Twenty-Eighth International Conference on Automated Planning and Scheduling (ICAPS 2018)

A Loosely-Coupled Approach for Multi-Robot
Coordination, Motion Planning and Control

Federico Pecora, Henrik Andreasson, Masoumeh Mansouri, Vilian Petkov
Center for Applied Autonomous Sensor Systems, Orebro University
<name>.<surname>@oru.se

Abstract

Deploying fleets of autonomous robots in real-world appli-
cations requires addressing three problems: motion planning,
coordination, and control. Application-specific features of the
environment and robots often narrow down the possible mo-
tion planning and control methods that can be used. This pa-
per proposes a lightweight coordination method that imple-
ments a high-level controller for a fleet of potentially het-
erogeneous robots. Very few assumptions are made on robot
controllers, which are required only to be able to accept set
point updates and to report their current state. The approach
can be used with any motion planning method for comput-
ing kinematically-feasible paths. Coordination uses heuristics
to update priorities while robots are in motion, and a sim-
ple model of robot dynamics to guarantee dynamic feasibil-
ity. The approach avoids a priori discretization of the envi-
ronment or of robot paths, allowing robots to “follow each
other” through critical sections. We validate the method for-
mally and experimentally with different motion planners and
robot controllers, in simulation and with real robots.

Introduction

Motion planning, coordination and control are all essen-
tial for deploying fleets of autonomous robots. These three
problems are intrinsically dependent: robot motions must be
physically realizable by controls computed by robot con-
trollers, and must also be coordinated in order to avoid colli-
sions and deadlocks. Although methods for addressing these
problems jointly have been studied (see Related Work), real-
world applications often pose further requirements that nar-
row down the range of methods that can be used. Different
motion planning strategies are applicable in different envi-
ronments and for different types of robots (Elbanhawi and
Simic, 2014). Fleets may include different types of robots
with fundamentally different control schemes (Chung, Fu,
and Kroger, 2016), and robot controllers are often certified
black boxes that ship with the robot platform and cannot be
modified. In practice, there are many reasons for considering
motion planning, coordination and control separately.

In this paper, we propose a lightweight, centralized co-
ordination method that implements a high-level controller
for a fleet of potentially heterogeneous robots. Goals can be

Copyright © 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

485

posted to one or more robots while the fleet is in motion. The
method makes very few assumptions on robot controllers,
and is not specific to a particular motion planning method
for computing kinematically (or kinodynamically) feasible
paths. The method avoids the need for a priori discretiza-
tion of the environment or of robot paths, and allows robots
to “follow each other” through critical sections. Also, coor-
dination can be made to account for robot dynamics via a
simple forward model. This enables the use of heuristics for
revising precedences of robots while the fleet is in motion.
We validate the method formally and experimentally with
different motion planners and robot controllers, in simula-
tion and with real robots.

Spatial Envelopes and Critical Points

Let Q be a configuration space, and let p : [0,1] — Q
denote a path for a robot in the configuration space Q,
parametrized using its arc length o. Hence, p(0) denotes
the starting configuration, and p(1) denotes the final con-
figuration of the robot. Given a temporal profile along the
path o = o(t), we refer to p(o) as a trajectory. Given
any set of configurations S C er[o,l] p(o), let inf, S =
arg min ¢ g p'(q) and sup,, S = arg max ¢ g p1(q),ie.,
the configurations among those in .S that are reached first
and last along the path p, respectively. Also, let p[t/’t”] =
Usep o P(0(t)). We use (+); to indicate that variable (-) is
associated to robot j. When there is no ambiguity, the sub-
script § will be omitted.

Let R;(q) be the transformation of robot j in a configu-
ration ¢ € Q. In the example in Figure 1 (top), Ra(q) is a
polygon in R? representing the footprint of robot 2 in pose
q. Given the set of obstacles O, let Q; = {¢ € Q | 3O €

O: R;j(q) N O # 0}, and Q¥ = Q\ Q;.

Definition 1. Given a robot j with configuration space
Qﬁree, a starting configuration ¢°, and a goal configura-
tion ¢, the path planning problem is the problem of find-
ing a path p; such that p;(0) = ¢°, p;(1) = ¢’, and
p;(0) € QYo € [0,1], typically subject to differential
constraints f(q,¢) = 0.

In order for a path to be executable by a robot, a suitable
temporal profile needs to be computed:



Critical section C'jo
infp, Cos

supp, Cog

S

(P2 P, a2(1), Sllpp‘czﬁ

@(t) = infp,Coy

a(t) = pz(l)’ﬂ /

Figure 1: Three robots navigating along paths p,, p,, and
5. Spatial envelopes and critical sections are shown above;
gray arrows indicate precedence constraints; detail of the
precedence constraint regulating robots 2 and 3 as they nav-
igate through Ca3 is shown below.

Definition 2. Given a path p, the trajectory generation
problem is the problem of synthesizing an executable tem-
poral profile o (t) for p, typically subject to differential con-
straints g(q, ¢) = 0.

Trajectory generation is typically done by the robot con-
troller, and is achieved as part of the larger problem of syn-
thesizing control actions for the robot. In doing so, robot
control schemes typically account for robot dynamics (e.g.,
the robot’s mass) and a variety of other constraints (e.g.,
on the range of control inputs). Constraints that account for
robot-robot collisions are seldom part of the control problem
formulation (although exceptions exist, see Related Work),
as they increase the computational effort required to solve
the control problem. In this paper, we are interested in pre-
serving to the greatest extent possible the formulation of the
robot control problem. As we will see, our approach is to
communicate to robot controllers the simplest possible fur-
ther constraints necessary to avoid collisions.

Definition 3. The spatial envelope £(p) of a path p is the
set of robot transformations reached along the path, that is,
E(P) = Ugepo, B(p(0)).

Definition 4. Given two robots 7 and j, we say that paths p,
and p; interfere iff £(p;) N E(p;) # 0.

Definition 5. Given two paths p; and p;, let S = {¢ € Q |
Ri(q)NE(p;) # 0V Rj(q) NE(p;) # 0}, and let C;; be the
decomposition of S into its largest contiguous subsets. Each
set of configurations C;; € Cy; is called a critical section.

It follows from Definition 5 that p, and p; interfere if and
only if C;; # (. Equivalently (see Definitions 3 and 4), p,
and p, interfere iff there exist temporal profiles o; and o;
such that R;(p,(ci(t))) N R;(p;(0;(t))) # 0 for some time
t. Note also that for any C;; € C;; and any o € [0, 1], we

486

have that R;(p;(c)) N Cy; # 0 iff £ < o < w, for some
l,u € [0,1]. The configuration in which robot i begins to
intersect Cy; is inf, Cj; = p;(¢), and the configuration just
before the same robot ceases to intersect Cj; is sup,, C; =
p;(u) (similarly for robot 7).

Figure 1 shows an example of three spatial envelopes with
two critical sections. We assume (as is the case in the exam-
ple) that p; ' (inf,, C;;) > 0 and pfl(suppiCij) < 1forall
robots ¢ and critical sections (5, that is, no robot begins or
terminates its motion in a critical section. The consequences
of relaxing this assumption are further discussed when we
consider deadlocks.

Definition 6. A precedence constraint is a tuple
<pi?pj; gi,q;) expressing the following time-dependent
constraint on the temporal profiles of p; and p;:
4 € = g ¢ p". (1)
A precedence constraint (p,, D Qi g;) can be read as fol-
lows: robot 7 should not navigate beyond configuration g;
along path p; until robot j has reached configuration g;
along path p,. A precedence constraint limits the possible
temporal profiles of robot . Whether or not it does so de-
pends on the time at which it is evaluated (¢) and on the
temporal profile of robot j. In Figure 1 (bottom), robot 2 is
subject to a constraint regulating its access to Cag at time ¢.
We use precedence constraints to regulate access and traver-
sal of critical sections so as to avoid collisions (whereas no
such regulation is necessary outside critical sections). This
poses the following problem:

Definition 7. Given a set of paths P for an arbitrary number
of robots, the coordination problem is the problem of syn-
thesizing, for each pair of interfering paths (p;, p;;) € P,
constraints on the temporal profiles o, (¢) and o (¢) such that
Ri(p;(0i(t))) N R;(p;(0;(t))) = 0, vt.

Remark 1. Let p; and p; be interfering paths for robots ¢
and j with critical sections C;;. The trajectories p,(o;) and
p;(o;) will not collide if o; and o; adhere to the constraint

<pz ; pj ) ianiCij ) Suppj Oij > ) (2)

for each critical section Cj; € C;j.

Each of the above constraints imposes the complete se-
quencing of robots through a critical section C;;: while robot
7 has not exited the critical section, robot ¢ is not allowed to
enter it. Note that these constraints are very conservative: if
the paths of the two robots through a critical section are not
in opposing directions, then it may be possible for two robots
to be in the critical section at the same time without collid-
ing. For this, we require a more granular constraint, where
the configuration ¢; depends on the position of robot j in
the critical section at time ¢. Let reach(p,, p;, t) indicate the
latest configuration that is reachable by robot ¢ along path
p, before its transformation overlaps with that of robot j at
time ¢ on path pj that is:

reach(p;, p;,t) =

sup, {q € pi"" | Ri(q) N R;(p;(0;(1)) =0} (3)



The condition expressed in Remark 1 can be relaxed as fol-
lows:
Remark 2. Let p; and p; be interfering paths for robots i

and j with critical sections C;;. The trajectories p;(o;) and
p;(0;) will not collide if o; and o; adhere to the constraint

<pi7 Dp;,q; (t)7 SUij Cij >7 (4)
for each critical section C;; € C;;, where ¢;(t) =
sup,, {infp, Cij, reach(p;, pj, )}, if supy, Cij & pgo’t]
p;(1), otherwise
(5)

The constraints above impose that no robot ¢ may proceed
beyond the current location of any robot j, while robot j
occupies critical section Cj;. Unlike those in Remark 1,
the constraints formulated in Remark 2 are time-dependent
precedence constraints, where the limit to which robot ¢ is
allowed to navigate is a function of the current progress of
robot 7, as stated in eq. (5). As explained in the next Section,
this results in robots “following” each other through critical
sections whenever possible (see Figure 2).

A set of precedence constraints 7 such that
(pi» 2, 0i(t), supiji ;) € T thus defines an order of

traversal through critical section Cj; by robots ¢ and j.
We indicate this fact with the notation (i <¢,, j) € T,
reflecting the fact that the constraints give priority to j over
i through critical section Cj;.

Definition 8. Let C be the set of all pairwise critical sections
among the paths of an arbitrary number of robots. The set of
precedence constraints 7 is a complete ordering for robots
through C iff (i <¢,; j) € T or (j <¢,; i) € T for all
Cij ecC.

By construction, a complete ordering for all robots elimi-
nates the possibility of collisions:

Lemma 1. Given a set P of paths for an arbitrary number
of robots, the resulting set of all pairwise critical sections C,
and a complete ordering T through C containing constraints
defined as in egs. (3) to (5), if the temporal profile o;(t) of
each robot trajectory p,; adheres to the constraints T, then
the robots will not collide.

Proof. Follows directly from the fact that constraints 7 con-
stitute a complete ordering through C and that all temporal
profiles adhere to the constraints. O

Coordination Algorithm

Algorithm 1 realizes a high-level control loop for regulat-
ing access to critical sections for a fleet of robots, running
at a given frequency 1/7. At every iteration, the state of
robots is sampled (line 5), and a path is computed lead-
ing each idle robot from its current configuration to the re-
quested goal configuration (line 10). Critical sections are
computed by obtaining the pairwise intersections of the
spatial envelopes of all paths (line 13). These, along with
the current state of the robots, are used to revise the set
of constraints 7 to which the temporal profiles should be

487

subject to. It is assumed that temporal profiles are com-
puted/updated by the individual robot controllers upon calls
to the updateTrajectory function. For each robot i, the al-
gorithm assesses whether the constraints require it to yield
in some configuration g; (lines 16—17). If so, the closest such
configuration is found, and provided to the controller along
with its path p; (lines 18—19). If a robot’s trajectory is not
subject to constraints, its controller is notified that it can pro-
ceed until the end of the current path p; (1) (lines 20-21).

Algorithm 1: The coordination algorithm.
Input: a set GG containing goals posted for robots

{1,...,n}.
1 P—0,C—0,T 0
2 while true do

3 t <— getCurrentTime()

4 fori e [1..n|do

5 L S; <— sampleState(z)

6 fori: g, € G AisIdle(s;) do

7 G+ G\{g:}

8 remove all elements relative to robot 7 from P and

C

9 @i < getConfiguration(s;)

10 p; < computePath(q;,g;)

1 P+ PU{p,}

12 for (pi,p#i) € P?do

13 L C «+ C U getIntersections(£(p;),£(p;))
14 T < reviseConstraints(P,C,T,t,{s1,...,Sn})
15 for p, € P do

16 Ti={q¢i|3j:(p;»p;,0,49) €T}

17 if T; # () then

1 ¢ argmin,, .r, p; " (a:)

19 updateTrajectory( pi,qz-dos‘eSt )

20 else

21 L updateTrajectory(p,,p,;(1))
22 while getCurrentTime()—t < T do

23 L sleep(At)

The core of the coordination Algorithm is procedure
reviseConstraints, which decides if, when and where
robots should yield. This is shown in Algorithm 2, which
takes as input the current robot paths, the current time, and
the current state of all robots. For each critical section, it as-
sesses the state of the involved robots (lines 3, 4, 6, 8). De-
pending on the situation, it computes an ordering between
the two robots involved in the critical section. If neither of
the robots involved in a critical section have entered the crit-
ical section, then the choice of which robot should have
access to the critical section first is decided by a function
computeOrdering (line 5). As we show below, this function
can be designed with more or less (or even no) knowledge of
robot dynamics. Note that if either robot has navigated be-
yond a critical section, this will not lead to a constraint. The
configuration beyond which the yielding robot should not
navigate is computed by procedure computeCriticalPoint
(line 10), which implements eqs. (3) to (5). The resulting re-
vised set of constraints is returned to the coordination loop



and used to update robot trajectories as described above.

Algorithm 2: The reviseConstraints algorithm.

Input : aset P of paths for an arbitrary number of
robots; a (possibly empty) set C of pairwise
critical sections for P; a (possibly empty) set 7 of
precedence constraints; the current state s; for
each robot ¢; the current time ¢.

Output: a set of revised precedence constraints Trev .

1 Trey <0

2 for C;; € Cdo

3 if suppiC’ij & pgo’t] A supijij & p‘[jo’t] then

s if infp,Ci; ¢ " A infp Cij & " then

5 | (k,m) computeOrdering(Cyj, T, 84, 8;7)

6 else if infp, C;; € pgo’t] A infp Ci; & pg-o’t] then
7 | (k,m) « (i,9)

8 elseif infp,Cij & pi”" A infp,Ci; € p!”") then
9 | (k,m) « (4, 1)

10 @m < computeCriticalPoint(p,,, Py, t)

u | Trev < Trev U {(Pyn, Prs am, supp, Cij) }

12 return 7;oy

The examples in Figure 2 show four moments during the
execution of trajectories for two robots navigating through a
long critical section, coordinated by Algorithm 1. An arrow
from i to j indicates that 7 contains a precedence constraint
(Pi» P}, qi(t),infp,Cij). The top row shows a first example
in which the robots are navigating in opposing directions,
which leads to one robot waiting until the other has com-
pletely cleared the critical section. In the bottom row, the
robots are tasked to navigate from right to left along the
shown paths. The constraint (p;, p, q1(t), infp, C12) is re-
vised every T's, that is, ¢1 (¢) is updated to reflect the current
state of robot 2 according to eq. (5). This brings about a
“following” behavior, by which the critical point of robot 1
is continuously advanced while robot 2 progresses along p,.

Overall, the assumptions made in our approach are ev-
ident from the algorithm listings above: we assume that
(1) kinematically-feasible reference paths can be computed
via some motion planning method (line 10, Algorithm 1);
(2) robot controllers are capable of reporting their current
pose and whether or not they are idle (lines 5, 6, 9, Algo-
rithm 1, line 5, Algorithm 2); and (3) robot controllers are
capable of updating their reference trajectory with a new set-
point, namely, the critical point beyond which navigation is
forbidden (lines 19, 21, Algorithm 1). We also assume that
robot controllers do not lead robots to poses that lie outside
spatial envelopes (which would invalidate Lemma 1).

A Simple Robot Ordering Policy

Let us assume that we have no knowledge of the dynamics
of the robots in the fleet. We can formulate a simple robot
ordering policy that decides a complete ordering whenever a
new goal is posted, and never changes that ordering in sub-
sequent iterations of the coordination loop. Given a critical
section C; € C, the current states s; and s; of the involved
robots, and the set of precedence constraints 7, the robot

488

ordering (k, m) returned by computeOrdering is one of the
two permutations {(4, ), (j, )}, determined as follows:

(4,7),
(4,7),
(k,m) : 4(sm) =0,

if (5 <cy, i)eT
if (i <ci; j)eT (6)
otherwise

(k,m) =

where ¢(s,,) is the current speed of robot m. The policy
above ensures that an ordering is decided only once, and
never changed thereafter. This ordering is the permutation
(k, m) such that an idle robot never has priority over a non-
idle robot.

Theorem 1. Algorithm I guarantees the absence of col-
lisions if computeOrdering (Algorithm 2, line 5) decides
the ordering of robots at each critical section as specified
in eq. (6).

Proof. The ordering through every critical section will be
imposed for the first time when at least one of the involved
robots is idle (Algorithm 1, lines 6, 19, 21). It is guaranteed
that robot m will be able to respect the resulting precedence
constraint (p,,,, Pi, Gm, supka’ij> because m is idle (hence
does not have to slow down). Algorithms 1 and 2 ensure
that 7 is at all times a complete ordering of robots for crit-
ical sections C, and that the closest yielding configuration
along a robot’s path is communicated to the controller (Al-
gorithm 1, lines 18—19). Hence robots are guaranteed not to
collide if the temporal profiles they compute when receiving
a trajectory update ensure that the critical point is reached
with zero velocity and not passed (Lemma 1). O

Heuristic Robot Ordering Policies

It may be beneficial to base ordering decisions on other fac-
tors (e.g., heuristics that minimize an objective function).
Also, it may be useful to change robot orderings depend-
ing on the observed performance of the fleet, potentially at
every period 7. In order to do this, it is required to assess
the physical realizability of ordering decisions for robots in
motion considering their dynamics. Let

St AL

Giet & gl + gt AL, (8)
gt A & gt AL, ©)

be a forward model of the dynamics of robot ¢, where uf
is an appropriately formed (set of) control(s) at time ¢. Let
(i <¢,, j) € T, and let ug® be the maximum deceleration
control that can be given to robot i. Assuming the forward
model is conservative, given the state s; of robot 7, we can
compute 7 : ¢t = 0 by extrapolation from egs. (7) to (9)
with ¢ = q(s;), ¢ = ¢(s;), and ul = udec. If the resulting
position of robot 7 at time £ is not beyond the beginning of
critical section Cj;,

p; ' (a) < p; ' (infp,Cij), (10)
then it is possible for robot ¢ to yield for robot j at critical
section Cj;.



(d)

p1(1 P (0 { E i 2 alt i qu =p(l 5

Figure 2: Two examples of robots yielding to each other: (a—d) four moments during navigation in opposing directions; (e-h)
four moments during navigation in the same direction. An arrow from ¢ to j indicates that robot ¢’s critical point depends on
the progress of robot j, that is, 7" contains constraint (p;, p;, ¢;(t), sup,, C;) at time ¢.

J

We can exploit conservative forward models to obtain a
dynamic ordering policy that minimizes a heuristic func-
tion h. Given a critical section C};, the current states s; and
s; of the robots, and the set of precedence constraints 7,
let F;; be a set of pairs such that (j,7) € F;; iff eq. (10)
holds, that is, robot ¢+ can come to a stop before entering
critical section C;;. The robot ordering (k,m) returned by
computeOrdering for a critical section Cj; is

(k,m)

(1)

argmin h(sg, Sm, k, m).
(k,m)eF;;

It is easy to see that any such heuristic ordering policy
guarantees the absence of collisions:

Theorem 2. Algorithm 1 guarantees the absence of col-
lisions if computeOrdering (Algorithm 2, line 5) decides
the ordering of robots at each critical section as specified
in egs. (10) and (11) with conservative forward models of
robot dynamics.

Proof. For each critical section, computeOrdering is in-
voked for the first time when at least one of the two involved
robots is idle. Hence, it is guaranteed that a physically real-
izable ordering is computed at least once. The trajectory of
the yielding robot is updated for the first time while the robot
is idle (Algorithm 1, line 19). Therefore, this ordering will
remain feasible as time goes by, and will be considered as a
possible ordering in future invocations of computeOrdering.
A future invocation of computeOrdering may change the
first ordering, but this will occur only if neither robot has
entered the critical section (Algorithm 2, line 4), and the
new ordering is physically realizable according to the for-
ward model. Algorithms 1 and 2 ensure that 7 is at all times
a complete ordering of robots for critical sections C, and
that the closest yielding configuration along a robot’s path is
communicated to the controller (Algorithm 1, lines 18—19).
Therefore, robots will not collide in virtue of Lemma 1. [

A plausible heuristic / is one that estimates the effect of
the proposed ordering (k,m) on the total time to completion
of all paths. Time to completion of a robot is proportional to
the amount of time the robot spends yielding to other robots
— the less yielding, the smoother the performance of the
fleet and consequently the lower the overall time to com-
pletion. This suggests that a good heuristic for minimizing
overall time to completion is the distance heuristic

= p;, ! (infp, Cem) — Py, ' (a(s1)),

hdist (Sk’v Smy k7 m)

489

which gives precedence to the robot that is closest to the be-
ginning of a critical section. This effectively minimizes wait-
ing time, because it avoids that robots traveling in opposing
directions yield to each other unnecessarily. Other heuristics
can be envisaged, e.g., functions that make use of the prece-
dence constraints in 7, or that consider forward models to
account for best-, average- and worst-case performance.

Deadlocks

We consider the issue of liveness, i.e., whether it is guaran-
teed that robots will always reach their goals.

Definition 9. Let 7 be a set of precedence constraints over
robot paths P with critical sections C, and let Dy = (V, E)
be the dependency graph of the constraints, namely:

V:{7’|pzep}7
E={(,j)eV?|3C;,; €C:(j <c,, 1) €T}

If Dy contains a cycle (i, ...
precedence constraints

,im = 11), then T contains

(Piys Piys q{l s Gin)s
<pz27p137 q127 q13>7

(pi,,_ 1,zozm,qzm o Qi)

The cycle is unsafe iff p;jl(qij) > p;, L
[2..m].

If there are no unsafe cycles, there is at least one robot that
does not have to wait for another robot to enter a critical sec-
tion. Once a robot has entered a critical section, Algorithm 2
never changes the priority of that robot through the critical
section (lines 6-9). As a consequence, if no robot path termi-
nates in a critical section, then any robot in a critical section
will eventually exit that critical section. That is,

, ,
q;,) for all j €

Remark 3. If 7 contains no unsafe cycles and robots are not
in critical sections at the beginning and end of their paths,
then any set of temporal profiles that satisfies 7 is deadlock-
free.

Assuming that |G| < 1 at each iteration (at most one goal
is posted per period in Algorithm 1), the simple ordering
policy described in eq. (6) ensures the absence of cycles, as
this entails that any other robot will have priority over the
robot with a new goal, and this ordering will not be changed



Ol < e ——Ts i
oL E—
O
@ T

Figure 3: The paths leading R1 to reach g; and R2 to reach
g2 cause a deadlock (a—c); when a new goal ¢} is posted
for R1, the path computed to reach it may again lead to a
deadlock, unless motion planning is performed considering
the two robots jointly.

in subsequent iterations. This effectively limits the schedul-
ing of robots through critical sections to a fixed ordering,
determined entirely by the order in which goals are posted.
The robot ordering policy in eqs. (10) and (11) does not
guarantee the absence of cycles, even assuming one goal per
period, as orderings can be changed while robots navigate,
based on the heuristic function h. In order to guarantee the
absence of deadlocks, we therefore need to ensure that any
cycle that may appear in 7 is safe. This is problematic if
we relax the assumption that robots are not in critical sec-
tions at the beginning and end of their paths. For instance,
given a critical section Cj; such that p;” 1(suppiCZ-j) =1
(robot ¢ “parks” inside critical section Cj;), allowing robot
j to precede robot i may avert the deadlock.! This will not
resolve the deadlock if robot j’s path also terminates within
the critical section. We may rely on the fact that robot j will
eventually receive a new goal — however, the newly com-
puted path may also lead to a deadlock (e.g., see Figure 3).

It is worth noting that there can be several strategies for at-
tempting deadlock resolution. One is to allow robots to back-
track along their current trajectory to the first pose that is
not in a critical section, assuming one exists. An alternative
strategy is to consider possible placements of other robots
during path computation: when computing the path for robot
i, consider an obstacle R;(g;) for each robot j # ¢ in config-
uration g; such that (p;, p;,¢;,q;) € T. A similar form of

prioritized planning is described by Cép et al. (2015), which
averts deadlocks if the environment is “well-formed”, a no-
tion that corresponds to a specific case of our earlier assump-
tion that pi_l(infpicij) > 0 and pi_l(suppiCij) < 1,Vi,j.

Evaluation

We evaluate our coordination algorithm from three points
of view. Experiment one seeks to assess the scalability of
the system. Experiment two analyzes the impact of the co-
ordination period 7" on fleet performance. Experiment three
shows how coordination copes with the uncertainties of real
robots moving in a physical environment, and how coordi-
nation copes with unforeseen contingencies.

The experiments also demonstrate the use of the
coordination algorithm with different motion planners and
robot controllers. In the first experiment, a low-fidelity sim-
ulation back-end is used, and paths are pre-planned and

'This strategy is similar to that of adding null-segments
in the collision regions of task completion diagrams described
by O’Donnell and Lozano-Perez (1989).

490

Figure 4: A moment during the execution of the first experi-
ment (only 5 robots shown for clarity).

loaded from a library; a slightly higher-fidelity simulator
is used in the second experiment, which accounts for sim-
ple robot dynamics, and paths are computed on the fly with
an off-the-shelf RRT-based motion planner. In the third ex-
periment, we use a lattice-based motion planner and real
robots driven by an MPC-based control scheme. Simu-
lated robot controllers (experiments 1 and 2) employed a
simple trapezoidal velocity profile, with constant acceler-
ation/deceleration of £3ms~2 and maximum velocity of
14ms~"' (50.4 kph). In all experiments, the hqis heuristic
was used, and a linear acceleration model was used as for-
ward model for coordination. The coordination Algorithm,
which ran on a 4-core, 8-thread Intel Core 17-6700HQ CPU,
is implemented in Java and available as open source (Pec-
ora, 2017a). The getIntersections procedure is realized
with the JTS computational geometry library (LocationTech,
2012). A summary video of experiments 2 and 3 is available
online (https://youtu.be/jCgrCVWI8sE).

Scalability

Two tests were performed to evaluate scalability. The first
was designed to provoke frequent critical section computa-
tions (lines 12—13, Algorithm 1). We simulated a fleet of 50
robots, with each robot ¢ initially parked in position A; as
shown in Figure 4. Every 20 seconds, one additional robot
was posted the goal to reach the corresponding position B;
along a precomupted path (spatial envelopes shown in the
figure). Whenever a robot reached position B;, a new goal to
reach position A; was immediately posted (and vice-versa).
Thus, after n x 20 seconds, at most n robots were in motion.
As all paths overlap in a choke point, the addition of the n-th
robot required computing a further (n — 1) critical sections.

The coordination algorithm was run with 7' = Os, i.e.,
the period length was the time needed to perform all oper-
ations in one iteration of the outer loop. Figure 5 plots the
average period length over all iterations against number of
robots in motion. At most 23 robots were in motion at a time
(idle robots were in the process of receiving a new trajectory
while in position A; or B;). The results show that even with
significant critical section computation overhead, coordina-
tion never requires more than 0.5 s per iteration.

The second test was designed to measure the computa-
tional overhead of constraint revision and trajectory updat-
ing (lines 14-21, Algorithm 1). For this purpose, we placed
30 robots in poses A; as shown in Figure 6, and posted 30
goals simultaneously, one for each robot i, to reach pose B;
along the shown sinusoidal path. Whenever a robot reached
B;, a new goal to reach A; along the inverse path was im-
mediately posted (and vice-versa).

Figure 7 plots period length and number of driving robots
at each iteration. When many robots are in motion, frequent
yielding behavior is observed, as critical sections are spread



a g
g 8
s 3

5
8
S

Avg period length (msec)
g8 8

1
3

0
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Driving robots

Figure 5: Average period length (in milliseconds) against
number of robots in motion with a fleet of 50 robots.

Figure 6: A moment during the execution of the second ex-
periment (only 5 robots shown for clarity).

7000 .
Driving robots Period length

6000 |geseeessssseser

5000

4000

3000

8
Driving robots

Period length (msec)
o
5

K

PPN D PP PA R LRPLSERPL S SO P
Period

N

Figure 7: Period length (in milliseconds) against number of
robots in motion with a fleet of 30 robots.

all along the robot paths. However, the computational over-
head is low, as no or few new critical sections are computed,
and revising constraints and updating trajectories require lin-
ear time in the number of robots in motion.

Effect of Coordination Period

The lower the period 7' can be set, the more often con-
straints can be revised and critical points communicated to
the robots, leading to smoother coordinated movements and
better time to completion of trajectories. However, commu-
nicating often may not be possible in real situations. This im-
pacts time to completion: robot controllers will adjust nav-
igation speed to account for dynamics, and revising con-
straints less frequently may lead to missed opportunities
to let faster robots gain access to critical sections. (Recall
that coordination does not use the forward model to predict
when a robot will reach a critical section, but only to assess
whether it is possible for a robot to yield at a critical section.)

We performed an experiment (of which we omit the de-
tails for brevity) to assess the effect of 7" on time to com-
pletion. The test involved five simulated robots whose con-
trollers slow the robots down along path segments with high
curvature. The robots were continuously posted goals in an
environment with obstacles, and paths were computed on
the fly with an off-the-shelf RRT-Connect single-query mo-
tion planner (Kuffner and LaValle, 2000). The fact that some
robots needed to slow down along their path (for reasons

491

Figure 8: RViz view of the two robots in the basement.
Robot 1 is continuously posted goals {gs, g4, g2} in se-
quence, while robot 2 cycles through goals {gs, g5, g1 }- The
two robots used in the experiment are shown in the inset.

other than coordination) led to frequent occasions in which
haist could “change its mind” on which robot was given pri-
ority through a critical section. The coordination period was
varied between 7' = 0.2s and T' = 3 s, and average time to
completion was computed over 20 completed paths, for each
value of 7T'. As expected, we observed that updating criti-
cal points less frequently leads to worse time to completion
of trajectories. However, the increase in time to completion
is linear, indicating that the performance of the fleet does
not decrease drastically when the frequency of updates is re-
duced. A video of the test with 7" = (0.2 s is available online
(https://youtu.be/45rulULIFPs).

Dealing with Real Robots and Contingencies

We now describe a realization of the approach on a
real multi-robot system. Two autonomous forklifts (Linde
Cititrucks) are placed in a 100 m? basement with a corridor
connecting two areas, see Figure 8. Each robot is controlled
by an on-board MPC controller. MPC-based control is well
suited for a wide variety of industrial applications (Qin and
Badgwell, 2003), and in particular for non-holonomic robot
systems (Zhu and Ozgiiner, 2008) like the forklifts used in
this experiment. The robots are localized with an industrial-
grade laser-based system that uses static reflective beacons
as landmarks. Each time a goal was posted, a path to reach it
from the robot’s current pose was computed via a lattice-
based motion planner (Andreasson et al., 2015). All mo-
tion planning and control algorithms were run on the robots,
while the coordination algorithm ran on a laptop connected
to the fleet via a ROS interface (Pecora, 2017b).

In the experiment, the robots start off placed in poses g1
and g2, as shown in Figure 8. We performed a first test to as-
sess the general performance of the method in this physical
robot setup. The robots successfully performed ten cycles,
visiting all goals and yielding at critical sections. Frequent
coordination was required in the corridor connecting the two
larger spaces (navigating from {g1, g2} to g3 and from g5
back to {g1, g2}), as well as when both robots maneuvered
around goals {gs, g4, g5 }. A video of the entire experiment
is available online (https://youtu.be/OFin8S YAsvM).

A second test was performed to verify the behavior of
the system in the presence of contingencies, and to un-



derscore the benefit of continuous constraint revision (us-
ing hgist). While both robots were navigating around goals
{93, 94,95}, a low-level brake command was sent to the
robot controllers, causing the robots to stop moving and
to enter an error state. Nothing was communicated to the
coordinator, which continued to receive feedback only in
the form of the current pose of robots via invocations of
sampleState (line 5, Algorithm 1). Robot 2 was then al-
lowed to recover from the error state. The heuristic had ini-
tially determined that robot 1 should have precedence in ac-
cessing the corridor. However, since robot 1 failed to ad-
vance further (as it remained stuck in an error state), robot
2 was given priority upon a subsequent constraint revision,
leading it to overtake robot 1. A video of the test is available
online (https://youtu.be/dmPUoLuRUnS).

Related Work

The Operations Research and Multi-Agent Systems com-
munities have focused on the Multi-Agent Path Finding
(MAPF) problem, that is, to find the paths for multiple
agents in a given graph from their current vertices to goal
vertices without colliding with other agents, while optimiz-
ing a cost function. Solutions to MAPF scale to hundreds
of agents with reasonable boundaries on optimality. How-
ever, unrealistic assumptions are often made on the agents
and their motions, e.g., point-shaped robots, with little or
no kinodynamic considerations, moving in a simplified grid
representation of the environment (Ma et al., 2017). The use
of these solutions for automation is therefore limited to en-
vironments that can be engineered to suit these assumptions,
e.g., warehouses (Wurman, D’ Andrea, and Mountz, 2007).

Graph-based search methods have been employed with
some success for coordination. Here, the environment is
represented as a graph, whose connectivity represents the
possible motions of robots. Conceived for maze-like, con-
gested environments, these methods are not designed for on-
line readjustment (Wagner and Choset, 2013; Sharon et al.,
2015). It is also assumed that all robots start their missions at
the same time, and trajectories are equated to paths through
the graph, hence are piece-wise continuous. The latter as-
sumption requires robots to stop at each traversed node to
ensure dynamic feasibility. Preiss et al. (2017) and Honig et
al. (2016) post-process the resulting collision-free paths to
transfer them to kinodynamically feasible trajectories.

The Robotics literature reports a variety of approaches
for multi-robot motion planning. Most account for robot-
robot collisions via a joint configuration space derived
from the Cartesian product of the configuration spaces
of all robots (LaValle, 2006). This is computationally ex-
pensive for large fleets, and not adequate for online use.
Some address the coordination problem in coordination
space (O’Donnell and Lozano-Perez, 1989), whose points
represent the progress of all robots along their trajectories.
Using this concept, a provably collision- and deadlock-free
control law for multi-robot systems was proposed by Cép,
Gregoire, and Frazzoli (2016). The approach, however, as-
sumes holonomic, disc-shaped robots, and requires all paths
to be known in order to compute the coordination space

492

(whereas in our approach, goals can be posted dynamically).

The multi-robot motion planning problem can also be for-
mulated in a continuous domain, and continuous-variable
optimization can be used to find feasible trajectories for mul-
tiple robots. These approaches produce smooth and feasi-
ble trajectories for vehicles with non-trivial kinematics (Au-
gugliaro, Schoellig, and D’ Andrea, 2012; Deits and Tedrake,
2015). However, solutions scale badly to a large fleets, due
to the complexity of the optimization problem. Kamel et al.
(2017) formulate an online coordination problem for Mul-
tiple Micro Aerial Vehicles (MAVs) as an optimal control
problem with receding horizon. The approach is decentral-
ized, and accurately accounts for kinodynamic constraints
and uncertainty on MAV position estimates. However, scal-
ability remains under-addressed.

Our approach to multi-robot coordination relies on post-
ing critical points along trajectories to avoid collisions. In a
similar vein, Peng and Akella (2005) adjust the speed pro-
files of robots along specified paths to avoid robot-robot col-
lisions. Unlike our approach, an optimal control strategy is
employed for computing kinodynamically-feasible trajecto-
ries, and collision avoidance constraints for pairs of robots
are upheld by solving a mixed-integer nonlinear program-
ming problem. Bareiss and Van den Berg (2013) propose
a similar approach for coordinating the motions of multi-
ple robots with predefined paths. In both works, the colli-
sion avoidance problem is formulated online, and it is not
assumed that robots start moving concurrently. However,
these approaches require to formulate collision-avoidance
constraints in the robot controllers, so that kinodynamically-
feasible and collision-free target velocities can be computed
online without explicit coordination. Also, neither approach
includes global path planning, i.e., robots are assumed to
move in an obstacle-free environment.

Conclusions and Future Work

We have presented a method for coordinating fleets of au-
tonomous robots that can be used with off-the-shelf mo-
tion planning and control modules. We minimize the as-
sumptions made on these modules, requiring only that
robot controllers can commit to dynamically feasible set-
point updates. We have shown through formal analysis that
the method is sound, discussed how existing deadlock-
avoidance strategies can be included, and evaluated the ap-
proach with simulated and real robot systems.

It is worth noting that spatial envelopes can be defined as
the set of robot transformations that can be reached along the
path, as opposed to those that are reached under the assump-
tion that the robot controller will follow the reference path
perfectly. For this purpose, spatial envelopes can be gener-
alized to flow tubes (Li and Williams, 2008) or trajectory
envelopes (Pecora, Cirillo, and Dimitrov, 2012). The notion
of interference would then take on the meaning of “possible
interference”, capturing the fact that robot controllers can be
given bounds on how much they are allowed to stray from
the reference path. Adapting the coordination Algorithm
to alternative definitions of envelopes reduces to redefining
the computeIntersections procedure and generalizing the
notion of critical point (to, e.g., spatial constraints beyond



which a robot is not allowed to navigate). We will address
this issue in future work.

Acknowledgments. This work is supported by the Se-
mantic Robots Research Profile, funded by the Swedish
Knowledge Foundation (KKS), EU Project ILIAD (GA
no. 732737), and Vinnova project iQMobility.

References

Andreasson, H.; Saarinen, J.; Cirillo, M.; Stoyanov, T.; and
Lilienthal, A. J. 2015. Fast, continuous state path smoothing
to improve navigation accuracy. In Proc. of the IEEE Inter-
national Conference on Robotics and Automation (ICRA).

Augugliaro, F.; Schoellig, A. P.; and D’Andrea, R. 2012.
Generation of collision-free trajectories for a quadrocopter
fleet: A sequential convex programming approach. In
Proc. of the IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS).

Bareiss, D., and Van den Berg, J. 2013. Reciprocal col-
lision avoidance for robots with linear dynamics using Iqr-
obstacles. In Proc. of the IEEE International Conference on
Robotics and Automation (ICRA).

Chung, W. K.; Fu, L.-C.; and Kroger, T. 2016. Motion con-
trol. In Siciliano, B., and Khatib, O., eds., Springer Hand-
book of Robotics. Cham: Springer International Publishing.
163—-194.

Deits, R., and Tedrake, R. 2015. Efficient mixed-integer
planning for uavs in cluttered environments. In Proc. of the
IEEE International Conference on Robotics and Automation
(ICRA).

Elbanhawi, M., and Simic, M. 2014. Sampling-based robot
motion planning: A review. IEEE Access 2:56-77.

Honig, W.; Kumar, T. K. S.; Cohen, L.; Ma, H.; Xu, H.; Aya-
nian, N.; and Koenig, S. 2016. Multi-agent path finding with
kinematic constraints. In Proc. of the International Confer-
ence on Automated Planning and Scheduling (ICAPS).

Kamel, M.; Alonso-Mora, J.; Siegwart, R.; and Nieto, J.
2017. Robust collision avoidance for multiple micro aerial
vehicles using nonlinear model predictive control. In
Proc. of the IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS).

Kuffner, J., and LaValle, S. 2000. RRT-connect: An effi-
cient approach to single-query path planning. In Proc. of the
IEEE International Conference on Robotics and Automation
(ICRA).

LaValle, S. M. 2006. Planning Algorithms. New York, NY,
USA: Cambridge University Press.

Li, H. X., and Williams, B. C. 2008. Generative planning for
hybrid systems based on flow tubes. In Proc. of the Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS).

LocationTech. 2012. JTS topology suite (version 1.13).
https://github.com/locationtech/jts.

493

Ma, H.; Li, J.; Kumar, T. S.; and Koenig, S. 2017. Life-
long multi-agent path finding for online pickup and deliv-
ery tasks. In Proc. of the 16th Conference on Autonomous
Agents and MultiAgent Systems, 837-845.

O’Donnell, P., and Lozano-Perez, T. 1989. Deadlock-free
and collision-free coordination of two robot manipulators.
In Proc. of the IEEE International Conference on Robotics
and Automation (ICRA).

Pecora, F.; Cirillo, M.; and Dimitrov, D. 2012. On mission-
dependent coordination of multiple vehicles under spatial
and temporal constraints. In Proc. of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS).

Pecora, F. 2017a.  An online multi-robot coordination
algorithm based on trajectory envelopes (version 0.1.1).
Source code available at http://github.com/FedericoPecora/
coordination_oru.

Pecora, F. 2017b. The coordination_oru_ros multi-robot
coordination package (version 0.1.0). Source code available
at http://github.com/FedericoPecora/coordination_oru_ros.

Peng, J., and Akella, S. 2005. Coordinating multiple robots
with kinodynamic constraints along specified paths. Inter-
national Journal of Robotics Research 24(4):295-310.

Preiss, J. A.; Honig, W.; Ayanian, N.; and Sukhatme,
G. S. 2017. Downwash-aware trajectory planning for large
quadrotor teams. In Proc. of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS).

Qin, S., and Badgwell, T. 2003. A survey of industrial model
predictive control technology. Control Engineering Practice
11:733-764.

Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artif. Intell. 219(C):40-66.

Cap, M.; Novik, P; Kleiner, A.; and Selecky, M. 2015. Pri-
oritized planning algorithms for trajectory coordination of
multiple mobile robots. IEEE Transactions on Automation
Science and Engineering 12(3):835-849.

Cép, M.; Gregoire, J.; and Frazzoli, E. 2016. Provably safe
and deadlock-free execution of multi-robot plans under de-
laying disturbances. In Proc. of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS).

Wagner, G., and Choset, H. 2013. M*: A complete mul-
tirobot path planning algorithm with optimality bounds. In
Milutinovié, D., and Rosen, J., eds., Redundancy in Robot
Manipulators and Multi-Robot Systems. Berlin, Heidelberg:
Springer. 167-181.

Wurman, P. R.; D’ Andrea, R.; and Mountz, M. 2007. Co-
ordinating hundreds of cooperative, autonomous vehicles in
warehouses. In Proc. of the 19th National Conference on
Innovative Applications of Artificial Intelligence, IAAT’07,
1752-1759.

Zhu, Y., and Ozgﬁner, U. 2008. Constrained Model Predic-
tive Control for Nonholonomic Vehicle Regulation Problem.
In 17th World Congress IFAC, 9552-9557.



