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Abstract

We consider the problem of selecting a small set (mosaic)
of sensor images (footprints) whose union covers a two-
dimensional Region Of Interest (ROI) on Earth. We take
the approach of modeling the mosaic problem as a Mixed-
Integer Linear Program (MILP). This allows solutions to this
subproblem to feed into a larger remote-sensor collection-
scheduling MILP. This enables the scheduler to dynamically
consider alternative mosaics, without having to perform any
new geometric computations. Our approach to set up the op-
timization problem uses maximal disk sampling and point-
in-polygon geometric calculations. Footprints may be of any
shape, even non-convex, and we show examples using a vari-
ety of shapes that may occur in practice. The general integer
optimization problem can become computationally expensive
for large problems. In practice, the number of placed foot-
prints is within an order of magnitude of ten, making the time
to solve to optimality on the order of minutes. This is fast
enough to make the approach relevant for near real-time mis-
sion applications. We provide open source software for all our
methods, “GeoPlace.”

Optimization of Spatial Coverage
There are many spatial optimization problems, and several
subcategories have been well studied in the planning and
scheduling communities. For example, a common problem
is where to place supply facilities to maximize utility. Sub-
categories include considering distances between suppliers
and consumers modeled as points (Ghosh and Varakan-
tham 2016), or when the consumers are moving along
paths (Lowalekar et al. 2017; Funke, Nusser, and Storandt
2016). Path planning and monitoring (guarding or search-
ing, “art-gallery” problems) in spatial domains is also com-
mon (Nussbaum and Yörükçü 2015; Deshpande et al. 2007).
This sometimes involves coordinating a group of agents,
and centralized planning benefits from significantly different
techniques than distributed planning of semi-autonomous
agents (Torreño, Sapena, and Onaindia 2015).

Similarly, optimizing the use of Earth-observing sensors
and satellites is a fairly well studied optimization problem
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category, but there are many ways to model the problem, and
within a model there are many aspects such as communica-
tion (Pralet et al. 2014), periodic or one-time image acqui-
sition, storage, coordination between a constellation of het-
erogenous or homogeneous UAVs (Mersheeva and Friedrich
2015), scheduling, and stochastics. Solutions to some mod-
els and aspects are much more mature than others. A few
recent optimization approaches have focused on scheduling
communication and storage for periodic acquisition, where
satellites travel quickly along one-dimensional paths with
limited side-viewing capabilities (Frank, Do, and Tran 2016;
Laborie and Messaoudi 2017). Constellation scheduling
usually uses a centralized planner; Valicka (Valicka et al.
2017) and the references reported therein give a general
overview. Often a single satellite image can cover an en-
tire ROI, so collection is commonly modeled using discrete,
isolated points. Sometimes collection requirements are that
a single image covers an entire ROI. Other times a set of
multiple sensor images are needed to cover a larger ROI.

Problem Definition

We focus on the spatial aspects of acquiring a mosaic of
overlapping and adjacent images, called footprints herein.
The problem is to find a mosaic that covers a continuous,
two-dimensional region of the Earth’s surface, called an ROI
for Region Of Interest. Mosaics are common to aerial and
space-based imaging and cover a much larger area of Earth
than is possible with single images. Ensuring that there are
no gaps between constituent images is important to generat-
ing high-fidelity maps and composite images. In some set-
tings, significant image overlap is desired because it helps
align adjacent images, and because the sensors may lose fi-
delity in their periphery. But each sensor image is expensive,
so we must avoid wasteful overlap.

The ROI and sensor footprints are modeled as polygons,
sometimes with holes. For exposition we start with circular
footprints, but do not specialize our algorithms for these, and
instead address the broader class of footprint shapes that are
nearly convex and have good aspect ratios when projected on
Earth. ( describes a continuous quadratic optimization solu-
tion for the special case of circular footprints.)
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Applied Techniques

Solving the mosaic problem optimally is challenging, and
for this and other reasons it remains much less studied within
the optimization community than some other remote sensing
problems. However, it is an important enough application,
with high costs and consequences, that some applied com-
munities have developed techniques for it. We highlight two
solutions that are based on recursive subdivision, a common
technique in computational geometry.

Merritt (Merritt 2011) considers a problem very similar
to our mosaic problem, motivated by radar coverage of the
U.S. The solution is an adaptation of the algorithm of Kaza-
zakis (Kazazakis and Argyros 2002), based on recursive sub-
division. If a polygon (subregion of the ROI) is sufficiently
covered by one footprint, it is considered covered and dis-
carded. Otherwise, it is subdivided. Merritt considers limited
resources, covering less than the entire ROI, and experimen-
tal performance.

Daniels (Daniels, Mathur, and Grinde 2003) considers
whether a set of polygonal shapes can cover a set of polygo-
nal target items, an NP-hard problem. As in our problem, the
covering shapes may overlap and extend beyond the domain.
Daniels’s method partitions the target items into triangles,
and maximizes the number of triangles covered. Daniels it-
eratively uses a Lagrangian heuristic and recursive triangle
subdivision.

Computational Geometry Approaches

When viewed from a purely computational geometry stand-
point, the mosaic problem lies in the family of geometric
coverage problems, so techniques from that community are
relevant. Many approaches to geometric coverage exploit the
structure of the covering shape. For example, circles lead
to some elegant equations and gradient descent optimiza-
tion (Stoyan and Patsuk 2010). Specialized solutions exist
for axis-aligned rectangles. Typically, for general shapes it is
theoretically hard to find optimal solutions. Hence approx-
imation heuristics are common. While squares and circles
are common examples of camera images, their projection
from orbit are not circular or square (Zolnay 1971); see .
Alternatively, one may retain circular or square images by
projecting the ROI onto the camera image plane. However,
the ROI becomes more complicated, and it was unclear how
this would work in practice with time-varying sensor posi-
tions and coupling to the scheduling problem.

One category of practical covering algorithms is the
“shifting technique” (Har-Peled 2011; 2008). One starts
with a set of footprints covering the ROI, then makes lo-
cal changes to try to reduce the size of the set. The initial
covering may be a “greedy cover” by area, or a GreedyK-
Center where one places footprints as far as possible from
prior footprints, or a regular packing. The replace-with-
fewer-disks technique of throwing away k (e.g. 2 or 3) foot-
prints, then attempting to reinsert k − 1 regions without
introducing gaps, works for disks (Mustafa, Raman, and
Ray 2014; Ebeida et al. 2013) but is challenging for arbi-
trary shapes (Har-Peled 2011). Variations maintain coverage
while improving other properties (Abdelkader, Mitchell, and
Ebeida 2014).

Our Optimization Approach

We reformulate the continuous problem P as a discrete
problem Q, amenable to Mixed-Integer linear Programming
(MIP). This is an example of a relaxation technique, refor-
mulating P into Q so it is possible to find an optimal solution
to Q that also solves (but is suboptimal) for P . We reformu-
late because the original problem P is in general hard to
solve using exact techniques. In our case, Q is a geometric
version of the classical “min set cover” problem which is
NP-Complete (Karp 1972). So, even though Q is easier than
P , it is still hard to solve.

In a blog post, Har-Peled (Har-Peled 2011) sketches an
approach very similar to ours, turning a cover-a-polygon-by-
disks problem into a discrete optimization problem by first
sampling the polygon, then covering the samples by disks,
and expanding their radii to ensure polygon coverage. To
our knowledge, Har-Peled has not published this approach
or applied it to create the types of models that we study in
this paper.

Algorithm

The footprint problem P of finding the minimum number of
footprints and their placements that can cover a Region Of
Interest (ROI) can be converted into a discrete optimization
problem Q that approximates P . A footprint is a simply-
connected region, and a placement of it is a translation of
its shape. The ROI is a planar region, with perhaps isolated
lines and points. The idea is to create a set of discrete cov-
erage points within the ROI, and a set of nearby discrete
placement points for footprints. We then solve a discrete op-
timization problem of where to place the footprints such that
all of the coverage points are far enough inside at least one
footprint, so that all of the ROI is inside the union of foot-
prints.

In particular, we sample the ROI with well-spaced points.
These must be covered by a footprint. Conceptually, there is
a disk around each point with radius equal to a sample spac-
ing parameter, and the union of disks covers the ROI. We
only count points as “covered” if they are strictly inside a
footprint by the spacing parameter, to ensure that if all sam-
ples are thus covered, the ROI space between them is truly
covered. We have a second set of well-spaced samples, that
cover both the ROI and some buffer region around it. Foot-
prints may be placed at any of the second samples.

The procedure begins with the user choosing the sample
spacing parameter ε. It controls how well the discrete points
approximate the geometric ROI. The smaller the ε, the less
overlap between footprints and the more likely we can cover
the ROI with fewer footprints. The downside to using a small
ε is an increase in the size of the MIP and a corresponding
increase in solution time. See Figure 5 for an example of
these trends. Fortunately, in practice, some overlap in the
sensor images is desired and a fairly large ε is preferred.

The ROI is covered by some set of ε-radius circles (not
the footprint), whose centers are coverage points. Hence the
distance from any point of the ROI to the nearest coverage
point is at most ε. We generate a second set of placement
points, using a larger spacing to keep the number of points
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small. We consider placing a footprint at each placement
point, and compute the set of coverage points within the
footprint by at least ε distance. For each placement point,
we have a Boolean 0–1 decision variable to decide whether
to place a footprint there. The optimization problem Q is to
minimize the sum of 0–1 decision variables (number of foot-
prints). For each coverage point, we have a constraint that it
is covered at least once. Any solution to Q is a solution to
P , meaning the ROI is covered by footprints, but the optimal
solution to Q may be suboptimal for P , in that it may have
been possible to cover the ROI with fewer footprints. In this
conversion the combinatorial descriptions of the boundary
of the ROI and footprint are lost. The runtime of solving Q
dominates. The method is insensitive to the number of sides,
holes, curvature, and convexity of the ROI and footprint.

Sampling for Coverage Points

We generate the coverage points through a variant of “Sim-
ple MPS” (Ebeida et al. 2012), which was designed for
square-shaped domains. Here we have generalized it to ROIs
of arbitrary shape, but specialized it to 2D. See Algorithm 1
for the pseudocode and Figure 1 for an example run. It places
random points at least r apart until every ROI point is within
r of a sample, where r = ε. Simple MPS divides the ROI
into squares, and samples points uniformly from the squares.
Accepted samples are the centers of disks of radius ε. A
sample is rejected if it lies outside the ROI or inside a prior
disk. After some constant number of sample attempts, such
as 3 times the number of squares, all the squares are di-
vided into 4. Squares are discarded if they lie completely
outside the ROI or inside a disk. We repeat until the remain-
ing squares are covered or smaller than machine precision.
In practice, Simple MPS complexity is linear in the number
of output samples, for both time and memory, and is easy to
code because it only relies on simple and reliable geometric
primitives such as is-point-in-circle and is-point-in-square.
Alternatives include other Maximal Poisson-disk Sampling
(MPS) algorithms, Delaunay refinement, or even structured
patterns.

Sampling for Placement Points

The main difference between this step and sampling for cov-
erage points is that placement points may be outside the
ROI. We restrict placement points to the convex hull of the
ROI to keep the size of the subsequent optimization problem
small; depending on the footprint shape this restriction may
exclude valuable solutions. See Figure 2 for an example.

We introduce the concept of an anchor point in a foot-
print. The position of a footprint is described by the position
of its anchor point. Anchors are placed at placement points.
The footprint radius is the farthest distance from a footprint
point to its anchor point. A natural choice for the anchor is
the centroid of the footprint, but there is no perfect choice
except for circular footprints. To minimize the radius, one
could use the center of the smallest enclosing circle of the
footprint.

We rerun Simple MPS, but add a buffer region to the ROI.
We consider the domain to be the region within both the
maximum footprint-radius of the ROI, and the convex hull

Algorithm 1 Simple MPS adapted from (Ebeida et al. 2012)
initialize uniform grid of squares
remove squares outside the ROI (plus buffer)
while ∃ empty squares, larger than machine precision do

Randomly Sample:
for 3 times the number of squares do

select a square at random
select a point in the square at random
if the point is far enough (> r) from all prior samples
and the point is inside the ROI (plus buffer) then

accept the point as a sample
remove the square

end if
end for
Refine:
for all squares do

subdivide the square into 4 smaller squares
remove squares too close (< r) to prior samples
remove squares outside of the ROI (plus buffer)

end for
end while

of the ROI. To determine if a sample point is inside this
buffered domain, we use the same kind of distance calcula-
tions as described in the next subsection. For simplicity we
initialize the set of placement points to be a subset of cov-
erage points, then fill in the rest of the domain, rather than
generating them independently from scratch. However, we
use a larger sampling radius, e.g. r =

√
2ε, in order to keep

the MIP Q small enough to be solved quickly.

Computing Coverage

Our method is not restricted to polygonal (straight sided)
ROIs and footprints. It is straightforward to convert a curved
footprint into a polygonal one inside it. Conversely, it is easy
to find a polygon enclosing an ROI or its convex hull. Con-
ceptually, one may consider a footprint shrunk by distance
ε. In practice, instead we compute the distance to the foot-
print boundary because it is robust, and simpler than com-
puting an offset polygon. To determine if a coverage point is
at least ε inside a footprint, we determine whether it is inside
the polygon using the winding number. If so, then we deter-
mine its distance to the boundary by projecting to each line
segment of the boundary. Figure 3 shows an example for our
square annulus ROI.

These same operations are used for the buffered region
around the ROI for placement points. The winding number
also provides a robust answer to determining if a point lies
in the convex hull.

Optimization Problem Q

The optimal set of footprints for Q is an epsilon approxima-
tion to P , in that any coverage of the same ROI with foot-
prints that are smaller by epsilon must use at least the same
number of footprints. The converted problem Q has a num-
ber of rows (constraints and objectives) linear in the total
number of samples, the sum of the number of coverage and
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(a) Square grid contain-
ing the ROI.

(b) End of iteration 1 (c) End of iteration 2 (d) Coverage points. (e) ROI lies inside ε-
radius coverage circles.

Figure 1: Creating coverage samples using ε spacing. Coverage points are “x” and the small squares are the ones that are not
yet covered by an ε-radius circle centered at a coverage point.

(a) Background grid buffered by
the (large) footprint radius.

(b) Initial placement
points from a maxi-
mal subset of coverage
points.

(c) End of iteration 1 (d) Placement points. (e) Buffered ROI lies
inside

√
2ε-radius

placement circles.

Figure 2: Creating placement samples using
√
2ε spacing. Placement points may be outside the ROI, but are limited to its

convex hull to keep the problem size small, so the black squares in (a) are discarded.

placement points. Each row has at most a linear number of
columns (variables with non-zero coefficients), but usually
much less depending on the choice of epsilon. The number
of rows and columns of Q are each O(1/ε2), leading to the
problem size being O(1/ε4).

Describing and Solving the MIP

Let T denote the (potential) footprint placement points and
C the (required) coverage points. Let δt∈T ∈ {0, 1} repre-
sent the decision to place a footprint at t. The set of place-
ments j ∈ J that would cover c ∈ C is denoted J(c). The
MIP to minimize the number of placed footprints follows:

min
T∑

t

δt

s.t.
J(c)∑

j

δj ≥ 1 ∀c ∈ C, (1)

δt ∈ {0, 1} ∀t ∈ T.

Spreading Out Footprints

It is often desirable to cover area outside the ROI if it does
not require more footprints, i.e., it can be done “for free.”
We explored a variation that discouraged placing footprints
that strongly overlap, by adding constraints and objectives
to the mixed-integer linear program of Equation (1). A natu-
ral choice would be maximize the sum of pairwise distances,

but in practice this did not work well because it overly penal-
ized the beneficial overlap, and resulted in odd placements
for irregularly shaped ROIs. What worked better was to min-
imize the number of coverage points that two footprints have
in common. Our approach has the advantage of capturing
the geometry of the ROI. For efficiency, we only introduced
variables for placement pairs with non-zero overlap. We de-
fine a placement pair (i, j) where i, j ∈ T , over the set
D of non-zero overlapping placement pairs, where |D| de-
pends on placement point locations and footprint shape. Let
f(i, j) : D → [0, 1] be the mapping of placement pairs to
their respective overlap. We then define φi,j ∈ {0, 1} with
(i, j) ∈ D to represent whether or not the placement pair
(i, j) has footprints placed at both placement pair locations
i, j ∈ T . To enforce that φi,j = 1 if and only if δi = δj = 1,
we construct the following three constraints to form a logical
AND, and add them to Equation (1).

φi,j ≥ δi + δj − 1, ∀(i, j) ∈ D,

φi,j ≤ δi, ∀(i, j) ∈ D, (2)
φi,j ≤ δj , ∀(i, j) ∈ D.

To penalize overlap we add a term to the previous objec-
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Figure 3: Placement (“+”) and coverage points(“x”). The
footprint is the green circle. The footprint radius is reduced
by ε to the blue circle, ensuring that any gaps between the
coverage points are covered by some green circle. Coverage
points inside the blue circle are drawn in red and included
in the MIP Q to model “if a footprint is placed here, these
coverage points are covered.” The optimal solution uses four
footprints: two are centered outside the ROI.

tive, resulting in the following mixed-integer linear program:

min

T∑

t

δt + σ
D∑

(i,j)

f(i, j)φi,j ,

s.t.
J(c)∑

j

δj ≥ 1 ∀c ∈ C,

δt ≤ 1 ∀t ∈ T,

δt ∈ {0, 1} ∀t ∈ T, (3)
φi,j ≥ δi + δj − 1, ∀(i, j) ∈ D,

φi,j ≤ δi, ∀(i, j) ∈ D,

φi,j ≤ δj , ∀(i, j) ∈ D,

where σ is a constant. In practice, we chose σ to be quite
small, σ ≈ 0.001 to ensure that minimizing the number of
footprints dominated the desire for non-overlap.

But Keep Footprints Near the Domain

Unfortunately, Equation (3) tended to place footprints that
were mostly outside the ROI. Hence, we countered the
spreading objective by a small term rewarding footprint
placements that covered more coverage points. The objec-
tive function of Equation (3) then became

T∑

t

δt(1− σ1h(t)) + σ2

D∑

(i,j)

f(i, j)φi,j , (4)

where h(t) : T → N is the number of coverage points cov-
ered by a footprint at t, and depends on the geometry. As

before, both σ1 and σ2 are chosen to be small so the number
of placed footprints dominates the objective.

Examples

Figure 4 includes examples of non-circular and non-convex
polygonal footprints. For these, the offset polygons are not
shown because we used the simpler distance-to-boundary
calculations. The runtime of sampling and computing cover-
age is insignificant. The “Right Triangle” example illustrates
the well-known observation that a right-triangle, without ro-
tations, is an inefficient covering shape. Figure 5 includes
instance and performance statistics for the example ROI at
the top of Figure 4, using varying sample spacing ε, and with
the optimality tolerance set to 0.01%.

Realistic Shapes

The footprint in the bottom row of Figure 4 is the shape of
a part of the globe seen by a square camera lens aimed at a
glancing angle.

GeoPlace Open Source Software

We provide the GeoPlace open-source software on GitHub1.
It includes libraries for sampling domains that are polygons
with holes. It provides coverage computations for footprints
that are arbitrary simple polygons. It also has routines for
visualizing solutions. Besides providing all the algorithms
in this paper, it also solves the related “sub-footprint place-
ment” problem of where to focus the sensor within a foot-
print (Rowe et al. 2017). Sub-footprint variations include
constrained bandwidth placement and an objective to maxi-
mize average bandwidth for the placed sub-footprints.

The development environment was Linux and problems
were solved on a 64-core workstation with 2.4GHz AMD
processors and 512GB of RAM. Source code is primar-
ily Python 2.7 and C++ with optimization models expressed
using the Pyomo (Hart et al. 2012) optimization model-
ing libraries. Instances of the optimization problem Q were
solved using both Gurobi2 (free academic use license) and
CPLEX3 (commercial) solvers.

Extensions

Other Objectives

An advantage of the MIP modeling approach over a purely
geometric one is that it is easy to adapt to other goals and
constraints. For example, other contexts desire maximum
overlap to increase redundant imaging in important regions
or to help stitch separate camera images into the mosaic.

Multiple Footprint Shapes

It is straightforward to extend to multiple footprint shapes.
For example, the same camera at different locations and
view angles of the earth will project different footprints.

1github.com/cgvalic/GeoPlace
2www.gurobi.com
3www.ibm.com/analytics/data-science/prescriptive-

analytics/cplex-optimizer
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Coverage Placement Solution

Figure 4: Examples of different ROI and footprint shapes and resultant coverings.

Multiple footprints can also come from different cameras
with different aperture sizes or shapes. We may include
weighted objectives, and constraints on the number of times
we use each one.

Faster Coverage Computation and Smarter
Placement Points

In our setting, it was adequate for each placement point to
compute its coverage points independently by brute force.

However, it is possible to simultaneously compute a reason-
able set of placement points, and which coverage points are
covered for each of them, and this efficiency may be helpful
for other settings.

The reference footprint is shrunk by ε and inverted
through each of the coverage points: the inversion shape is
the set of locations of the shrunk footprint’s anchor point
such that the shrunk footprint will cover that coverage point.
The arrangement of intersections of all inversions are pro-
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Figure 5: Example performance showing more footprints
and shorter runtime for larger ε. All instances were solved
to optimality. To further explore the effect of the spacing pa-
rameters, we report performance for both 2ε and

√
2ε spac-

ing for the placement points.

cessed by a plane sweep, to find the cells that cover a maxi-
mal set of coverage points, the maximal canonical sets. For
each such set, we may select a placement point.

Using inversion and plane sweep to create the intersec-
tion cells and the maximal canonical sets is described in
an arXiv paper, “Discretization of Planar Geometric Cover
Problems” (Jang and Choi 2014). Inversion is reflection of
the footprint through the anchor point, which preserves con-
vexity. Sweep the arrangement and identify the cells. The
maximal canonical sets are the cells who have no adjacent
cells that cover more points. This can be discovered by a
directed graph from low to high adjacent cells: maximal
canonical cells have no outgoing edges.

Alternative Continuous Quadratic Optimization

There is a continuous optimization solution for circular
footprints. The following determines whether there exists a
placement of k footprints that covers all the sample points.
So, the overall problem would be to find the smallest k for
which the optimization problem is feasible. The continuous
decision variables are the (x, y) coordinates of each of the

k footprints’ anchor points, the circle centers. The basic op-
timization problem has no objective, and just the constraint
that for each sample point, the distance between it and the
closest footprint is less than zero, i.e., it lies inside a foot-
print. For circular footprints, the distance is just the distance
to the center minus the radius, which is a simple quadratic
if we use the square of the distance instead. However, for
more complicated footprints, even something as simple as a
convex square, the distance is not even a quadratic, and the
distance to the footprint boundary can not be described by
only the Euclidean distance to the footprint center.

Conclusions

We have demonstrated a MILP solution to the problem of
finding a small set of sensor images that collectively cover
a two-dimensional region. Solutions for problems of typical
size for remote sensing missions can be found at mission-
relevant time scales. By using best practices from the com-
putational geometry community to set up the discrete op-
timization problem, it is simple to alter the formulation to
solve a number of related mosaic selection problems. Soft-
ware implementing these techniques are publicly available
from the GeoPlace GitHub repository. By using a MILP for-
mulation, the mosaic selection subproblem can be coupled
with larger MILP sensor scheduling problems. We wish to
explore this coupling as well as a coupling with the subfoot-
print problem (Rowe et al. 2017).

There are many opportunities for future research. We wish
to consider a single footprint as its shape varies in time ac-
cording to the sensor’s orbit. This is related, but not identi-
cal, to exploring problems involving the simultaneous place-
ment of different footprint shapes. To date, we have used
off-the-shelf commercial solver parameters and used no op-
timality gap tolerance. We also wish to explore the benefits
of developing heuristics and exploiting the benefits of seed-
ing a MIP solver with an initial, feasible solution. This could
come from a greedy cover, the shifting heuristic, etc., and
perhaps enable our approach to be fast enough to work in
real-time or on larger problems.
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