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Abstract

Effective placement of emergency response vehicles (such as
ambulances, fire trucks, police cars) to deal with medical,
fire or criminal activities can reduce the incident response
time by few seconds, which in turn can potentially save a
human life. Owing to its adoption in Emergency Medical
Services (EMSs) worldwide, existing research on improving
emergency response has focused on optimizing the objective
of bounded time (i.e. number of incidents served in a fixed
time). Due to the dependence of this objective on temporal
uncertainty, optimizing the bounded time objective is chal-
lenging. In this paper, we propose a new objective referred to
as the bounded rank (which is the number of incidents served
by a base station whose rank is below a bounded rank value)
that has nice theoretical properties and serves as an indirect
substitute for the bounded time objective.
To understand the theoretical properties of this new objective
in the context of the spatio-temporal uncertainty associated
with emergency incidents, we first provide a Poisson Point
Process (PPP) model of the emergency response problem. We
then formally define the bounded rank objective in the context
of the model and demonstrate that the bounded rank metric
is monotone submodular. Due to the monotone submodular-
ity of the objective, we can propose a greedy approach that
can provide an a priori guarantee of 50% from optimal and
a much tighter posteriori guarantee. Practically and more im-
portantly, we demonstrate that optimizing this bounded rank
objective on simulators validated on real data (and not just on
the abstract PPP model) provides better results than the best
known approach for optimizing bounded time objective.

1 Introduction

To handle medical, fire or crime related emergencies, Emer-
gency Response Vehicles (ERVs) like ambulances, fire res-
cue vehicles and police cars are strategically positioned at
a set of base stations throughout the city. Since time can be
critical in responding to such emergency situations, we need
to optimize the placement of these ERVs so they can reach
incident locations within the fastest possible time. Specifi-
cally, a Key Performance Indicator (KPI) employed by many
emergency management systems worldwide is to maximize
the number of incidents that have a response time less than
a fixed time value (which is dependent on the nature of the
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emergency). This is referred to as the bounded time objec-
tive, and the challenge is to increase the number of incidents
that have a response time lower than the bounded time while
considering the spatio-temporal uncertainty associated with
the occurrence of emergency incidents.

Emergency management systems have been extensively
studied in the literature, specifically in the context of am-
bulance response1. There are two main threads of existing
research. The first thread has focused on the dispatch of am-
bulances from base locations and the second thread has fo-
cused on the allocation and reallocation of ambulances to
base stations. A survey of existing approaches (Brotcorne,
Laporte, and Semet 2003) reveals that much of the previous
work in EMS has been on the dispatch of ambulances from
base stations (Schmid 2012; Andersson and Värbrand 2007;
Ibri, Nourelfath, and Drias 2012). While dispatch is an im-
portant mechanism to improve emergency management sys-
tems, given the significant spatio-temporal uncertainty asso-
ciated with occurrence of incidents as well as the uncertainty
involved in ascertaining the criticality of an emergency re-
quest over phone, in almost all EMSs world wide, the ambu-
lance dispatch procedure is fixed: the nearest ambulance to
the incident location is dispatched.

The key focus of this paper is to advance research on the
latter problem (allocation and reallocation of ERVs). Unlike
Maxwell et al. (Maxwell et al. 2010), we focus on allocat-
ing ambulances for the entire fleet and not for an individual
ambulance. As indicated earlier, we focus on improving the
bounded time response and hence is different to the work
on heuristic worst case planning (Andersson and Värbrand
2007). Owing to the significant spatio-temporal uncertainty
in incident occurrence coupled with the city scale nature of
the problem (with large number of bases, ERVs and loca-
tions), the allocation problem is computationally challeng-
ing and is typically driven by data. There have been typically
two types of objectives considered in the literature while op-
timizing allocation using data-driven models:

1. Bounded time objective (Yue, Marla, and Krishnan 2012):
The goal here is to maximize the number of incidents that
have a response time less than a fixed time value.

2. Bounded risk objective (Saisubramanian, Varakantham,

1Given the extensive literature in ambulance response, we will
use ERVs and ambulances synonymously
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and Lau 2015; Ghosh and Varakantham 2016): The goal
here is to minimize the response time for a fixed percentile
of requests.

For bounded time objective, existing approaches (Yue,
Marla, and Krishnan 2012) that are based on data-driven
simulators greedily allocate ambulances to base stations
based on the marginal benefit in terms of the number of
incidents. For bounded risk objective, existing data-driven
approaches employ a combination of linear optimization
and sample average approximation (Pagnoncelli, Ahmed,
and Shapiro 2009; Varakantham and Kumar 2013) to min-
imize response time. However, with both these objectives
and threads of work, there is no optimal solution available
and the focus is on approximate solutions. In this paper, our
focus is on a bounded rank metric that when optimized us-
ing a greedy approach improves performance with respect to
bounded time objective better than the greedy approach that
optimizes bounded time objective.

The new objective, Bounded Rank (BR) has a parameter
K. The goal with bounded rank objective is to maximize the
number of incidents that are served by an ambulance from
one of the K nearest base stations. Typically, emergency re-
sponse systems dispatch the response vehicle from the near-
est base station. Due to the spatio-temporal uncertainty and
limited ambulances at each base station, there is a good
chance that the ambulance from the nearest base station may
not be available to serve all the incidents in the same area.
In fact, in our real world datasets, we observe that the top 2
nearest stations typically serve most of the incidents equally.
Therefore, by picking a K that ensures response time is less
than the bounded time in bounded time objective, bounded
rank can be made to optimize for bounded time indirectly.

It is important to note that for both bounded time and
bounded rank, there are two key similarities which allow for
this indirect optimization of bounded time metric using BR
objective-(i) Output with both metrics is the number (or per-
centage) of requests satisfying a certain criterion (response
time < given time value for bounded time, and rank < K for
bounded rank) and (ii) Both these metrics have continuous
(if we consider percentage of requests) values and do not re-
sult in infeasible solutions. On the other hand, for bounded
risk, output is the response time satisfying a certain criterion
(like percentage of requests with a lesser response time than
the objective is at least 80) resulting in infeasible solutions
if there is no allocation that will result in 80 (or some fixed)
percentile of requests being served.
We make the following contributions in this paper:

(1) To represent the spatio-temporal uncertainty associated
with emergency incidents, we first provide a Poisson
Point Process (PPP) model of the emergency response
problem and formally define the bounded rank objective
in the context of the model.

(2) We demonstrate that the metric of incidents served from
a bounded rank (e.g., nearest base is a rank of 1, second
nearest is rank of 2) base station is monotone submodular.
Due to the submodularity of the objective, we can propose
a greedy approach that can provide an a priori guarantee
of 50% from optimal and a tighter posteriori guarantee.

(3) Practically and more importantly, we demonstrate that
optimizing this bounded rank objective provides better re-
sults than the state of art existing approach for optimizing
bounded time objective on two simulators validated by
real world data sets. We also observe that the bounded
rank objective performs very well on the bounded risk
metric as well.

2 Background

In this section, we first describe monotone submodularity
and matroids as they are required in proving submodularity
of the bounded rank objective and also in showing the guar-
antee of the greedy approach. Next, we describe the data
driven optimization work of Yue et al. (Yue, Marla, and Kr-
ishnan 2012), as key technical details from that work are
referenced in this paper.

Monotone Submodularity and Matroids

We now describe submodular functions and matroids.

Definition 1. Given a finite set, Π, a submodular function
is a set function, F : 2Π → R, where 2Π is the power set
corresponding to Π. More importantly, ∀X,Y ⊆ Π with
X ⊆ Y and for every i ∈ Π \ Y ,

F (X ∪ i)− F (X) ≥ F (Y ∪ i)− F (Y )

A submodular function F is monotone if F (Y ) ≥ F (X) for
X ⊆ Y .

Monotone submodular functions are interesting because
maximizing a submodular function to pick a fixed number
of elements (say k) from the finite set (Π) while difficult can
be approximated efficiently with a strong quality guarantee.
Specifically, a greedy algorithm that incrementally generates
the solution set by maximizing marginal utility provides so-
lutions that are at least 63% (1− 1

e ) of the optimal solution.
In this paper, we are also interested in maximizing a sub-

modular function, however, under a specific constraint on
the finite set (Π) and the elements that are picked. Specif-
ically, the constraint is specified using a partition matroid.
We provide the formal definitions below:

Definition 2. For a finite ground set, Π, let P be a non-
empty collection of subsets of Π. The system Γ = (Π,P) is
a matroid if it satisfies the following two properties:

• The hereditary property: P1 ∈ P ∧ P2 ⊂ P1 =⇒ P2 ∈
P . In other words, all the subsets of P1 must be in P .

• The exchange property: ∀P1,P2 ∈ P : |P1| < |P2| =⇒
∃x ∈ P2 \ P1;P1 ∪ x ∈ P .

We are specifically interested in a ground set that is parti-
tioned as Π = Π1 ∪ Π2 ∪ . . . ∪ Πk. The family of subsets,
P = {P ⊆ Π : ∀i, |P ∩ Πi| ≤ 1} forms a matroid called
a partition matroid. This family of subsets denotes that any
solution can include at most one element from each ground
set partition. This is relevant in this paper, as ground set par-
titions represent base set for each ambulance and we need to
pick one base for each ambulance.
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Simulation Driven Optimization

Yue et al. (Yue, Marla, and Krishnan 2012) provided the
event-driven simulator of Algorithm 1, which employs order
of incident arrival and the nearest idle ambulance dispatch
policy. We start with an event set ξ where each element e ∈ ξ
represents an emergency incident and the list is sorted based
on arrival order of incident. I denotes the set of available
ambulances that are allocated according to given allocation
A. ar denotes the ambulance id that is assigned for request
r∈R. Initially each request is tagged as null assignment. In
each iteration we pop the first element e from the event list
ξ. If the event e is a new request then we dispatch the near-
est available ambulance ar for the request and remove the
ambulance from available ambulance set I . We also insert a
job-completion event in the event list at time tr(ar), where
tr(ar) denotes the time when ambulance ar will return back
to base after completing the job r . On the other hand, if the
popped element e is a job completion event for request r,
then we add the ambulance ar to the set I such that it can
be used to serve a new request. This process continues until
the event list becomes empty. Once the process is finished,
we can use the assignment results to measure the metrics:
percentage of requests served in bounded time.

Algorithm 1: EDSimulator(R,B,A)

Initialize: it← 0 ;
I ← A // Initialise set of available ambulance;
ξ ← R // Sorted in arrival order;
a = {ar|ar←⊥} //Initialise as null assignment ;
repeat

Pop next arriving event e from ξ;
if e =New Request r then

ar ← Dispatch(r, I) // Dispatch nearest free
ambulance;
I ← I − {ar} // Update available ambulance;
Push job completion event at tr(ar) into ξ;

else if e=job completion event for r then
I←I ∪{ar} // Update available ambulance;

until (|ξ| > 0);
return {ar}

Yue et al. (Yue, Marla, and Krishnan 2012) also provided
a greedy algorithm that incrementally considers assignment
of ambulances to base stations based on the marginal benefit
(in terms of number of incidents served within a fixed time)
computed using the simulator above.

3 Poisson Point Process (PPP) Model of

Emergency Incidents
We now describe a model to represent the problem of opti-
mizing allocation of ERVs in emergency response. The oc-
currence of an emergency incident is a spatio-temporal ran-
dom event. The density of incidents varies spatio-temporally
and the arrivals are independent of each other. As in previ-
ous work (Yue, Marla, and Krishnan 2012; Peleg and Pliskin

2004), we represent the arrival process of emergency inci-
dents using a Poisson distribution. We further generalize the
Poisson process to incorporate a spatial variation. It is cap-
tured by a spatial non-homogeneous Poisson process with a
fixed, spatially varying density function in two dimension,
λ(x, y) which is formed from the arrived incident location
points. The temporal variation of the incident arrivals can
be captured by considering different density functions, i.e.,
λt(x, y) for different times of the day like peak and non-
peak hours. The granularity of t could be as large as a sea-
son or a week or it could be varying every hour. Since we are
providing an off-line optimization solution, granularity of t
is not indeed a constraint. Thus, our interest is in optimizing
the ambulance allocation over a given period of time, e.g, in
an hour or over a day, under a spatial Poisson model with the
given density λ(x, y) in that time period. Henceforth, while
we do not explicitly mention time period, the focus is on a
given time period.

The emergency incident points in a two-dimensional
space, {Si} form a non homogeneous Poisson process with
the density λ(x, y). The expected number of incidents is
given by,

S̄ =

∫ ∞

−∞

∫ ∞

−∞
λ(x, y) dx dy (1)

For a zone Zi, i = 1, 2, . . . L, the probability that there
are k incidents in zone Zi is given by Poisson distribution as
follows.

Pr{N(Zi) = k} = e−S̄(Zi)S̄(Zi)
k

k!
, (2)

where, S̄(Zi) is the expected number of incidents in zone Zi

which is given by,

S̄(Zi) =

∫ ∫
(x,y)∈Zi

λ(x, y) dx dy (3)

The density could vary in different zones of the city and
can be obtained using data of historical incidents (during the
time period of interest). For purposes of generality, we will
refer to density using λ(x, y) and not use a zone representa-
tion.

4 Optimizing Ambulance Allocation in PPP

Model

We now formally define the ambulance allocation problem
using the following tuple:

< R,B,N , FK >

R denotes a set of emergency requests. B =
{b1, b2, . . . b|B|} denotes the set of bases where ambu-
lances can be positioned.N = {n1, n2, . . . n|N |} represents
the set of ambulances. The goal is to optimize metric FK by
computing an allocation set, A, where

A = {(i, j)|i ∈ N , j ∈ B,
∑
j∈B

|(i, j)| = 1}

Each element (i, j) represents the assignment of ith ambu-
lance to jth base. Note that there can be multiple ambulances
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allocated to the same base but an ambulance can be allocated
to one base (and hence the

∑
j∈B |(i, j)| = 1).

FK is the Bounded Rank (BR) metric. For each emer-
gency incident request, r ∈ R, we consider a set of nearest
bases ranked in increasing order of their respective response
times, assuming that there is an idle or available ambulance.
This is typically used for implementing the nearest idle dis-
patch policy. In the context of the PPP model described ear-
lier, FK measures the expected number of incidents served
from the nearest (in terms of response time) K bases (i.e.,
up to rank K) for a given allocation of ambulances.

Let us consider an ambulance allocation, A. We split the
spatial non-homogeneous Poisson process into two types,
type-0 and type-1. Type-1 are the points or incidents which
satisfy bounded rank objective (i.e., are served by a base of
rank-K or lower). Our metric FK(A) then corresponds to
the expected number of incidents of type-1 and is given as
follows:

FK(A) =
∫ ∞

−∞

∫ ∞

−∞
λ(x, y)P

{A}
K (x, y) dx dy (4)

P
{A}
K (x, y) is the probability that the incident at (x, y) is

served by a base of rank less than K in the allocationA. This
division into multiple types is referred to as splitting or thin-
ning (Ross 2010) of a Poisson point process and the expres-
sion is justified through this connection to thinning/splitting.
We now describe the computation of P {A}K (x, y).

Calculating P
{A}
K (x, y)

The probability computation has two parts:
(1) There is a base of rank-K or lower in the set A for (x, y):

For a given point or incident (x, y), the event of having a
base, b, of rank-K or lower in the rank list of the point (or
the zone to which this point belongs to) in allocation A
is a deterministic event for a given b,A and (x, y). Let
IK
(x,y)(b,A) be the indicator variable that is set to 1 if

rank(x,y)(b) ≤ K; b ∈ A and 0 otherwise.
(2) There is an ambulance available at a base identified in

(1) above: To decide availability of ambulance at a base,
we model the dynamics of emergency request service at
each base using queueing theory. Specifically, the queue-
ing model of interest is an Erlang-B or loss model, where
there is no queueing of emergency requests. Queueing
here essentially means requests waiting for service com-
pletion. It is a M/M/c/0 queue (Ross 2010) where there
are Poisson arrivals of emergency incidents, exponential
service for the incident requests and c servers or ambu-
lances with zero buffer or no queueing. Thus, the steady
state probability of an ambulance being free at a base b
with c ambulances is given as follows:

Pr{Q < c} = 1− πc = 1−
mc

c!∑c
j=0

mj

j!

(5)

where, Q is the number of customers waiting for service
completion or equivalently it is the number of customers
in the system and similarly m is the expected number of

customers in the system or equivalently expected number
of busy servers or ambulances.
As in prior literature (Larson 1974; Lee et al. 2006), ser-
vice time for an emergency request can be assumed to
be exponentially distributed with rate μ based on average
service times from history and the expected service time
is T = 1

μ . For arrival rate, λ, m = λ× T = λ
μ .

Let
〈
b1(x, y), b2(x, y), . . . , bK(x, y)

〉
be the top K nearest

bases for incident at location (x, y). For notational conve-
nience, we will refer to bi(x, y) as bi. Given (1) and (2)
above, we have:

P
{A}
K (x, y) =Pr{request at (x, y)

served by rank ≤ K base}
= 1− Pr{request at (x, y) is not

served by {b1 ∩ . . . ∩ bK}}

=1−
K∏
i=1

IK
(x,y)(bi,A) · Pr{Qbi = cbi}

(6)
Here, cbi is the number of ambulances allocated to base

bi in A. Qbi is a random variable representing number of
emergency requests served or number of busy ambulances at
base bi. Pr{Qbi = cbi} is the blocking probability which
means the probability that there is no free ambulance and
hence the request is blocked, i.e., can not be served. This
probability is essentially πcbi

and from (5) is given by,

Pr{Qbi = cbi} =
m

cbi
bi

cbi !∑cbi
j=0

mj
bi

j!

, (7)

where, mbi =
λbi

μ and,

λbi =

∫ ∞

−∞

∫ ∞

−∞
λ(x, y) · IK

(x,y)(bi,A) dx dy (8)

IK
(x,y)(bi,A) represents the event of having base, bi, as the

rank-K or lower ranked base in the rank list of a given point
(x, y). Here, 1

μ is the average service time (round trip time
for an ambulance, i.e., from base to incidence to hospital and
back to base) which is obtained for each base using historic
data.

Monotone Submodularity of FK

In order to prove monotone submodularity of a function,
FK , we have to satisfy the following requirements:
• There exists a finite ground set, E such that FK is defined

for all subsets of E.
• FK is monotone, i.e., ∀A ⊆ Â ⊆ 2E , we have

FK(A) ≤ FK(Â) (9)

• FK is submodular i.e., ∀A ⊆ Â ⊆ 2E and for every,
a ∈ 2E \ Â, we have,

FK(A ∪ {a})− FK(A) ≥ FK(Â ∪ {a})− FK(Â)
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For the first requirement, ground set, E is the set of all
possible assignments of ambulances to base stations:

E = {(i, j)|∀i ∈ N , ∀j ∈ B}
It should be noted that FK should be defined for all possi-
ble allocations, irrespective of whether an allocation is valid
or not. The definition of FK remains the same as in Equa-
tion 4, except that in case of an invalid allocation i.e., when
an ambulance is allocated to multiple bases, we assume that
there are as many copies of that ambulance (as the bases it
is assigned to). For second and third requirements, we show
it in proof of Proposition 1.
Proposition 1. FK : 2E → R defined using Equation 4 is
monotone submodular.

Proof: Let A ⊆ Â ⊆ 2E . The superset Â is generated by
adding more elements to the set A. Addition of an element
essentially means that an additional ambulance is allocated
a base2

Since number of ambulances at bases either stays same or
increases, it should be noted that P {Â}K (x, y) ≥ P

{A}
K (x, y).

Therefore, FK(Â) ≥ FK(A) and monotonicity of FK is
proved.

Now, to prove submodularity, we first obtain FK(Â ∪
{a}) − FK(Â) as follows. From Equation (4), for every,
a ∈ 2E \ Â, we have that

FK(Â ∪ {a})− FK(Â)

=

∫ ∞

−∞

∫ ∞

−∞
λ(x, y)

(
P
Â∪{a}
K (x, y)− P ÂK (x, y)

)
dx dy

(10)

Using probability rule of Pr(X∪Y ) = Pr(X)+Pr(Y )−
Pr(X ∩ Y ), we can write

P
Â∪{a}
K (x, y)− P ÂK (x, y)

= P
{a}
K (x, y)− P

Â∩{a}
K (x, y)

Since an incident at point (x, y) being served by a bounded
rank base from Â and set a are independent,

= P
{a}
K (x, y)− P ÂK (x, y)P

{a}
K (x, y)

= P
{a}
K (x, y)(1− P

{Â}
K (x, y))

Substituting this expression in Equation (10) we get,

FK(Â ∪ {a})− FK(Â)

=

∫ ∞

−∞

∫ ∞

−∞
λ(x, y)P

{a}
K (x, y)(1− P

{Â}
K )(x, y) dx dy

(11)

2There is also the case of the same ambulance being allocated
two bases. This is an invalid allocation, but we have to show sub-
modularity even for this case. As indicated earlier, in such a case
we define FK assuming there are two copies of that ambulance.

Similarly, FK(A ∪ {a})− FK(A) can be written as:

FK(A ∪ {a})− FK(A) =
∫ ∞

−∞

∫ ∞

−∞
λ(x, y)×

P
{a}
K (x, y)(1− P

{A}
K (x, y)) dx dy (12)

From the above equations, relating marginal gains essen-
tially reduces to finding the relation between probabilities,
P
{Â}
K and P

{A}
K . Since P

{Â}
K ≥ P

{A}
K , we have:

FK(A ∪ {a})− FK(A) ≥ FK(Â ∪ {a})− FK(Â)

Hence submodularity of FK is also proved. �

5 Greedy Approximation

Given that FK is monotone submodular, a greedy approach
can provide a strong offline guarantee and good quality solu-
tions. The greedy algorithm which assigns |N | ambulances
to |B| bases using bounded rank metric FK is given by Al-
gorithm 2. At each iteration, we add an ambulance to a base
that provides the maximum marginal benefit (in terms of
FK) over all the bases. The metric FK(A) is obtained using
thinning of the non homogeneous Poisson process. I(i,j)∈A
is an indicator variable that indicates if (i, j) ∈ A.

Algorithm 2: BR-Greedy(R,B, N )

Input:R,B,N ;
Output: A s.t. |A| = |N |,
∀i ∈ N :

∑
j∈B I(i,j)∈A = 1;

begin

A ← ∅ ;
for i ∈ N do

for j ∈ B do
aj ← (i, j) ;
if aj /∈ A then

δaj |A = FK(A ∪ {aj})− FK(A) ;
a∗ ← argmax

j∈B
δaj |A ;

A ← A∪ {a∗};
end

return A

Since, we have to maximize a submodular function FK

with respect to a partition matroid constraint (i.e., one base
for each ambulance), therefore, the greedy algorithm pro-
vides solutions that are at least 50% of optimal according to
the following proposition due to Fisher et al.

Proposition 2. (Fisher, Nemhauser, and Wolsey 1978):
Greedy algorithm for maximizing a monotone submodular
function subject to a partition matroid yields solutions that
are at least 50% of the optimal solution.

While the a priori guarantee is 50% of optimal, we can
provide a tighter posteriori guarantee as shown in proposi-
tion below.
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Proposition 3. If the optimal solution, A∗ has m changes
in allocation from a given solution A, then

FK(A∗) ≤ FK(A) +m · δ∗K(A)

where δ∗K(A) = maxa

[
FK(A ∪ {a})− FK(A)

]
Proof. The proof for the above proposition is a direct re-
sult of applying the greedy algorithm to a partition ma-
troid (Goundan and Schulz 2007). For any monotone sub-
modular function, g : 2

∏

→ R with optimal solution Z∗,
we have:

g(Z∗) ≤ g(Z) +
∑

e∈Z∗\Z
δe(Z)

In the context of the metric, FK this translates to:

FK(A∗) ≤ FK(A) +
∑

a∈A∗\A
δK,a(A)

While we do not know composition of A∗, we can add best
marginal value for every allocation to obtain upper bound for
FK(A∗). Since all ambulances are homogeneous and there
are m such ambulances whose allocation is different (from
the proposition definition), we have

FK(A∗) ≤ FK(A) +m · δ∗K(A)

where δ∗K(A) = maxa

[
FK(A ∪ {a})− FK(A)

]
�

It should be noted that in the worst case, allocation for ev-
ery ambulance is different in the optimal solution. There-
fore, the worst case value of m is equal to |N |, the total
number of ambulances.

6 Comparing BR and BT in Simulation

Due to the dependence on time in bounded time (BT) ob-
jective, it is difficult to analytically represent the behavior
of BT in steady state. On the other hand, as shown in pre-
vious sections, behavior of BR objective can be analytically
studied in steady state. In order to compare the two objective
values in non-steady state, we have to consider transient be-
havior. Therefore, we employ the simulation model as given
in (Yue, Marla, and Krishnan 2012) and described in Sec-
tion 2, as it can capture temporal dynamics of the underlying
EMS system. In such a deterministic setting (with exact logs
of emergency requests), the utility function or metric BR can
be computed exactly and not in expectation. Now the metric
BR is given by,

FBR
K (A) =

∑
r∈R

K∑
i=0

FBR
r,i (A) (13)

where,

FBR
r,i (A) =

{
1 if request r served from base bi ∈ A
0 Otherwise

There can be other variants of BR objective, where serving
from top rank base can be prioritized (wi =

1
2i ):

FBRW
K (A) =

∑
r∈R

K∑
i=0

wi · FBR
r,i (A) (14)

% in T % in T + 3.5 mins
BTG 5% -0.7%
BRG 5.4% 0.0%

BRWG 6% 0.5%
% in T % in T + 3.5 mins

BTG 5% 0.5%
BRG 4.8% 1.0%

BRWG 5.2% 1.0%
% in T % in T + 3.5 mins

BTG 3.5% 0.3%
BRG 3.3% 0.5%

BRWG 3.7% 0.7%

Table 1: Percentage Improvement over Baseline with |B|−∃,
|B| and (|B| + 11) Ambulances

In (Yue, Marla, and Krishnan 2012), the metric used is
FBT
T (A) =

∑
r∈R FBT

r,T (A) where,

FBT
r,T (A) =

{
1 if response time for r ≤ T minutes
0 Otherwise

7 Experimental Results

We first describe the experimental setup and then describe
the key results that demonstrate the utility of our greedy al-
gorithm that optimizes BR objective.

We experimented with one simulated data set, dataset-1
and a real dataset, dataset-2 3 is adopted from (Yue, Marla,
and Krishnan 2012). Each request log in both data sets con-
tains the following information (a) Incident location; (b) Ar-
rival time; (c) A set of feasible nearby bases from where the
request can be assisted; (d) Response time from each of the
feasible base to scene location; and (e) Round-about time
for each of the feasible base stations. While these specific
details might not always be readily available for real de-
ployment, as indicated in (Ghosh and Varakantham 2016),
we can estimate them using straightforward methods. We
can compute set of feasible nearby bases and predict the re-
sponse and round-off times for bases.

We consider three objectives, FBR
K (A), FBRW

K (A), and
FBT
T (A) and use the greedy approximation approach of Al-

gorithm 2 to optimize the three objectives. The greedy algo-
rithms that optimize these objectives are referred to as BRG
(Bounded Rank Greedy), BRWG (Bounded Rank Weighted
Greedy) and BTG (Bounded Time Greedy) . The objectives
are then evaluated using the event-driven simulator of Algo-
rithm 1 with respect to the bounded time and bounded risk
performance metrics. As indicated earlier, the event-driven
simulator employs the nearest idle ambulance dispatch pol-
icy.

Performance comparison on dataset-1
In this section, we provide comparison of all the approaches
with respect to bounded time and bounded risk metrics on
dataset-1. In this dataset, there are |B| base stations. We

3http://projects.yisongyue.com/ambulance allocation/
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(a) % served within 15 min. (b) % served within 30 min. (c) % not served (d) αth percentile in min.

Figure 1: Performance comparison for dataset-2

α (α+ 0.1)
BTG -0.1 mins -0.6 mins
BRG 0.05 mins 0 mins

BRWG 0.1 mins 0.2 mins
α (α+ 0.1)

BTG 0.4 mins 0.25 mins
BRG 0.4 mins 0.3 mins

BRWG 0.4 mins 0.3 mins
α (α+ 0.1)

BTG 0.3 mins 0.4 mins
BRG 0.3 mins 0.4 mins

BRWG 0.3 mins 0.45 mins

Table 2: Reduction in αth and (α + 0.1)th percentile re-
sponse time in minutes compared to Baseline with |B| − ∃,
|B| and (|B| + 11) Ambulances

have request logs over a period of six months. We use first
3 month logs for training purpose to generate the ambulance
allocation using different approaches and the performance is
tested on request logs over the other 3 months. We show per-
formance comparison between the three greedy approaches
and a baseline allocation with respect to the two metrics.
Baseline allocation here essentially represents an allocation
that is derived based on historical load at stations.

We experimented with ambulance fleets of different sizes
( |B|-9, |B| and |B|+11) allocated to |B| bases. Furthermore,
we used different metric values for bounded time (T and
T +3.5 minutes)4 and bounded risk (α and α+0.1 percentile).
These results are shown in Tables 1 and 2. Here are the key
observations:
• Both bounded rank greedy approaches (BRG and BRWG)

perform better than the baseline approaches consistently
with respect to bounded time as well as bounded risk met-
rics. However, bounded time greedy (BTG) fares worse
than the baseline for all the objectives except bounded
time of T minutes for which it is optimized, in the exper-
iment with |B|- 9 ambulances. BRWG outperforms BTG
consistently with respect to both bounded time and bound
risk metrics.

4The bounds are decided through some preliminary experi-
ments. A more thorough theoretical and empirical analysis for set-
ting of bounds given KPI is left for future work.

m Online bound
|B|+ 11 75%

1
2 · (B + 11) 90%

10 95%
0 100 %

Table 3: Online Bound

• The difference between BRWG and BTG in terms of
bounded time (around 1.1%) and bounded risk response
time (30-40 seconds) does not seem significant. However,
qualitatively 1% amounts to serving about 6-7 more re-
quests per day within the T minute mark and 30 seconds
improvement is equivalent to taking five ambulances out
of service while retaining the response time.

Posteriori Bounds for BRG Here, we demonstrate that
the posteriori (online) guarantee, obtained by employing
Proposition 3, is significantly better than the a priori guar-
antee (of 50% from optimal) for BRG on a given training
set of data. It should be noted that the number of differ-
ences with optimal will be equal to number of ambulances
only in pathological cases that are created synthetically. In
real problems, the value of m is expected to be much lower
(as ambulances are homogeneous). Therefore, we calculated
online bound for multiple different values of m.

Table 3 illustrates the quality guarantee in the case where
we have |B|+11 ambulances over |B| bases. It should be
noted that even when m = |B|+11, the guarantee is 75% of
optimal and if the number of differences with optimal was
half of |B|+11, then the guarantee is 90% of optimal. The
online guarantees for other settings and data sets were very
similar.

Performance on dataset-2

In this section, we provide comparison of all the approaches
with respect to bounded time and bounded risk metrics on
dataset-2. In this dataset, there are 58 ambulances and 58
base stations. The best allocation is obtained using 500 train-
ing logs, validated on 500 logs and is tested on 500 test logs.
We present performance of the greedy approaches and the
Baseline1 (1 ambulance at each base station) in Figure 1
over four metrics (similar to Yue et al.). Here are the key
observations:
• BRG and BRWG perform better than the baseline ap-
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proach with respect to all the four metrics whereas (sim-
ilar to dataset-1) BTG fared worse than the baseline ap-
proach for bounded risk metric and for % of requests not
served. BRG served around 1.1% more requests than the
baseline.

• BRWG served 1% more requests than BTG in 30 min-
utes. In terms of 80th percentile as well, both BRG and
BRWG outperformed baseline and BTG by around 1 and
2 minutes, respectively.

8 Conclusion

We have modeled the spatio-temporal uncertainty in emer-
gency requests using a non-homogeneous Poisson point pro-
cess. We presented a novel indirect objective based on num-
ber of incidents served from bounded rank base stations and
showed it to be monotone submodular. It enabled us to pro-
vide greedy approximation for Bounded Rank (BR) objec-
tive with 50% offline guarantee and much tighter posteriori
guarantee. More importantly, the elegant theoretical guaran-
tee in the model also translates to improved performance on
simulators validated on two real data sets. We demonstrated
that our BR greedy algorithm consistently performs better
than the existing and baseline approaches.
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