












(a) Baseline Outcomes (b) HABP Outcomes

Figure 3: Final tower assemblies produced by the two ap-
proaches in the first experiment (comparing to a baseline).
On the left are the assemblies using the baseline approach.
On the right are the outcomes using the proposed hierarchi-
cal belief space framework.

the second experiment. After placing the first object (Fig-
ures 5a-5b), a researcher alters the outcome of a placing ac-
tion by flipping the box the robot just placed (Figures 5c-
5d). The robot observes this outcome in Figure 5e. Due to
the unexpected transition, the robot is no longer confident
it has satisfied the sub-task (placing the object in the cor-
rect orientation). As such, the planner (correctly) selects to
flip the cube back to the correct orientation (Figures 5f-5g).
The robot then replaces the object in the correct position in
the assembly (Figures 5h-5k). After observing this satisfac-
tory outcome (Figure 5k), the robot then proceeds to the re-
maining objects (Figure 5l) and completes the assembly (not
shown).

Discussion and Conclusion

Assembling blocks in unstructured environments provides
an ideal domain for investigating the sensitivity of perfor-
mance to undetected or hidden state. Small errors introduced

(a) Place the first block (b) Replace the first block

(c) Place the second block (d) Place the third block

Figure 4: Example pyramid assembly using the proposed ap-
proach. The sequence starts in the upper left and progresses
left to right, top to bottom.

through stochastic actions early on in an assembly can be
magnified as more blocks are placed. By framing the prob-
lem in a hierarchical belief space, we can address errors
during execution without additional recovery structure. Cur-
rently, we only consider actions that place objects at goal
locations. This excludes any actions that would disassem-
ble beyond one step. Future work will investigate allowing
actions that place objects at arbitrary positions in addition to
goals to consider the impact a partial (or possibly full) disas-
sembly would have on the task. This can be important if the
robot (or external agent) induces errors in previously placed
objects that are inaccessible from the current state.

Online error recovery is an open problem that must be
addressed before robots can interact reliably with unstruc-
tured environments. In complex tasks that employ tens or
hundreds of actions in a sequence, a single fault can dis-
able the robot and/or damage the environment. In order to
embed autonomous robots in unstructured worlds, it seems
reasonable to specify a reliability in excess of thousands
of control decisions between failures, where a “failure” de-
notes a situation that requires external reset. To meet these
goals, breakthroughs are required concerning the assessment
of uncertainty—specifically as it puts a task at risk—and in
the formulation of risk averse and error recovery behavior.

The hierarchical belief space framework proposed in this
paper is a promising direction to meet these goals. We
showed that our approach performs statistically significantly
better than a baseline approach when constructing simple
assemblies. Although we demonstrated that our approach is
capable of solving additional assemblies (such as the pyra-
mid) we did not collect sufficient data to draw more sweep-
ing conclusions. Quantifying the performance of our ap-
proach in these settings will be a goal of future work. The
experiments and demonstrations in this paper highlight that
the robot can recover from errors at run-time without ad-
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Figure 5: Outcomes of intentional disturbance by an adversarial agent during a pyramid assembly. The robot begins to construct
the assembly (a-b). The disturbance is introduced in (c), after which the robot is no longer confident it has placed the object
in the correct orientation (d-e). The planner reduces this uncertainty (f-h). After the uncertainty has been addressed, the robot
replaces the object in the assembly in the correct orientation (i-k) then proceeds to complete the rest of the assembly (l).

ditional task or recovery structure by simply taking actions
that condense belief towards goal distributions. By structur-
ing the task hierarchically, the robot is able to reason and ad-
dress errors at multiple levels of precision, from independent
objects to the whole assembly. These results indicate that it
is possible to subsume error recovery, uncertainty and risk,
and task planning in a uniform framework with hierarchies
of belief space planners, enabling more robust autonomous
robots.
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