullback and Leibler 1951) between the
belief distribution by, and a goal distribution G. G de-
fines the goal positions of target features in the assembly

(fo°et pgoal ...} and specifies the amount of acceptable
uncertainty at the goal given empirical models of the robot’s
performance N (p, ¥). To measure this divergence, we use
error distributions £ computed using the ¢, distance be-
tween goal feature positions and feature positions given the
belief distribution by ,,, given action as ;, and G. This yields

the following reward function 74

e e(x)

e(z)log(

ro=—Dgr(E [ G) = —/ )

— 00

where e and g represent the densities of £ and G respec-
tively. When the D, between the current belief state and
the goal is less than the Dy between the expected belief
state at time k + [ (I € [0,n]) and the goal, the planner se-
lects NOP to indicate that belief has been condensed as much
as possible (with regard to the performance models of the
robot). To bias the robot toward faster solutions (at the cost
of precision), the reward function is penalized by the cost of
actions. In this implementation, PICK-AND-PLACE actions
have a uniform cost of A = 1.0, yielding the following re-
ward function,

k+l1

ro=-Dir(E || G)=> X\ 5)

Control Authority

In a hierarchy of planners with limited sensor and effec-
tor resources a decision regarding control authority must
be made at each control step by an ARBITER to determine
which planner’s prescribed action will be executed in order
to optimize the task. In this implementation, control author-
ity is governed by the assembly-level planner. If this planner
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returns a plan, it is executed. If the planner returns a NOP, the
system stops as the robot has condensed belief to a solution
of the task. If the top-level planner returns FIND, then the
actions prescribed by the object-level planner are selected.

This control structure enables an intrinsically lazy be-
havior for assembly tasks. If not enough state is present in
the assembly-level planner, then the object-level planner is
leveraged to uncover the needed state from the world. By
relying on the assembly level when enough state exists to
find a solution to the task the robot attends to the mini-
mum amount of world state required to solve a task. This
helps increase tractability and reduce the dimensionality of
problems—as the robot will not actively uncover state re-
garding objects that are not required by the task.

Example Application: Simple Assemblies

To highlight the approach, we conducted three experiments
involving simple assembly tasks. Assemblies are specified
by configurations of features afforded by ARcubes. The
robot is provided with a set of 20 ARcubes modeled as
ATGs. In each experiment, the raw materials (ARcubes)
needed to construct the assembly are present, although their
poses and identities are initially unknown to the robot. The
first experiment compared the overall error at the conclu-
sion of a tower assembly using the proposed method to
a baseline system used in (Takahashi, Lanighan, and Gru-
pen 2017). This baseline system lifts objects in the environ-
ment to symbolic representations and then executes a plan
prescribed by a symbolic planner. The second experiment
demonstrates the flexibility of the approach by constructing
a pyramid of blocks. This assembly challenges the system
as previously placed blocks can be disturbed when placing
additional blocks. The third experiment highlights the sys-
tem’s ability to overcome uncertainty induced by an exter-
nal source. This is demonstrated by having a researcher in-
tentionally alter the outcome of an action during a pyramid
assembly.

Experiments were conducted using the uBot-6 mobile ma-
nipulator (Ruiken, Lanighan, and Grupen 2013) shown in
Figure 2. uBot-6 is a toddler-sized mobile manipulator that
balances dynamically on two wheels. It has 13 total degrees
of freedom (DOF), including two 4 DOF arms and a rotat-
able trunk which provide a large bimanual workspace. Vi-
sual and depth data are provided by an ASUS Xtion RGB-D
camera located on the head. In addition to proprioceptive
data at each actuated joint, the robot has one six axis force-
torque sensor in each hand that provides haptic feedback.
Closed loop controllers are used in all actions, based on ex-
pectations from the currently observed belief state. These
controllers achieve their objectives by following gradients in
a convex potential function ¢ (o) with respect to changes in
the value of the motor resources where ¢ are sensory inputs
(Huber, MacDonald, and Grupen 1996). It should be noted
that these expectations will not necessarily exactly match ac-
tual action outcomes as this is a real system. Convergence of
these controllers does not imply completion of tasks since
the goal of the potential field is influenced by noise from
sensory inputs (joint angles, feature locations, etc...) and lo-
calization errors. For example, if we have 0.03 m in local-



Figure 2: uBot-6: a 13 degree of freedom, dynamically bal-
ancing whole body mobile manipulator used in the experi-
ments.

ization error, the controllers may converge to a goal offset
0.03 m from the ground truth goal. It is not possible to know
this offset at run-time. In ideal environments (such as in sim-
ulation) we may not have these issues. Our system aims to
minimize the impact of these unavoidable sources of noise in
the real world by considering the belief of states in addition
to minimizing errors in controller and perceptual units.

For placing actions, 120 trials were conducted by the
robot placing objects from the ARcube model-set yielding
a Gaussian distribution with

1 = (0.03345256, —0.04095612) (m)

0.00324572  0.00073537

X = 0.00073537  0.00235752

(m?)
This distribution is used to evaluate sampled future states
and to compute Pr(zo ¢4 1|s24+1) in Algorithm 1.

Results
Comparison to Baseline Planner

The first experimental task required the robot to construct a
tower consisting of two ARcubes. In this assembly, the bot-
tom cube was required to have a “2” tag in front and a “1” tag
on top. The top cube was required to have a “3” tag in front
and a “0” tag on top. The features were required to be located
in specific positions relative to a fixed frame defined by 3
environmental tags (“A”, “B”, and “C”) as seen in Figure 3.
We compared the proposed method with a baseline method
(Takahashi, Lanighan, and Grupen 2017). When using the
baseline, the system would fail when action outcomes did
not match the expectations of the planner.

We performed the experiment five times for both meth-
ods. The robot successfully built the assembly one out of five
times with the baseline and five out of five times with HABP.
The final assemblies using both approaches are shown in
Figure 3. The average of the final assembly errors and the
results of a T-test are shown in Table 1. The p-value of the
error is less than 0.05, which shows that HABP has statisti-
cally significant better outcomes than the baseline system.
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Approach | Final Error (m) =+ variance (m?)
Baseline 0.349 £ 0.0157

HABP 0.071 £4.05 E-5

T-test p=0.011 < 0.05

Table 1: The mean (m) and variance (m?) of final error
(> ¢y distance) in tower experiments (shown in Figure 3)
using the baseline and the hierarchical framework (HABP).
As p < 0.05, the results show statistically better perfor-
mance compared to the baseline.

Due to stochastic actions, during several trials the robot
misplaced an object in the assembly. If this occurred in the
baseline, the robot would often fail to successfully place the
second object, causing it to fall to the floor. With HABP, the
robot successfully suppresses this error by reasoning about
the likelihood of achieving the goal by re-placing poorly
placed objects. Using the HABP approach, the robot does
not take further actions when the risk of damaging the cur-
rent assembly with continued interaction is sufficiently high
and chooses to maintain the current world state. This risk
management artifact is intrinsic to the planner and does not
need to be directly specified or managed externally.

Pyramid Assembly

The second experiment was designed to demonstrate the
flexibility of the approach by constructing a pyramid of three
blocks. This assembly requires the two bottom objects to be
in close contact with each other to provide enough support
for the top block. This close proximity can lead to induced
errors during assembly as the first block can be unintention-
ally disturbed when placing the second block. The goal re-
quired the lower left block to have a “4” tag on front and a
“2” tag on top, the lower right block to have a “7” tag on
front and a “1” tag on top, and the top block to have a “3”
tag on top and a “0” tag on top. Goal positions were once
again specified relative to a fixed frame defined by 3 tags
(“A”, “B”, and “C”).

The only change between these runs and the towers in the
previous experiment is the specification of the overall goal—
the configurations of the ARcube features in specific posi-
tions. Using the proposed approach, the robot is able to con-
struct low-error approximations of the goal assembly, while
recovering from induced errors during assembly. This error
recovery artifact (similar to recovering from topples in the
first experiment), does not need to be specified or managed
externally and arises naturally from our approach. Snapshots
from the robot’s perspective of assembly progress for a pyra-
mid assembly are shown in Figure 4.

Rejecting External Disturbances

Another useful artifact that arises from our approach is best
highlighted when an external adversarial agent intentionally
alters the outcome of the robot’s action. With the HABP ar-
chitecture, the robot recovers autonomously from such unex-
pected outcomes without additional recovery mechanisms.
This process is illustrated in Figure 5. In this demonstra-
tion, the robot is constructing a pyramid similar to those in



(b) HABP Outcomes

(a) Baseline Outcomes

Figure 3: Final tower assemblies produced by the two ap-
proaches in the first experiment (comparing to a baseline).
On the left are the assemblies using the baseline approach.
On the right are the outcomes using the proposed hierarchi-
cal belief space framework.

the second experiment. After placing the first object (Fig-
ures 5a-5b), a researcher alters the outcome of a placing ac-
tion by flipping the box the robot just placed (Figures Sc-
5d). The robot observes this outcome in Figure Se. Due to
the unexpected transition, the robot is no longer confident
it has satisfied the sub-task (placing the object in the cor-
rect orientation). As such, the planner (correctly) selects to
flip the cube back to the correct orientation (Figures 5f-5g).
The robot then replaces the object in the correct position in
the assembly (Figures 5h-5k). After observing this satisfac-
tory outcome (Figure 5k), the robot then proceeds to the re-
maining objects (Figure 51) and completes the assembly (not
shown).

Discussion and Conclusion

Assembling blocks in unstructured environments provides
an ideal domain for investigating the sensitivity of perfor-
mance to undetected or hidden state. Small errors introduced
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(a) Place the first block (b) Replace the first block

5

4

(c) Place the second block (d) Place the third block

Figure 4: Example pyramid assembly using the proposed ap-
proach. The sequence starts in the upper left and progresses
left to right, top to bottom.

through stochastic actions early on in an assembly can be
magnified as more blocks are placed. By framing the prob-
lem in a hierarchical belief space, we can address errors
during execution without additional recovery structure. Cur-
rently, we only consider actions that place objects at goal
locations. This excludes any actions that would disassem-
ble beyond one step. Future work will investigate allowing
actions that place objects at arbitrary positions in addition to
goals to consider the impact a partial (or possibly full) disas-
sembly would have on the task. This can be important if the
robot (or external agent) induces errors in previously placed
objects that are inaccessible from the current state.

Online error recovery is an open problem that must be
addressed before robots can interact reliably with unstruc-
tured environments. In complex tasks that employ tens or
hundreds of actions in a sequence, a single fault can dis-
able the robot and/or damage the environment. In order to
embed autonomous robots in unstructured worlds, it seems
reasonable to specify a reliability in excess of thousands
of control decisions between failures, where a “failure” de-
notes a situation that requires external reset. To meet these
goals, breakthroughs are required concerning the assessment
of uncertainty—specifically as it puts a task at risk—and in
the formulation of risk averse and error recovery behavior.

The hierarchical belief space framework proposed in this
paper is a promising direction to meet these goals. We
showed that our approach performs statistically significantly
better than a baseline approach when constructing simple
assemblies. Although we demonstrated that our approach is
capable of solving additional assemblies (such as the pyra-
mid) we did not collect sufficient data to draw more sweep-
ing conclusions. Quantifying the performance of our ap-
proach in these settings will be a goal of future work. The
experiments and demonstrations in this paper highlight that
the robot can recover from errors at run-time without ad-



(b)

®

(2 (h)

&

Figure 5: Outcomes of intentional disturbance by an adversarial agent during a pyramid assembly. The robot begins to construct
the assembly (a-b). The disturbance is introduced in (c), after which the robot is no longer confident it has placed the object
in the correct orientation (d-e). The planner reduces this uncertainty (f-h). After the uncertainty has been addressed, the robot
replaces the object in the assembly in the correct orientation (i-k) then proceeds to complete the rest of the assembly (1).

ditional task or recovery structure by simply taking actions
that condense belief towards goal distributions. By structur-
ing the task hierarchically, the robot is able to reason and ad-
dress errors at multiple levels of precision, from independent
objects to the whole assembly. These results indicate that it
is possible to subsume error recovery, uncertainty and risk,
and task planning in a uniform framework with hierarchies
of belief space planners, enabling more robust autonomous
robots.
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