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Abstract

Planning the motion for humanoid robots is a
computationally-complex task due to the high dimen-
sionality of the system. Thus, a common approach is to
first plan in the low-dimensional space induced by the
robot’s feet—a task referred to as footstep planning. This
low-dimensional plan is then used to guide the full motion
of the robot. One approach that has proven successful in
footstep planning is using search-based planners such as A*
and its many variants. To do so, these search-based planners
have to be endowed with effective heuristics to efficiently
guide them through the search space. However, designing
effective heuristics is a time-consuming task that requires
the user to have good domain knowledge. Thus, our goal is
to be able to effectively plan the footstep motions taken by
a humanoid robot while obviating the burden on the user
to carefully design local-minima free heuristics. To this
end, we propose to use user-defined homotopy classes in
the workspace that are intuitive to define. These homotopy
classes are used to automatically generate heuristic functions
that efficiently guide the footstep planner. We compare our
approach for footstep planning with a standard approach
that uses a heuristic common to footstep planning. In simple
scenarios, the performance of both algorithms is comparable.
However, in more complex scenarios our approach allows for
a speedup in planning of several orders of magnitude when
compared to the standard approach.

1 Introduction

Humanoid robots have been shown as an effective platform
for performing a multitude of tasks in human-structured
environments (Kajita et al. 2014). However, planning the
motion of humanoid robots is a computationally-complex
task due to the high dimensionality of the system. Thus,
a common approach to efficiently compute paths in this
high-dimensional space is to guide the search using foot-
step motions which induce a lower dimensional search
space (Gochev et al. 2011a; Garimort, Hornung, and Ben-
newitz 2011). This lower dimensional search space is a six-
dimensional configuration space of a humanoid robot’s feet
consisting of x, y positions and orientation for each foot.

One approach that has been successful in footstep plan-
ning is using search-based planners such as A* (Chestnutt
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Figure 1: (a) A humanoid robot has to navigate to a goal re-
gion denoted by the green cylinder. (b) A user provides two
reference paths in a 2D projection of the workspace. (c) A
color map of the heuristic values for each homotopy-based
heuristic. A single heuristic is constructed for each homo-
topy class of the reference paths. (d) The footstep planner
uses both heuristics to quickly find a path to the goal region.

et al. 2005; 2007) and its anytime variants (Garimort, Hor-
nung, and Bennewitz 2011; Hornung et al. 2012). To effec-
tively plan footstep motions, these planners require heuris-
tics to guide the search. Effective heuristic functions should
avoid regions where the search ceases to progress towards
the goal or when this progress is extremely slow (a region
often referred to as a “local minima” or a “depression re-
gion” (Ishida 1992)).
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Consider, for example, Fig. 1.a. Planning a path that
passes between the couch and the table is either infeasible
or may require expanding a massive number of states in or-
der to precisely capture the sequence of configurations in
which the robot does not collide with obstacles. The afore-
mentioned challenges make constructing effective heuris-
tics, that can intelligently reason about areas of the environ-
ment to avoid, a time consuming and tedious task that often
requires strong domain knowledge.

In this work we effectively plan footstep motions for a
humanoid robot while eliminating the need to manually de-
sign heuristics. Our key insight is that providing sketches of
desirable trajectories, that can be represented as homotopy
classes, can be used to automatically generate heuristic func-
tions. Ideally, these homotopy classes would not be user-
defined, but also automatically generated. However, this is
out of the scope of our work. Instead, we present a method
for generating heuristic functions given homotopy classes.
We simultaneously use multiple such heuristics to alleviate
the requirement of capturing the different complexities in-
duced by an environment in one single heuristic while main-
taining guarantees on completeness.

Specifically, for each user-defined homotopy class in the
workspace, we generate a heuristic function by running a
search from the goal to the start configuration while restrict-
ing the search to expand only vertices within the specified
homotopy-classes. We call this algorithm Homotopy-Based
Shortest Path, or HBSP and detail it in Sec. 4. Addition-
ally, we assume the existence of a simple-to-define heuristic
which is admissible and consistent1.

These heuristics are then used in Multi-Heuristic A*
(MHA*) (Aine et al. 2016) which is a recently-proposed
method that attempts to leverage information from multiple
heuristics. Roughly speaking, MHA* simultaneously runs
multiple A*-like searches, one for each heuristic, and com-
bines their different guiding powers in different stages of the
search. MHA* is detailed in Sec. 3 and the use of MHA* to-
gether with HBSP is detailed in Sec. 4.

While our approach requires computing multiple heuris-
tics before the planner can be executed, this can be done
efficiently and thus takes a small fraction of the planning
time. Moreover, the extra computation invested in comput-
ing these heuristics allows to efficiently guide the footstep
planner. In some queries (Sec. 5), we present a speedup of
several orders of magnitude when compared to standard ap-
proaches.

1.1 Motivating Example

Consider Fig. 1.a where a humanoid robot has to navigate to
the goal region denoted by the green cylinder. Footstep plan-
ning for the humanoid plans in a 6D space defined by the
position and orientation of each foot. We calculate a simple
heuristic by running a Dijkstra search backwards from the

1A heuristic function is said to be admissible if it never overes-
timates the cost of reaching the goal. A heuristic function is said to
be consistent if its estimate is always less than or equal to the es-
timated distance from any neighboring vertex to the goal, plus the
step cost of reaching that neighbor.

goal vertex qgoal to every vertex in the 2D workspace. When
executing the footstep planner with only this backward 2D
Dijkstra heuristic HDijk, the search is guided through the nar-
row passage between the couch and table, as it is the short-
est path to the goal region. However, it is not feasible for the
robot to pass through this region. After spending a signifi-
cant amount of time expanding near the narrow passage, the
heuristic eventually guides the search around the obstacles.

HBSP, on the other hand, takes guidance from the user to
determine which homotopy classes the heuristic functions
should guide the search through. In our example, it was un-
clear to the user whether the robot could pass through the
narrow passage between the couch and table. Thus, the user
provided two reference paths: (i) around the obstacles and
(ii) through the narrow passage (Fig. 1.b). While the path
the footstep planner produced (Fig. 1.d), using both HDijk
and the homotopy-based heuristics, is not the shortest path,
there was approximately a 447 times speedup in the plan-
ning time. It is also important to note that the performance of
the planner is not hindered by poor quality heuristics. While
both HDijk and the second homotopy-based heuristic sought
to guide the search through the narrow passage, one infor-
mative heuristic quickly guided the search around the obsta-
cles.

2 Related Work

In this section we describe related work on using search-
based planning algorithms for footstep planning. In Sec. 2.1
we describe commonly-used search-based planning algo-
rithms in the context of footstep planning. We also de-
scribe previous work on dynamically generating heuristics.
In Sec. 2.2 we briefly mention how homotopy classes have
been used in the broader context of motion planning.

2.1 Footstep Planning Using Search-Based
Planning

Several approaches for footstep planning have been pro-
posed over the last few years. Chestnutt et al. were the first
to propose using A* to plan around and over planar obsta-
cles (Chestnutt et al. 2005; 2007). However, the heuristic
function used was not consistent, and thus could suffer from
long planning time.

Indeed, as mentioned in Sec. 1 it can be extremely diffi-
cult to hand craft heuristics that can both efficiently guide
the footstep planner and maintain guarantees on the qual-
ity of the solution obtained. Thus, one approach to speed up
footstep planning without manually designing informative
heuristics was to use anytime variants of A* with simple-
to-define heuristics. This was done using D* lite (Garimort,
Hornung, and Bennewitz 2011) or using ARA* and R* (Hor-
nung et al. 2012)

These anytime algorithms sacrifice optimality for speed.
An alternative approach to obtain efficient planners would
be using informative heuristics. One approach to obtain such
informative heuristics is applying different learning meth-
ods (Virseda, Borrajo, and Alcázar 2013; Arfaee, Zilles, and
Holte 2011; Thayer, Dionne, and Ruml 2011; Bhardwaj,
Choudhury, and Scherer 2017). While highly effective, this
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approach requires a large amount of training data and a good
feature set for training.

2.2 Motion Planning Using Homotopy Classes

Homotopy classes have been frequently used to model the
motion of a robot tethered to a fixed base point (Bhat-
tacharya, Likhachev, and Kumar 2012; Grigoriev and Slis-
senko 1998; Salzman and Halperin 2015; Bhattacharya et al.
2015). The presence of obstacles introduces geometric and
topological constrains for these robots. The constraints can
create scenarios where the goal can only be reached if the
cable configuration lies within a specific homotopy class,
thereby making homotopy-based motion planning incredi-
bly useful.

Homotopy classes have also been used in the context
of human-robot interaction where a human wishes to re-
strict a robot’s motion to specific homotopy classes (Yi,
Goodrich, and Seppi 2016). For general approaches to ex-
plore and compute shortest paths in different homotopy
classes, see (Bhattacharya 2010; Kim et al. 2013; Bhat-
tacharya, Likhachev, and Kumar 2012).

3 Algorithmic Background

In this section we describe the algorithmic background nec-
essary to understand our approach. In Sec. 3.1 we formally
define the notion of homotopy classes and how to efficiently
identify if two curves are in the same homotopy class—a
procedure that will be used in our homotopy-based shortest-
path algorithm (HBSP). In Sec. 3.2 we provide background
on MHA* which we will use to compute footstep plans by
incorporating the heuristics computed by HBSP.

3.1 Homotopy classes of curves

Informally, two continuous functions are called homotopic
if one can be “continuously deformed” into the other
(See Fig. 2a). In general, uniquely identifying the homotopy
class of a curve is non-trivial; however, if both curves are
embedded in the plane, a straightforward characteristic ex-
ists to identifying and computing the homotopy class of a
curve (Armstrong 2013).

Specifically, let W2 ⊂ R
2 be a subset of the plane (in

our work this will be a two-dimensional projection of the
three-dimensional workspace where the robot moves) and
let O = {O1, ...,Om} be a set of obstacles (in our work,
these will be projections of the three-dimensional workspace
obstacles).

In order to identify if two curves γ1, γ2 ∈ W2 \ O
that share the same endpoints are homotopic we use the
notion of h-signature (see (Grigoriev and Slissenko 1998;
Bhattacharya, Likhachev, and Kumar 2012; Salzman and
Halperin 2015)). The h-signature uniquely identifies the ho-
motopy class of a curve. That is, γ1 and γ2 have identical
reduced words if and only if they are homotopic.

In order to define the h-signature, we choose a point pk ∈
Ok in each obstacle such that no two points share the same
x-coordinate. We then extend a vertical ray or “beam” bk
towards y = +∞ from pk. Finally, we associate a letter tk
with beam bk (See Fig. 2b).

Now, given γ, let bk1 , . . . , bkm be the sequence of m
beams crossed when tracing γ from start to end. The sig-
nature of γ, denoted by s(γ), is a sequence of m letters. If
γ is intersected by the beam bk, by crossing it from left to
right (right to left), then the i’th letter is tk (t̄k, respectively).
The reduced word, denoted by r(s(γ)), is constructed by
eliminating a pair of consecutive letters in the form of tk t̄k
or t̄ktk. The reduced word r(s(γ)) is a homotopy invari-
ant for curves with fixed endpoints. It will be denoted as
h(γ) = r(s(γ)) and called the h-signature of γ.

As we will see, our search algorithm HBSP will incre-
mentally construct paths. After they are fully constructed,
they will be in the same homotopy class as a given refer-
ence path. Thus, it will be useful to understand how the
h-signature of a curve γ, which is a concatenation of two
curves γ1, γ2 can be easily constructed. This reduced signa-
ture of γ = γ1 ·γ2 is simply the reduced signature of the con-
catenation of two curves’ signatures h(γ) = r(s(γ1)·s(γ2)).

3.2 Multi-Heuristic A* (MHA*)

The performance of heuristic search-based planners, such
as A*, depends heavily on the quality of the heuristic func-
tion. For many domains, it is difficult to produce a single
heuristic function that captures all the complexities of the
environment. Furthermore, it is difficult to produce an ad-
missible heuristic which is a necessary condition for provid-
ing guarantees on solution quality and completeness.

One approach to cope with these challenges is by us-
ing multiple heuristic functions. MHA* (Aine et al. 2014;
2016) is one such approach that takes in a single admis-
sible heuristic called the anchor heuristic, as well as mul-
tiple (possibly) inadmissible heuristics. It then simultane-
ously runs multiple A*-like searches, one associated with
each heuristic, which allows to automatically combine the
guiding powers of the different heuristics in different stages
of the search.

Aine et al. (Aine et al. 2014; 2016) describe two variants
of MHA*, Independent Multi-Heuristic A* (IMHA*) and
Shared Multi-Heuristic A* (SMHA*). Both of these variants
gurantee completeness and provide bounds on suboptimal-
ity. In IMHA* each individual search runs independently of
the other searches while in SMHA*, the best path to reach
each state in the search space is shared among all searches.
This allows each individual search to benefit from progress
made by other searches. This also allows SMHA* to com-
bine partial paths found by different searches which, in many
cases, makes SMHA* more powerful than IMHA*. There-
fore in this work we will use SMHA*. For brevity we will
refer to SMHA* as MHA*.

4 Homotopy-Based Footstep Planning

Our footstep planner is comprised of HBSP, which gener-
ates the heuristic functions from a set of user-defined homo-
topy classes, and MHA*, which simultaneously uses these
heuristics to find a feasible path. We begin by defining a
taxonomy of the different spaces we consider (Sec. 4.1).
We then detail our footstep planner (Sec. 4.2) and HBSP
(Sec. 4.3).
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(a) (b) (c)

Figure 2: (a) γ1 and γ2 are in the same homotopy class, however, γ3 is in a different homotopy class because of obstacle O2.
(b) The signature for this curve is t2t3t4t̄4t̄5. The homotopy invariant of h-signature of curve γ is t2t3t̄5. (c) Gh

W2
has vertices

(qu, su) and (qu, su · t1) that have the same configuration qu but different signatures su and su · t1.

4.1 Taxonomy of Search Spaces

Search spaces Let W3 ⊂ R
3 be the three-dimensional

workspace in which the robot operates and W2 ⊂ R
2

be its two-dimensional projection. Let Xrobot and Xfootstep

be the configuration spaces of the humanoid robot2 and
the robot’s footsteps, respectively. Specifically, Xrobot is
high-dimensional (over several dozens of dimensions),
while Xfootstep is a (relatively) low-dimensional space. In this
work Xfootstep is the six-dimensional space SE(2) × SE(2)
denoting the position and orientation of each of the robot’s
feet. Let M : Xfootstep → W2 be a mapping projecting
footstep configurations to the workspace’s projection. In
this work we use the mapping M(x1, y1, θ1, x2, y2, θ2) =
((x1 + x2)/2, (y1 + y2)/2). Finally, we assume that each
space X induces a graph GX = (VX , EX ) embedded in X .
For example, the vertices can be defined by overlaying the
space X with a grid and edges connecting every two nearby
vertices.

Augmented graphs In this work, we use homotopy
classes to guide our footstep planner. Thus, we will use the
notion of augmented graphs which, for a given graph G and
a goal vertex ugoal, capture the different homotopy classes to
reach every vertex in G from ugoal. To define the augmented
graphs, we first need to define the signature set S(O) of a set
of obstacles O. Let B(O) be the vertical beams associated
with the obstacles in O. The signature set is defined as all the
different h-signatures that can be constructed using B(O).
Note that S(O) is a countably infinite set.

The first graph we will augment is GW2
. Let Gh

W2
=(Vh

W2
, Eh

W2

)
denote this augmented graph induced by the

projected workspace W2. The set of vertices is defined as
Vh
W2

= VW2
× S(O). Namely, it consists of all pairs (q, s)

where q is a vertex in VW2 and s ∈ S(O) is a signature. The

2Planning in Xrobot is out of the scope of this paper. We mention
this space to provide the reader with a complete picture of all the
search spaces relevant to planning the motion of a humanoid robot.

set of edges is defined as

Eh
W2

= {((qu, su), (qv, sv)) |(qu, qv) ∈ EW2

and h(su · sW2
u,v ) = h(sv)}.

Here sW2
u,v is the signature of the trajectory in W2 associ-

ated with the edge (qu, qv). Namely, Eh
W2

consists of all
edges (u, v) connecting vertices such that (i) there is an edge
in EW2

between the qu and qv and (ii) the reduced signa-
ture obtained by concatenating su with the signature of the
trajectory associated with the edge (qu, qv) yields sv . It is
important to note that Gh

W2
can have vertices that have the

same configuration q ∈ VW2 but with different signatures
(see Fig. 2c).

Similar to Gh
W2

, the augmented graph induced by Xfootstep

is denoted by Gh
Xfootstep

=
(
Vh
Xfootstep

, Eh
Xfootstep

)
. Here, the set

of vertices is defined as Vh
Xfootstep

= VXfootstep × S(O) which
is analogous to the definition of Vh

W2
. The set of edges is

slightly more complex because Gh
Xfootstep

is not embedded in
the plane. Specifically, Eh

Xfootstep
is defined as

Eh
Xfootstep

= {((qu, su), (qv, sv)) |(qu, qv) ∈ EXfootstep

and h(su · sXfootstep
u,v ) = h(sv)}.

Here s
Xfootstep
u,v is the signature of the trajectory in W2 asso-

ciated with the projection of the edge (qu, qv). Namely, let
q̃u = M(qu) and q̃v = M(qv) be the projections of the
two footstep vertices qu and qv , respectively and similarly
let (q̃u, q̃v) denote the projection of the trajectory associated
with edge (qu, qv). Signature s

Xfootstep
u,v is simply the signature

of (q̃u, q̃v).

Heuristic functions A heuristic function for the footstep
planner is a mapping H : Vh

Xfootstep
→ R≥0. In this work,

we use the projected workspace W2 to guide the footstep
planner. Specifically, we use W2 with no homotopy-based
information to obtain a simple heuristic HDijk as well as a
set of heuristics defined using a set of homotopy classes.
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Figure 3: Overview of algorithmic approach for footstep
planning.

The heuristic HDijk is obtained by running a Dijkstra
search from the projection of the goal configuration to ev-
ery vertex in GW2

. This heuristic is often referred to as a
“backward 2D Dijkstra heuristic”.

Our homotopy-based heuristics are defined using map-
pings ds : Vh

W2
→ R≥0 (one for each signature s ∈ S).

Each mapping associates distances with augmented vertices
of the projected workspace. Here, a heuristic function will
be defined as Hs(qu, su) = ds (M(qu), su) and ds(u) is
the shortest path to reach the goal from vertex u by follow-
ing the homotopy path defined by s.

4.2 Algorithmic approach

In this section we describe our algorithmic approach for
footstep planning which is depicted in Fig. 3. The algorithm
starts by obtaining a set of user-defined homotopy classes
in the projected workspace W2 using an intuitive graphical
user interface (see Fig. 4). Each homotopy class is repre-
sented by a signature s. Let S represent the set of all such
signatures. Recall that each signature s ∈ S is used to com-
pute a heuristic Hs by computing a distance function ds us-
ing our Homotopy-Based Shortest Path (HBSP) algorithm
(Fig. 3, red boxes).

Our footstep planner (Fig. 3, blue box) runs a MHA*-
search over the augmented graph Gh

Xfootstep
guided by the set of

heuristics {Hs|s ∈ S} as well as the anchor heuristic HDijk.
Since {Hs|s ∈ S} is constructed based on user-defined ho-
motopy classes, it is possible for the user to provide ho-
motopy classes such that every heuristic biases the search
towards regions where there is no feasible path. However,
since we are using MHA*, the algorithm is complete and the

user cannot prevent a path from being found. Futhermore,
since our anchor heuristic is admissible, we maintain guar-
antees on suboptimality.

It is important to note that the distance functions {ds|s ∈
S} are not pre-computed for every vertex u ∈ Vh

W2
by

HBSP (this would be infeasible as Vh
W2

is not a finite set).
Instead, they are computed in an on-demand fashion. Specif-
ically, given a vertex u ∈ Vh

W2
and a signature s, HBSP

checks if ds(u) has been computed. If it has, the value is
returned and if not the algorithm continues to run a search
from its previous state until ds(u) has been computed. This
process is depicted in Fig. 3 by the two different edges leav-
ing the red box to its left.

4.3 Homotopy-Based Shortest Path

We now describe our algorithm for computing homotopy-
based shortest paths, or HBSP. Given a goal configura-
tion qgoal and the graph GW2

, HBSP incrementally con-
structs the augmented graph Gh

W2
by running a variant of

Dijkstra’s algorithm from the vertex (qgoal,∧). Here, ∧ de-
notes the empty signature. For all vertices in Vh

W2
that were

constructed, the algorithm maintains a map dist : Vh
W2

→
R≥0 which captures the cost of the shortest path to reach
vertices in Vh

W2
from the vertex (qgoal,∧). Given a vertex

(qu, su) ∈ Gh
W2

and some user-defined signature s, this map
dist is used to compute the mapping ds (which, in turn, is
required to compute the heuristic function Hs). Specifically,

ds(qu, su) = dist[qu, h(s · su)]. (1)

Note that s corresponds to a signature of the path defined
from the vertex (qgoal,∧) towards the vertex (qstart, s), where
qstart is a projection of the robot’s start configuration. How-
ever, su is computed by the search as it progresses from
(qstart,∧) to (qgoal, s). Therefore h(s · su) corresponds to the
remaining portion of the homotopy-based path specified by
s after we remove its prefix that corresponds to su. For ex-
ample, let s = t̄3t̄2t̄1 and su = t1t2, then h(s · su) =
h(t̄3t̄2t̄1t1t2) = t̄3. Here, t̄3 is the signature of remaining
portion of the path to the goal specified by s.

As the graph Gh
W2

contains an infinite number of ver-
tices, two immediate questions come to mind regarding this
Dijkstra’s-like search:

Q.1 When should the search be terminated?

Q.2 Should the search attempt to explore all of Gh
W2

?

We address Q.1 by only executing the search if it is
queried for a value of ds which has not been computed.
Thus, the algorithm is also given a vertex u and runs the
search only until ds(u) is computed. This approach turns
HBSP to an online algorithm that produces results in a just-
in-time fashion. It is important to note that when the search
is terminated, its current state (namely its priority queue) is
stored. When the algorithm continues its search, it is simply
done from the last state encountered before it was previously
terminated.

We address Q.2 when computing the successors of a ver-
tex described in Alg. 2 by restricting the vertices we expand.
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Algorithm 1 Homotopy-Based Shortest Path Algorithm
1: function HBSP(Q, GW2

, qg , u, S) � u = (qu, su)
2: if Q = ∅ and dist[(qg,∧)] = NIL then
3: dist[(qg,∧)] ← 0
4: Q.add with priority((qg,∧), 0)
5: while Q 	= ∅ do
6: v ← Q.extract min() � v = (qv, sv)
7: if v = u then
8: return (Q, dist[u])

9: Vsucc ← succ(v,S,GW2
)

( )
if v = u then

return (Q, dist[u])

VsuccVV ← succ(v,S,GW2
)

10: for v′ ∈ Vsucc do � v′ = (q′v, sv)
11: alt ← dist[v] + length(v,v′)
12: if dist[v′] = NIL then
13: dist[v′] ← alt
14: Q.add with priority(v′, dist[v′])
15: else if alt < dist[v′] then
16: dist[v′] ← alt
17: Q.decrease priority(v, dist[v′])
18: return (Q,∞)return (Q,∞)

Algorithm 2 HBSP Successor Function
1: function succ(u, S, GW2 ) � u = (qu, su)
2: Vnbr ← neighbors(u)
3: if S 	= ∅ then
4: S ← suffixes(S)
5: for v ∈ Vnbr do � v = (qv, su,v)
6: if valid(v) then
7: if h(su · su,v) /∈ S then
8: Vnbr.remove(v)
9: else

10: v = (qv, su · su,v)

if h(su · su,v) /∈// S then
VnbrVV .remove(v)

else
v = (qv, su · su,v)

11: else
12: Vnbr.remove(v)
13: return Vnbr

if S 	=		 ∅ then
S ← suffixes(S)

During the search, when we expand a vertex u ∈ Vh
W2

in
our Dijkstra-like search, we prune away all its neighbors
v ∈ Vh

W2
that have invalid signatures h(su · su,v) (Alg. 2,

lines 7-10). We define a valid signature h(su · su,v) as one
that is a suffix of a signature s ∈ S. Let S be the collection
of all such signatures. That is, any signature h(su · su,v),
such that s could potentially be reached as the search pro-
gresses. More specifically, these suffixes identify the order
in which certain beams can be crossed to reach a signature
s ∈ S. For example, in Fig. 2b, S = {t2t3t̄5} and S of S
is {t2t3t̄5, t2t3, t2,∧}. Here, t1 /∈ S as this beam does not
need to be crossed to reach t2t3t̄5. Additionally, t3t2 /∈ S as
the beams need to be crossed in the opposite order to obtain
the signature t2t3t̄5.

The high-level description of our algorithm is captured in
Alg. 1. The algorithm is identical to Dijkstra’s algorithm3

except that (i) when the cost dist[u] is returned, the priority

3The only places where HBSP differs from Dijkstra’s algo-
rithm are the lines highlighted in blue.

Figure 4: Example of interface to provide reference paths for
constructing homotopy-based heuristics.

queue Q is also returned (Lines 7-8, 18) and (ii) the way
the successors of an edge are computed (Line 9). Returning
the queue Q allows the algorithm to be called in the future
with Q in order to continue the search from the same state.

5 Experiments and Results

To test the capabilities of the footstep planner with various
heuristics, we task a humanoid robot to plan footstep mo-
tions to a goal region in a house environment. We run our
planner on 2 types of queries varying in their degree of com-
plexity and evaluate the performance of our footstep planner
by comparing the overall planning times (heuristic compu-
tation times and planning times) when using 3 different sets
of heuristic functions:

S.1 One backward 2D Dijkstra heuristic HDijk.

S.2 One backward 2D Dijkstra heuristic HDijk and one
homotopy-based heuristic Hs.

S.3 One backward 2D Dijkstra heuristic HDijk and three
homotopy-based heuristics {Hs|s ∈ {s1, s2, s3}}.

5.1 Test Setup

We run our footstep planner with each set of heuristic func-
tions on 20 easy and 20 complex queries. Each of the easy
queries have randomly generated start and goal configura-
tions. The path between these configurations in the easy
queries are not obstructed by narrow passages. The complex
queries, on the other hand, have hand-picked start and goal
configurations and paths between these configurations are
obstructed by at least one narrow passage that the robot may
or may not be able to pass through.

To generate our homotopy-based heuristic functions we
developed an interface that displays a projection of the in-
flated obstacles in the environment as well as the start (red
circle) and goal configuration (green circle) (Fig. 4). The
user can then draw paths from the goal to start configura-
tion. All the signatures for the the reference paths are auto-
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Figure 5: Box plots of heuristic computation time (a) and
planning time (b) for the different sets of heuristic functions
S.1-S.3 for easy ( ) and complex ( ) queries. The middle
line in the box plot represents the median. We can see (a)
that computing heuristics for S.2 and S.3 incurs slightly
more computation time when compared to S.1. However,
this only slightly increases the planning time while for com-
plex queries yields a speedup by several orders of magnitude
(see also Fig. 6). Notice that y-axis (time) is in logarithmic
scale.

matically generated and are used to compute the homotopy-
based heuristic functions.

5.2 Easy Queries

In the easy queries the overall performance of the footstep
planner for all sets of heuristic functions is comparable. The
time taken to compute the homotopy-based heuristic func-
tions is slightly longer than that of HDijk. Therefore, the
overall planning time while using S.2 or S.3 is either sim-
ilar to or slightly less than the planning time when using S.1
(See Fig. 5).

5.3 Complex Queries

In the complex queries there was a speedup in planning of
several orders of magnitude when using S.2 or S.3 in com-
parison to S.1. While it took longer to compute S.2 and S.3,
these times were effectively negligible when comparing the
planning times to when S.1 was used (See Fig. 5).

Additionally, when using S.2 there were several scenar-
ios where there was a 16 to 256 times speedup in plan-
ning times and a few scenarios with more than 256 times
speedup in planning times (Fig. 6.a). When using S.3 there
are many scenarios with far greater speedup in planning
times in comparison to S.2 (Fig. 6.b) . Furthermore, many
of the heuristic functions in S.3 were of poor quality, how-
ever, with at least one informative heuristic function for each
scenario, the footstep planner was able to very quickly guide
the search to the goal.

The footstep planner not only takes a very long time to
find a path when using S.1 but also produces very poor qual-
ity paths. In these scenarios, S.1 attempts to guide the search
through a narrow passage that the robot cannot pass through
and expands near that region for a significant amount of
time. Eventually, S.1 guides the search around the obstacles

(a) (b)

Figure 6: Speedup in total planning time (search time and
heuristic computation) between S.2 and S.1 (a) and S.3 and
S.1 (b). The running times for easy ( ) queries is comparable
among all algorithms (all points are close to the line speedup
≤ 1×). However, in complex ( ) queries there is a speed up
in planning times of 16 to more than 256 times when using
S.2 and S.3. Notice that y-axis is in logarithmic scale.

and forms an unnecessary loop in the path (Fig. 7.a) while
S.2 circumvents the narrow passage and moves towards the
goal (Fig. 7.b).

6 Discussion

We presented an approach for automatically generating
heuristic functions given user-defined homotopy classes to
effectively plan footstep motions for a humanoid robot. We
showed that generating informative heuristics can signifi-
cantly reduce planning times. Additionally, we presented an
approach that allows users to easily construct these heuris-
tics.

Our experiments showed that in easy queries the perfor-
mance of the footstep planner, when using the heuristics
generated through our approach, is comparable to that of the
baseline approach. However, in complex queries we showed
that when the footstep planner uses the heuristics gener-
ated through our approach, it plans several orders of mag-
nitude faster than the baseline approach. Additionally, we
showed that providing the footstep planner heuristic func-
tions of poor quality does impede its performance. Fur-
thermore, while this is out of the scope of our paper, our
approach produced paths that the full-dimensional planner
could use to guide its search (Gochev et al. 2011b). The
baseline approach, on the other hand, produced very obscure
paths that made unnecessary loops. These paths did not ef-
fectively guide the full-dimensional search.

While our results are promising, this work can be more
cleverly applied within this domain. We believe there are
three promising directions that may improve the quality of
our footstep planner. First, we can automatically generate
homotopy classes for our heuristic functions to allow for a
fully autonomous planner. Second, we can use our approach
only when the planner ceases to make progress towards the
goal (Islam, Salzman, and Likhachev 2017). For example, in
easy queries our approach does not improve planning times;
it only has an impact on complex queries. Therefore we can

506



High

Low

(a)
High

Low

(b)

Figure 7: The color map of the heuristic values and the path produced by the footstep planner when using S.1 (a) and S.2 (b).
Notice (color map values) that the heuristic values for S.1 drive the search to a narrow passage while the heuristics value for
S.2 circumvent it. Furthermore, notice that since HBSP is called on demand, the heuristic values for S.2 were only computed
for a small portion of the space.

utilize our approach only when the planner gets stuck to
minimize planning and heuristic computation times. Finally,
our approach is currently not applicable to scenarios where a
robot may have to climb stairs or ladders as we can no longer
project the workspace. We can extend this approach to make
it applicable to a variety of complex environments.
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