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Abstract

Conformance checking is the problem of verifying if the ac-
tual executions of business processes, which are recorded by
information systems in dedicated event logs, are compliant
with a process model that encodes the process’ constraints.
Within conformance checking, alignment-based techniques
can exactly pinpoint where deviations are observed. Exist-
ing alignment-based techniques rely on the assumption of a
perfect knowledge of the order with which process’ activities
were executed in reality. However, experience shows that, due
to logging errors and inaccuracies, it is not always possible to
determine the exact order with which certain activities were
executed. This paper illustrates an alignment-based technique
where the perfect knowledge assumption of the execution’s
order is removed. The technique transforms the problem of
alignment-based conformance checking into a planning prob-
lem encoded in PDDL, for which planners can find a correct
solution in a finite amount of time. We implemented the tech-
nique as a software tool that is integrated with state-of-the-art
planners. To showcase its practical relevance and scalability,
we report on experiments with a real-life case study and sev-
eral synthetic ones of increasing complexity.

1 Introduction

Modern organizations are centered on the business processes
needed to deliver products and services in an efficient and ef-
fective manner. Business Process Management (BPM) is the
discipline that focuses on overseeing how work is performed
in an organization by managing and optimising a company’s
business processes (Dumas et al. 2013).

Processes often need to comply with regulations and laws
so that, e.g., the organizations can be certified as conforming
the ISO standards. Process models can be used for this pur-
pose. Within BPM, conformance checking aims at verifying
whether the process’ observed behavior, which is stored in
an event log, matches the intended behavior represented as a
process model (van der Aalst 2011). Event logs are broken
down in traces, each of which containing the events refer-
ring to the execution of one process instance.

The notion of alignment (van der Aalst, Adriansyah, and
van Dongen 2012) provides a robust approach to confor-
mance checking, which makes it possible to pinpoint the
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deviations causing nonconformity. An alignment between a
recorded process execution and a process model is a pair-
wise matching between activities recorded in the log and
activities allowed by the model. Sometimes, activities as
recorded in the log (events) can not be matched to any of
the activities allowed by the model (process activities).

For instance, an activity is executed when not allowed
(e.g., a loan is opened before assessing the applicant). In this
case, we match the event with a special null activity (here-
after, denoted as �), thus resulting in so-called moves in log,
which indicate that the log-trace pointer “moves” forward to
consider the next event in trace while the model stays still.
Other times, an activity should have been executed but is
not observed in the event log (e.g., a loan is not opened after
positively assessing the applicant). This results in a process
activity that is matched to a � event, thus resulting in a so-
called move in model, which indicates that conversely the
log-trace pointer remains still while the model progresses
by firing exactly one transition. If an alignment between a
log trace and process model contains at least one move in
log/model, it means that the trace refers to a process execu-
tion that is not compliant with the allowed behavior that is
encoded in a process model.

In general, a large number of possible alignments exist
between a process model and a log trace, since there may
exist manifold explanations why a trace is not conforming.
It is clear that one is interested in finding the most probable
explanation. In (van der Aalst, Adriansyah, and van Dongen
2012), an approach is proposed that is based on the principle
of the Occam’s razor: the most parsimonious explanation is
preferable. Therefore, one should not aim to find any align-
ment but, precisely, one of the alignments with the least ex-
pensive deviations (one of the so-called optimal alignments),
according to some function assigning costs to deviations.

Several existing techniques, such as (Adriansyah,
Sidorova, and van Dongen 2011; Adriansyah, van Dongen,
and van der Aalst 2013; van der Aalst, Adriansyah, and van
Dongen 2012; Di Francescomarino et al. 2015; López et al.
2016; de Leoni and Marrella 2017; De Giacomo et al. 2016;
2017), rely on the assumption that each event in a trace has
a different timestamp, which can be leveraged on to define
the total ordering of events in traces. However, in several set-
tings, this assumption is not met in reality: the logging mech-
anisms of information systems can sometimes record event’s
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timestamps with a course granularity. For instance, a log-
ging system may not be able to record the minutes in which
events occurred; as a consequence, events at, e.g., 5:05pm or
5:10pm take on the same timestamp: 5:00pm.

In these settings, existing techniques must pick an ar-
bitrary total ordering. If this is not chosen correctly,
the alignments may pinpoint more deviations that in
reality. As an example, let consider a process execu-
tion that consists of the following set of events: φ =
{a5:05pm, b5:07pm, c5:06pm, d6:02pm} (the subscript is the
timestamp when the event occurred). This corresponds to the
process execution 〈a, c, b, d〉, which - assume - is compliant
with its underlying process model. If the logging system has
the hour granularity, this is recorded as the following events’
set: φ = {a5:00pm, b5:00pm, c5:00pm, d6:00pm}. We lose the
total-ordering information about events a, b and c. Existing
techniques have to force one total ordering, such as the pro-
cess execution 〈a, b, c, d〉, which it is not compliant. Conse-
quently, the trace would be diagnosed as non-compliant, but
it really was. The reason of this misdiagnosis is related to
the logging-mechanism that has a course granularity.

A too-course granularity is not infrequent: event logs
are typically extracted from information-system databases,
where timestamps are often recorded through, e.g., “date”
fields. Possibly one may modify the database fields and the
information systems to log the exact timestamp; however,
this would only affect the future logging, making it impos-
sible to leverage on the existing logging data recorded until
that moment in time, which may even refer to several years
of information-system use.

This paper aims at releasing this total-ordering assump-
tion: events with the same timestamp are considered as par-
tially ordered and will be totally ordered so as to minimize
the number of deviations. In relation to the example above,
among all possible total orders, our technique will again
choose 〈a, c, b, d〉, reporting the trace as compliant. Com-
pared with existing techniques, we guarantee an important
property: if a trace was compliant in reality, we will detect it
as such, even in case of partially-ordered traces. Of course,
the other way around is not guaranteed: if a trace was not
compliant in reality, our technique may underestimate the
deviations because it may re-order events differently from
what occurred in reality with the aim of minimizing the de-
viations, in line with the principle of Occam’s razor.

This paper extends (de Leoni and Marrella 2017) and il-
lustrates how the problem of computing optimal alignments
between process models and partially-ordered traces can be
encoded as a planning problem, which can be solved through
off-the-shelf PDDL planners. Specifically, given a process
model and a real process execution recorded in an event log,
we show how to build a planning domain and problem in-
stance such that the solution steps of the problem are guar-
anteed to correspond to the alignment steps. Also, the pa-
per illustrates how the encoding of alignment problem al-
ways generates planning problems for which planning sys-
tems find optimal solutions in a finite amount of time.

We notice that, to this date, no existing technique in
the BPM literature can deal with the problem of partially-
ordered traces. Furthermore, to motivate the employment of

planning techniques, the experiments have shown that the
alignment-problem complexity is large and a technique is
necessary that can scale up adequately.

The rest of the paper is organized as follows. Section 2
elaborates on the relevant background to understand the pa-
per, namely introducing the concept of process model, event
log and process-trace alignment. Section 3 reports on our
technique to convert alignment problems to planning prob-
lems, discussing correctness results for the resulting plan-
ning problems. Section 4 reports on the experiments con-
ducted on both real-life and synthetic process models and
event logs. The real-life experiments show a case study
where timestamps do not have the right granularity, thus il-
lustrating that the problem is practically relevant. The exper-
iments of synthetic data sets demonstrates a good level of
scalability of the technique. Section 5 concludes the paper.

2 Preliminaries

In this section, we provide some preliminary concepts used
throughout the paper. In Section 2.1 we introduce the Petri
Net modeling language. In Section 2.2 we describe the prob-
lem we want to solve through planning: constructing an opti-
mal alignment between partially-ordered traces and process
models represented as Petri nets. In Section 2.3 we provide
an overview on automated planning, indicating which por-
tion of PDDL is required for the encoding of our technique.

2.1 Petri Nets

Many notations have been introduced to represent business
processes, such as BPMN, EPC, or UML Activity Dia-
grams (Dumas et al. 2013). These languages allow process
designers to specify aspects linked to different perspectives,
ranging from expressing the ordering with which activities
need to be executed (control-flow perspective) till modelling
the objects manipulated by activities or the constraints on the
resources allowed to execute activities. Some languages are
characterized by an ambiguous semantics; however, we need
a simple language with clear semantics to explain our tech-
nique. Therefore, we opted for Petri nets, which have proven
to be adequate for modelling business processes (van der
Aalst 1998). This is especially true when the focus is only on
the control-flow perspective, which is the case in this paper.

A Petri net is a directed graph with two node types called
places (represented by circles) and transitions (represented
by rectangles), which are connected via directed arcs. Arcs
between two nodes of the same type are not allowed.

Definition 1 (Petri Net). A Petri net is a tuple 〈P, T, F 〉
where:

• P is a finite set of places;
• T is a finite set of transitions;
• F ⊆ (P×T )∪(T×P ) is the flow relation between places

and transitions (and between transitions and places).

Given a transition t ∈ T , •t is used to indicate the set of
input places of t, which are the places p with a directed arc
from p to t (i.e., such that (p, t) ∈ F ). Similarly, t• indicates
the set of output places, namely the places p with a direct arc
from t to p. At any time, a place can contain zero or more
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tokens, drawn as black dots. The state of a Petri net, a.k.a.
marking, is determined by the number of tokens in places.
Therefore, a marking m is a function m : P → N.

In any run of a Petri net, the number of tokens in places
may change, i.e., the Petri net marking, according to the fol-
lowing enablement and firing rules:
• A transition t is enabled at a marking m iff each input

place contains at least one token: ∀ p ∈ •t, m(p) > 0.
• A transition t can fire at a marking m iff it is enabled.

As result of firing a transition t, one token is “consumed”
from each input place and one is “produced” in each out-
put place. More formally, firing a transition t at marking
m leads to a marking m′ such that:

m′(p) =

{
m(p)− 1, if p ∈ •t \ t•,
m(p) + 1, if p ∈ t• \ •t,
m(p), otherwise.

(1)

This is denoted as m
t−→ m′. In the remainder, given a se-

quence of transition firing σ = 〈t1, . . . , tn〉 ∈ T ∗, m0
σ−→

mn is used to indicate m0
t1−→ m1

t2−→ . . .
tn−→ mn.

When Petri nets are used to represent business pro-
cesses, transitions are associated with process activities,
more specifically to activity labels, and markings indicate
the process state (van der Aalst 1998). Executions of busi-
ness processes have a start and end. Therefore, Petri nets
need to be associated with an initial and final marking.
Definition 2 (Labelled Petri Net). A Labelled Petri net is a
tuple 〈P, T, F,A, �,mi,mf 〉 where:
• 〈P, T, F 〉 is a Petri net;
• A is the set of activity labels;
• � : T 
→ A is a function that associates a label with some

transitions in T ;
• mi and mf are the initial and final marking.

Given a Labelled Petri net N = 〈P, T, F,A, �,mi,mf 〉,
the labeling function � does not need to be total, as certain
transitions are not associated with a label. Such transitions
do not represent actual pieces of work in processes but their
introduction is sometimes necessary to properly represent
the process behaviour. In the remainder, shortcuts Inv(N) ⊂
T indicates those transitions of N that are associated with no
labels (i.e., not in the domain of �). Fig. 1 shows an example
of a Labelled Petri net that will be used throughout the paper.
The transition’s names are depicted inside the transitions.
The initial and final marking have respectively one token in
place start or in place end (and no tokens in any other place).

We conclude this section by introducing the con-
cepts of k-boundness. A Labelled Petri net N =
〈P, T, F,A, �,mi,mf 〉 is k-bounded if, in every marking m
reachable from the initial marking mi, every place p ∈ P
always contains at most k tokens, i.e., m(p) ≤ k.

2.2 Alignment between Event Logs and Petri Nets

Event logs are the starting point for conformance checking.
An event log is a set of traces. A trace describes the life-
cycle of a process instance in terms of the activities (i.e.,
Petri net transitions) executed.

Figure 1: The Petri net used as working example. Transitions
a, b and c are associated with labels of the same name. The
black-colored transition τ is invisible and transitions d1 and
d2 are both associated with label d.

Definition 3 (Event Log). Let N = 〈P, T, F,A, �,mi,mf 〉
be a Labelled Petri net. Let E be the universe of events and
T be the universe of timestamps. A trace φ ⊂ E is a finite
set of events. An event log L over N is a tuple 〈L, λN , λT 〉
consisting of a set L ⊂ 2Eof traces, a function λN : E → A,
which associates each event e ∈ E with an activity λN (e) ∈
A, and a function λT : E → T , which associates each event
e ∈ E with a timestamp λT (e) ∈ T .

The partial ordering of the events in a trace φ ⊂ E is
inducted through function λT , which assigns timestamps to
events. Events with different timestamps are thus ordered
but events with the same timestamp are not. A trace can also
be regarded as a sequence of isochronous groups, each of
which contains the trace events with the same timestamp.
For example, let us consider the following event log:

[〈{a1}, {b2, c3}, {d4}〉, 〈{a5, b6}, {c7}, {d8}〉, 〈{a9, b10},
{c11, d12, b13, c14}, {d15}〉, 〈{a16}, {d17}〉, 〈{a18}, {d19}〉]

Notice that each event e is here represented as li where
λN (e) = l and i is some event identifier. This identifier is
not used hereafter and is only introduced in this event log to
highlight the uniqueness of events. This event log contains
five partially-ordered traces. Readers should notice that, in
this example, λT is not explicitly reported. The event-log
traces are expressed in terms of isochronous groups, which
are inducted by an appropriate λT function. In fact, the pre-
cise timestamps are irrelevant since they are only used to
define the partial ordering. In the remainder of this paper,
given an event e ∈ φ, notation �e denotes the set of all
events e′ ∈ φ such that λT (e

′) < λT (e) (e.g., in the first
trace, �b2 = [a1], �c3 = [a1] and �d4 = [a1, b2, c3]).

As mentioned in Section 1, we perform conformance
checking by constructing an alignment of event log
〈L, λN , λT 〉 and process model N , which allows us to ex-
actly pinpoint where deviations occur. Building this align-
ment is far from trivial, since the log may deviate from the
model at an arbitrary number of places. On this aim, the
events in the event log need to be related to transitions in
the model, and vice-versa. Specifically, we need to relate
“moves” in the log to “moves” in the model. However, it
may be that some of the moves in the log cannot be mim-
icked by the model and vice versa. We explicitly denote such
“no moves” by �.
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γ1 =
b a c d � �
� a c � b d1

γ2 =
a b d c �
a b � c d1

γ3 =
a b c d
a b c d1

Figure 2: Alignments of trace 〈{a, b}, {d, c}〉 and the pro-
cess model in Fig. 1.

Definition 4 (Alignment Moves). Let N =
〈P, T, F,A, �,mi,mf 〉 be a Labelled Petri net. Let
〈L, λN , λT 〉 be an event log. A legal alignment move for
N and 〈L, λN , λT 〉 is represented by a pair (sL, sM )
∈ (E ∪ {�} × T ∪ {�}) \ {(�,�)} such that:
• (sL, sM ) is a move in log if sL 
= � and sM = �,
• (sL, sM ) is a move in model if sL =� and sM ∈ T ,
• (sL, sM ) is a synchronous move if sL 
= �, sM ∈ T \

Inv(N) and λN (sL) = �(sM )

To properly define the concept of alignment, we
need to introduce the notion of prefix of a sequence
σ = 〈x1, . . . , xn〉 for each xi ∈ σ: prefix(σ, xi) =
〈x1, . . . , xi〉. An alignment is a sequence of alignment
moves defined as:
Definition 5 (Alignment). Let N = 〈P, T, F,A, �,mi,mf 〉
be a Labelled Petri net and 〈L, λN , λT 〉 be an event log.
Let ΓN be the universe of all alignment moves for N and
〈L, λN , λT 〉. Let φ ∈ L be a log trace. Sequence γ ∈ Γ∗

N is
an alignment of N and φ if, ignoring all occurrences of �:
• the projection on the first element of γ yields a sequence
σ′ ∈ E∗ such that
– e ∈ σ′ ⇔ e ∈ φ, and
– ∀e′ ∈ σ′. e′′ ∈ prefix(σ′, e′) ⇒ λT (e

′′) ≤ λT (e
′).

• the projection on the second element of γ yields a se-

quence σ′′ ∈ T ∗ such that mi
σ′′
−−→ mf .

Many alignments are possible for the same trace. For ex-
ample, Fig. 2 shows three possible alignments for a trace
φex = 〈{a, b}, {d, c}〉. Note how moves are represented ver-
tically. For example, as shown in Fig. 2, the first move of γ1
is (b,�) (i.e., a move in the log of b), the second is (a, a)
(i.e., a synchronous move of a) and the fifth move is (�, b)
(i.e., a move in the model of b). However, we aim at finding
a complete alignment of φ and N with minimal deviation
cost. In order to define the severity of a deviation, we first
introduce a cost function on legal moves and, then, general-
ize it to alignments. Any alignment with the lowest possible
cost is named an optimal alignment.
Definition 6 (Cost Function). Let N =
〈P, T, F,A, �,mi,mf 〉 be a Labelled Petri net and
φ ∈ L a log trace, respectively. Assuming ΓN as the set
of all legal alignment moves, a cost function κ assigns
a non-negative cost to each legal move: ΓN → N+

0 .
The cost of an alignment γ ∈ ΓN between φ and N is
computed as the sum of the cost of all constituent moves:
K(γ) =

∑
(sL,sM )∈γ κ(sL, sM ).

Alignment γ is an optimal alignment if, for any align-
ment γ′ of N and φ, K(γ) ≤ K(γ′). This cost function can

be used to favor one type of explanation for deviations over
the other. The cost of each legal move depends on the spe-
cific model and process domain and, hence, the cost function
κ needs to be defined specifically for each setting. Note that
an optimal alignment does not need to be unique, i.e., multi-
ple alignments with the same minimal cost may exist.

Let us consider the following cost function for the model
in Fig. 1:

κ
(
(sL, sM )

)
=

{
1 if sM =�,
1 if sL =� and sM 
= τ,
0 otherwise.

(2)

With reference to the alignments in Fig. 2, alignments γ1 and
γ2 have cost 4 and 2 respectively. Conversely, γ3 takes on a
cost 0. So, γ3 is a less expensive alignment and, in particular,
is among the least expensive alignments. Therefore γ3 is an
optimal alignment. Specifically, since the cost is 0, trace φex

is compliant with the model in Fig. 1. As mentioned in Sec-
tion 1, the existing techniques based on total-ordering would
enforce one of possible total ordering of events in trace φex,
such as 〈a, b, d, c〉, with the latter yielding uncorrect diagno-
sis of deviations.

2.3 Automated Planning

Planning systems are problem-solving algorithms that oper-
ate on explicit representations of states and actions (Bonet
and Geffner 2001; Ghallab, Nau, and Traverso 2004).
PDDL (McDermott et al. 1998) is the standard Planning
Domain Definition Language; it allows us to formulate a
planning problem P = 〈I,G,PD〉, where I is the descrip-
tion of the initial state of the world, G is the desired goal
state, and PD is the planning domain. A planning domain
PD is built from a set of propositions describing the state
of the world (i.e., by the set of propositions that are true)
and a set of operators Ω (i.e., actions) that can be executed
in the domain. An action schema a ∈ Ω is of the form
a = 〈Para,Prea,Eff a〉, where Para is the list of input pa-
rameters for a, Prea defines the preconditions under which
a can be executed, and Eff a specifies the effects of a on the
state of the world. Both preconditions and effects are stated
in terms of the propositions in PD. Propositions can be rep-
resented through boolean predicates and numeric fluents.

There exist several forms of planning in the literature. In
this paper, we focus on planning techniques characterized
by fully observable, static and deterministic domains, i.e.,
we rely on the classical planning assumption of a “perfect
world description” (Wilkins 1988). A solution for a plan-
ning problem is a sequence of operators—a plan—whose
execution transforms the initial state I into a state satisfy-
ing the goal G. To this end, we represent planning domains
and problems making use of the STRIPS fragment of PDDL
2.1 (Fox and Long 2003), enhanced with the numeric fea-
tures provided by the “level 2” of the same language, which
are used to keep track of the costs of planning actions and to
synthesize plans satisfying pre-specified metrics.

3 Encoding the Alignment Problem in PDDL

This section illustrates how, given an event log 〈L, λN , λT 〉
and Labelled Petri net N = 〈P, T, F,A, �,mi,mf 〉, the
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problem of the alignment of N and of a partially-ordered
trace φ ∈ L can be encoded as a PDDL planning problem,
which can be solved by state-of-the-art planners. The syn-
thesized plan will consist of a sequence of alignment moves
that establish an alignment between φ and N .

In the remainder of this paper, we assume Labelled Petri
nets to be 1-bounded. This is not a large limitation as the
behavior allowed by most of business processes can be rep-
resented as 1-bounded Petri nets (van der Aalst 2002). As
further support of the practical relevance of 1-bounded Petri
nets, readers can look at large body of recent work on the
usage of block-structured process models, a special subclass
of 1-bounded Petri nets (see, e.g., (Leemans, Fahland, and
van der Aalst 2014)). Also, any k-bounded Petri net N ′ for
any k can be transformed into a 1-bounded Petri net: first,
the reachability graph of N ′ is built (van der Aalst 1998;
2002), which is a finite transition system because N ′ is k-
bounded; then, the reachability graph is trivially translated
into a 1-bounded Petri net, constructing one Petri net place
for each reachability graph state and one Petri net transition
for each reachability graph transition.

3.1 Predicates and fluents

In the planning domain PD, we provide three object types
called place, transition and event. The types place
and transition represent respectively the places and the
transitions of N . The type event is used to record the list of
events that occur in the specific trace φ that must be checked
for conformance. For example, for trace φ = 〈{a, b}, {d, c}〉
and the Petri net in Fig. 1, the following objects are intro-
duced in the planning problem P:
(:objects a b c d1 d2 inv - transition

start p1 p2 p3 p4 end - place

e_a e_b e_d e_c - event)

Notice that we have explicitly introduced the invisible tran-
sition inv. To capture all possible markings of N and the
evolution of φ during an alignment, we define two boolean
predicates in PD, as follows:

token. For each p ∈ P , (token ?p - place) holds iff p
contains a token in the currently reached marking.

aligned. For each event e ∈ φ, (aligned ?e - event)
holds iff the event has been aligned in the current (partial)
solution, namely the alignment built so far.

In addition to the predicates above, assuming a cost func-
tion κ, the following fluents are also introduced:

move-model-cost. For each transition t ∈ T , fluent
(move-model-cost ?t - transition) takes on the
cost of a model move for t, i.e., the value of κ((�, t)).

move-log-cost. For each event e ∈ φ, fluent
(move-log-cost ?e - event) takes on the cost
of a log move for e, i.e., the value of κ((e,�)).

total-cost. (total-cost) keeps track of the cost of the
alignment currently found.

Synchronous moves are associated with no cost and,
hence, no fluent needs to be introduced. For trace φ =
〈{a, b}, {d, c}〉 and the Petri net in Fig. 1, the initial state of
P with the definition of predicates and fluents is as follows:

(:init (token start)

(= (total-cost) 0)

(= (move-model-cost a) 1) (= (move-model-cost b) 1)

(= (move-model-cost c) 1) (= (move-model-cost d1) 1)

(= (move-model-cost d2) 1) (= (move-model-cost inv) 0)

(= (log-move-cost e_a) 1) (= (log-move-cost e_b) 1)

(= (log-move-cost e_c) 1) (= (log-move-cost e_d) 1))

Readers can observe that the last five lines are the repre-
sentation of the cost-function example in Equation (2) of
Section 2.2. At the end, for the example in question, when
an alignment is found, the Petri net needs to be in the final
marking, i.e., with one token in place end and zero tokens
in any other place, and aligned must hold for all the events
in the trace:
(:goal (and (token end) (not (token a)) (not (token b))

(not (token c)) (not (token d1)) (not (token d2))

(not (token inv)) (aligned e_a) (aligned e_b)

(aligned e_c) (aligned e_d)))

Readers should notice that, since our purpose is to minimize
the total cost of the alignment, the planning problem also
contains the following specification: (:metric minimize
(total-cost)).

3.2 Planning Actions

The plan to reach the final goal from the initial state is con-
stituted by a sequence of alignment moves, each of which is
a planning action. Therefore, three classes of actions exist in
PD: synchronous moves, model moves and log moves.
Synchronous moves. A separate action exists for each pair
(e, t) ∈ φ × (T \ Inv(N)) such that �(t) = λN (e) (i.e.,
for each pair (e, t) such that the event is associated with the
same label as transition t) to represent a synchronous move
for event e and transition t. For instance, let us consider tran-
sition c of the model in Fig. 1; synchronous move for c is
associated with the following action:
(:action moveSync-c-e_c

:precondition (and (token p2) (aligned e_a)

(aligned e_b))

:effect (and (not (token p2)) (token p4) (aligned e_c)))

The preconditions of the action are: (i) c is enabled, i.e., all
input places of c contain a token; (ii) each event ex ∈ �e has
already been aligned. In this example, �e c = {e a, e b}.
The effects denote the firing of c and the fact that the event
e c is marked as aligned.
Model moves. A separate action exists for each transition
t ∈ T . A model move focuses on making an enabled transi-
tion t fire without performing any move in φ. For instance,
let us consider transition c of the model in Fig. 1; a model
move for c is associated with the following action:
(:action moveInTheModel-c

:precondition (token p2)

:effect (and (not (token p2)) (token p4)

(increase (total-cost) (move-model-cost c))))

The effects are accordant to the firing rules in Equation (1)
of Section 2.1. It is worthy observing how the execution of
a model move for c makes the total cost (of the alignment)
increase of a value equal to the cost of a model move for c.
Log moves. A separate action exists for each event e ∈ φ to
represent a log move for e. For instance, consider event e c:
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(:action moveInTheLog-e_c

:precondition (and (aligned e_a) (aligned e_b))

:effect (and (aligned e_c) (increase (total-cost)

(log-move-cost e_c))))

The preconditions are that all the events belonging to �e c
have been already aligned (notice that e d belongs to the
same isochronous group of e c). The effects allow one to
mark the event e c as aligned and increase the cost of the
alignment of a value equal to the cost of a log move for e c.

3.3 Discussion on Correctness and Termination

The proposed encoding of an alignment problem A as plan-
ning problem P maintains the propositions of correctness
and termination discussed in (de Leoni and Marrella 2017).
Therefore, it is always possible to find a solution for A by
solving P in a finite amount of time. Also, if planning sys-
tems are used that guarantee the optimality of the solution,
the solution is one of the alignments with the lowest cost,
which is an optimal alignment.

In the remainder of this section, we consider a compliant
trace as a negative diagnosis, and the other way around for
non-compliant traces. The proposition below illustrates that,
differently from (de Leoni and Marrella 2017), we guaran-
tee that every compliant trace φ (negative) is diagnosed as
such, even if event timestamps are not recorded at the right
granularity, leading to partially-ordered trace φp:
Proposition 7 (Absence of False Positives). Let N =
〈P, T, F,A, �,mi,mf 〉 be a labelled Petri net. Let L =
〈L, λN , λT 〉 be an event log over N . Let φ ∈ L be a
totally-ordered trace; namely, for all events e′, e′′ ∈ φ,
λT (e

′) = λT (e
′′) ⇔ e′ = e′′.

Let φp be any partial trace constructed from φ as follows.
For each event ei ∈ φ, φp contains an event epi , such that
λN (epi ) = λN (ei). Furthermore, for each ei, ej ∈ φ, the
two events epi ∈ φp and epj ∈ φp are constructed such that if
λT (ei) < λT (ej), then λT (e

p
i ) ≤ λT (e

p
j ).

Let P be the planning problem to compute the optimal
alignment of φp and N . If φ is compliant and P is solved by
a planning system that guarantees optimality, the solution of
P (i.e., the optimal alignment) has cost 0.

Proof. For the sake of simplicity, we use the no-
tation with isochronous groups. Since φ is to-
tally ordered, all isochronous groups are one-sized:
φ = 〈{e1}, . . . , {ei−1}, {ei}, . . . , {ej}, . . . , {ek}, {ek+1},
. . . , {en}〉. Without losing of generality, let us take
a partially-ordered trace φp built from φ with one
isochronous group of size greater than 1: φp =
〈{e1}, . . . , {ei−1}, {ei, ..., ej , ..., ek}, {ek+1}, . . . , {en}〉.
Let us assume by contradiction that P will return an
alignment γ of cost greater than 0. However, there is an
alignment γO of cost 0:1

γO =
e1 . . . ei−1 ei . . . ej . . . ek ek+1 . . . en
t1 . . . ti−1 ti . . . tj . . . tk tk+1 . . . tn

1N may have invisible transitions that need to fire to execute
〈e1, . . . , en〉. In this case, some model moves for invisible tran-
sitions, with cost 0, are intertwined with the synchronous moves.
Clearly, this does not invalidate the proof.

where λN (ei) = �(ti) for all 1 ≤ i ≤ n. Since the cost
K(γ) > K(γO) = 0, P was solved through a planner that
does not guarantee optimality. The latter breaks the hypoth-
esis of optimality of the employed planning system.

4 Implementation and Validation

The technique discussed in Section 3 is implemented as a
Java plug-in for ProM, an established open-source frame-
work for implementing Process Mining tools and algo-
rithms (Verbeek et al. 2010). Through a GUI, it is also pos-
sible to customize the cost function. Specifically, the plug-in
is available in the PlanningBasedAlignment package
of the so-called “nightly-build” version of ProM under the
name “Planning-Based Alignment of Event Logs and Petri
Nets”.2 The tool is integrated with the FAST-DOWNWARD
planning framework (Helmert 2006) to find optimal align-
ments. To speed up the search, we employed the BLIND
heuristic, which is admissible and safe and, thus, guarantees
to produce optimal solutions.

In the remainder of this section, we report on the exper-
iments conducted on a real-life case study and on synthetic
models and event logs. We performed every experiment with
a machine with an Intel Xeon W3530 CPU 2.80GHz and
8GB RAM. We used a cost function that assigns a cost 1
to log moves and model moves for non-invisible transition,
similar to Equation (2). We also employed heuristics that are
admissible and safe, which guarantees the solutions to be al-
ways of the lowest cost, namely the returned alignments are
always optimal. The synthetic event logs and process models
are available for download (Lanciano and de Leoni 2018).

4.1 Real-life Case Study

The real-life case study refers to the process to manage ap-
plications by a Dutch financial institute. Fig. 3 shows the
Petri net that models this process. The initial marking Mi

consists in one token in both places Start and F Storage,
while the final marking Mf consists in one token in place
End. For this case study, we were provided with an event
log composed of 115295 traces, which records the execu-
tion of so many concrete process instances. For the sake of
confidentiality, the actual names of the activities are obfus-
cated and the event log cannot be shared. Process executions
consist of 4 events in average, and there are no traces longer
than 19 events. Besides, the size of the isochronous groups
in a trace is equal to 3.23 events on average. The largest
isochronous group in a log trace is made of 16 events.

Using our tool, we computed the optimal alignment of
the event log on the Petri net, employing both the technique
based on the total-order assumption in (de Leoni and Mar-
rella 2017) and that discussed in this paper, which does not
require the assumption. Fig. 3 shows the projection of the
deviations onto the Petri net for both of these cases. The
colour of a Petri net transition t ranges from white to red
with different shades of orange and yellow in accordance
with the sum of the number of log and model moves for t

2The nightly-build can be downloaded at http://www.
promtools.org/doku.php?id=nightly. The PackageManager of
ProM can be used to install the required package.
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Figure 3: The projection of the deviations onto the Petri net used in the real-life case study. The left-hand half of each activity
is related to the settings assumed in (de Leoni and Marrella 2017), the right-hand half is related to the partial ordering setting.

for all optimal alignments divided by the sum of all moves
for t for all optimal alignments (i.e., the latter includes syn-
chronous moves, as well). In particular, for each log trace,
we consider one optimal alignment, namely that returned by
the conformance-checker techniques.

The left-hand side of a transition shows the colors com-
puted through the technique in (de Leoni and Marrella 2017)
and can be easily compared with the right-hand side, which
refers to the technique discussed in this paper. Our technique
detects a smaller fraction of deviations (the transition color
is “less red”), compared with what computed in (de Leoni
and Marrella 2017). This holds, for instance, for transitions
J, K and L. This case study shows that considering the trace
as partially-ordered allows one to overcome, at least in part,
the issue of having a coarse granularity for the event times-
tamps. As mentioned before, this could be partly underes-
timating the number of deviations, probably not as much
as the previous technique overestimated; but, certainly, our
technique remarkably guarantees that compliant traces will
never diagnose as deviant (see Proposition 7).

Although this experiment was based on rather short
traces, the results show that the problem of checking confor-
mance of partially-ordered traces exist in reality, thus moti-
vating the practical relevance of finding a solution for it. The
real-life case study is not intended to study the level of scal-
ability of the technique with models/logs of increasing size.
This will be achieved through the case studies with synthetic
data sets, which is reported in the following section.

4.2 Synthetic Experiments

In order to assess the scalability with respect to the complex-
ity of the alignment problem, we take into account four syn-
thetic models of different size and their related event logs.
Specifically, we generate Petri nets d53, d62, d63 and d64,
with respectively 95, 136, 175 and 263 (visible and invisi-
ble) transitions, which are available for download in PNML
format (Lanciano and de Leoni 2018). For each Petri net,
we generate an event log with 1000 traces. The average

trace length is respectively 42.8, 58.3, 148.07, 156.21 for the
four processes in question. We used the PLG2 tool (Burattin
2017) to generate the Petri nets and the event logs, using the
default parameters to configure the generation.

The initially-generated event logs only contained traces
that are compliant. To compute the scalability wrt. event
logs with traces affected by an increasing number of devia-
tions, we artificially injected noise. The injection of the Y %
of noise in an event log means that, for each log trace, an
event is swapped with the next one with a probability of Y %,
thus introducing further potential deviations with respect to
the underlying process model. In our experiments, Y is set
to 10%, 20% and 30%. Orthogonally, we aimed to evalu-
ate the scalability wrt. isochronous event groups of growing
size within each trace. Intuitively, larger isochronous groups
lower the number of constraints and, hence, the search space
becomes larger, increasing the complexity of the problem
of aligning partially-ordered traces. For each of the four
event logs, we manipulate the timestamps so as to obtain
the isochronous groups that, on average, contain X events.
In our experiments, X is set to 10, 20 and 30.

Because of the extreme complexity of the resulting align-
ment problems, the FAST-DOWNWARD planning frame-
work, which was used for the real-life case study, failed in
most of the experiments based on synthetic data. Therefore,
we switched to SymBA*-2 (Torralba et al. 2014), which ap-
pears more suitable for the class of our trace-model align-
ment problems, while keeping guarantees of optimality. To
this date, due to some implementation issues, this planner is
not yet integrated in our graphical tool. However, our tool is
versatile and allows one to extract the PDDL files to be used
as input to any PDDL planning system. The significantly-
better performances of SymBA*-2 are remarkable and likely
related to the use of bidirectional A* search, which appears
in practice to be more efficient for the class of planning prob-
lems derived from alignment problems.

Table 1 shows the results of the experiment for differ-
ent combinations of models, noise amount and isochronous-
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Table 1: Experimental results for synthetic case studies. Numbers reported are average times (ms) over all traces in the logs.

groups size prepr. search prepr. search prepr. search prepr. search

d53 original log 10% noise 20% noise 30% noise

10 17.39 1,076.88 16.25 1,083.63 16.04 1,082.71 16.2 1,089.36
20 16.19 1,057.39 16.16 1,078.46 16.42 1,272.76 16.19 1,376.38
30 16.13 1,303.4 16.1 1,255.78 16.36 1,250.42 16.35 1,278.75

d62 original log 10% noise 20% noise 30% noise

10 43.86 2,556.3 44.67 2,586.87 44.26 2,600.58 44.49 2,612.92
20 44.27 2,641.21 44.41 2,545.33 44.88 2,668.87 44.37 2,685.34
30 42.04 2,666.71 41.28 2,774.24 42.04 2,636.65 41.96 2,564.27

d63 original log 10% noise 20% noise 30% noise

10 129.77 14,891.66 129.81 15,316.17 128.71 15,482.54 129.4 17,282.78
20 131.85 19,867.1 130.15 21,107.42 129.58 22,652.23 129.36 25,339.51
30 132.09 51,293.36 130.87 46,830.37 130.57 52,304.72 131.75 60,037.62

d64 original log 10% noise 20% noise 30% noise

10 211.43 20,798.12 211.1 18,839.27 212.05 19,213.27 209.87 19,539.5
20 207.34 25,852.17 210.86 27,072.33 204.69 27,886.47 211.31 29,540.09
30 210.39 62,675.21 208.06 — 213.84 — 217.07 —

group size. For each combination, the table reports the pre-
processing and the search time. The latter is the time needed
to compute the solution, whereas the pre-processing time
is the time to convert the alignment problem to a planning
problem in PDDL along with the time to instantiate the op-
portune data structure inside the planners to start the search.

From Table 1, some conclusions can be drawn. The pre-
processing only depends on the size of the process model
and, consequently, of the trace size. This could be expected
because the pre-processing depends on the number of predi-
cates, fluents and actions, which is mostly influenced by the
model size. Regarding the search time, the amount of noise
has a small influence, compared with the size of the models
and of the isochronous groups. The latter two factors have
a huge influence of the computation time: as expected, the
computation time grows exponentially wrt. the size of the
models and of the isochronous groups. This is more evident
with the two larger models. As a matter of fact, our technique
was unable to compute alignments for the largest model with
the largest configurations of isochronous-group sizes. This is
merely caused by the limited amount of memory at disposal.
We repeated the tests that failed by using a machine with 12
GB of memory; and the technique was able to complete the
experiments for those complex configurations. It is worth
noting that having groups of 30 events with the same times-
tamp is fairly uncommon in real settings, as illustrated in the
real-life case study, so like having models of those sizes.

5 Concluding Remarks

Within the BPM field, conformance checking is the problem
of verifying whether executions as recorded in the event logs
are compliant with a normative model of process. The notion
of alignment (van der Aalst, Adriansyah, and van Dongen
2012) provides a robust approach to conformance checking,
which makes it possible to pinpoint the deviations causing

nonconformity. Existing techniques rely on a total ordering
of events in traces, which is an assumption that is not always
met in reality, due to course logging of event’s timestamps.

This paper has reported on a planning-based technique
that extends what was proposed in (de Leoni and Marrella
2017) by removing the total-ordering assumption. We have
shown that automated planning offers a mature paradigm
for tackling the problem of alignment-based conformance
checking (in case of partially-ordered traces) in a theoreti-
cally grounded and domain-independent way. Our technique
is based on the idea that alignment problems can be repre-
sented as planning problems in PDDL, which can be solved
by off-the-shelf planners. The real-life experiments illustrate
that the problem of partially-ordered traces is encountered in
practice and that the corresponding operationalization can be
applied to real-life case studies. The results with synthetic
event logs and process models of growing complexity show-
case that the technique scales sufficiently well. Theoretical
results show that, in a finite amount of time, either the tech-
nique returns a correct, optimal solution when a solution ex-
ists or it stops when no solution exists.

As previously indicated, it is theoretically possible that,
in case of partially-ordered traces, the number of deviations
is underestimated because the partially-order events are or-
dered to minimize the number of deviations, which might
not coincide with the real ordering. However, the real order-
ing is an unknown information which we cannot rely on. As
future work, instead of classifying a trace either compliant or
not, it is worthwhile exploring the possibility to diagnose if
a trace is (1) always or (2) never conforming, irrespectively
of how the partial orders are resolved, or, conversely, is (3)
conforming under the assumption of a certain resolution of
the partial order. This is far from trivial: an exhaustive anal-
ysis of all partial-order resolutions leads to combinatorial
explosion, making the problem intractable.
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