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Abstract

Path planning on grid maps has progressed significantly in re-
cent years, partly due to the Grid-based Path Planning Com-
petition GPPC. In this work we present an optimal approach
which combines features from two modern path planning sys-
tems, SRC and JPS+, both of which were among the strongest
entrants at the 2014 edition of the competition. Given a cur-
rent state s and a target state ¢, SRC is used as an oracle
to provide an optimal move from s towards ¢. Once a direc-
tion is available we invoke a second JPS-based oracle to tell
us for how many steps that move can be repeated, with no
need to query the oracles between these steps. Experiments
on a range of grid maps demonstrate a strong improvement
from our combined approach. Against SRC, which remains
an optimal solver with state-of-the-art speed, the performance
improvement of our new system ranges from comparable to
more than one order of magnitude faster.

1 Introduction

Path planning on grid maps is an important Al problem,
with applications in games and robotics. The problem has re-
ceived a significant attention in Al research. In recent years,
part of the progress is due to the Grid-Based Path Planning
Competition, GPPC.* In this work we combine two success-
ful approaches from the 2014 edition of the GPPC to develop
a new pathfinding system that improves the best available
speed results for optimal path planning on grid maps.

The first approach which we consider is SRC (Strasser,
Harabor, and Botea 2014), a type of compressed path
database (CPD) that relies on stored all-pairs shortest path
data. Given any two nodes s and ¢, this method can be
queried to retrieve an optimal move from s towards ¢. We
call the method that retrieves such an optimal move an SRC
oracle. SRC repeatedly invokes this oracle to compute an
optimal path, or a prefix of any desired length.

The second approach which we consider is JPS+ (Hara-
bor and Grastien 2014), a preprocessing based algorithm that
exploits symmetries on a gridmap. When expanding a node
JPS+ identifies a set of directions {1, . . . U} }, each of which
leads to a successor called a jump point. It also tells the dis-
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tance (in number of steps) from the current position to each
jump point. We call this method a JPS oracle.

Our new method, called Topping (Two-Oracle Path Plan-
nING), combines the two oracles as follows: the SRC oracle
identifies a move to perform in the current position; the JPS
oracle tells for how many steps the move can be repeated,
with no need to query the oracles between these steps.

The main advantage of Topping is that one call to the
JPS oracle is significantly faster than one call to the SRC
oracle. To retrieve one optimal move towards the target at
hand, SRC performs a binary search in a compressed string
of symbols, representing optimal moves from the current po-
sition towards various potential targets. The JPS oracle an-
swers a query with a constant-time lookup. Thus, at steps
where the oracles are invoked, the overhead of the JPS ora-
cle is small in comparison to the SRC oracle. At steps where
no oracle call is needed, the savings are significant.

In Topping, the preprocessing time is comparable to the
SRC preprocessing time. The memory requirements are in-
creased however, due to two reasons. Firstly, we store infor-
mation for two oracles instead of one. Secondly, to ensure
the correctness of the approach, we need to synchronise the
two oracles so that they break ties among multiple optimal
moves in a similar fashion. As a side effect, this reduces the
compression power of SRC. Standalone SRC can break ties
arbitrarily and in a way that favours improved compression.
However, JPS+ breaks ties by favouring paths where diag-
onal moves appear as early as possible. Imposing a similar
strategy to SRC may rule out (non-diagonal) optimal moves
that would achieve a better CPD compression. See an addi-
tional discussion in Section 4.

Until now, SRC has represented the state of the art in
terms of speed for computing grid-optimal shortest paths.
For instance, in GPPC-2014 (Sturtevant et al. 2015), SRC
was found to compute optimal paths significantly faster than
all other systems at the competition. In addition, SRC pro-
vides individual optimal moves in the order of 100 nanosec-
onds, or even faster (Strasser, Harabor, and Botea 2014). As
other existing systems require to complete a search before
telling the first optimal move, CPD-based systems, such as
SRC, are orders of magnitude faster in providing a prefix of
an optimal path. Given such a strong timing performance,
achieving a better speed is challenging.

In experiments on a range of gridmaps from Sturtevant’s



repository (Sturtevant 2012) we report a significant speed
improvement. The performance of Topping ranges from
comparable to SRC to more than one order of magnitude
faster. On average, Topping computes full optimal paths 3.84
times times faster than SRC. Moreover, when computing the
first 20 moves of an optimal path, Topping is faster than SRC
by a factor of 6.41 on average.

2 Related work

We focus our attention on well known and state-of-the-
art works that improve the efficiency of grid-optimal path
planning search. The literature in this area can be divided
into two broad categories: works that are purely online, and
works that employ offline preprocessing and auxiliary data
to achieve greater speedup. Performance is often measured
with respect to A* (Hart, Nilsson, and Raphael 1968).

For online grid path planning, one popular and very strong
starting point is the symmetry-breaking approach known as
Jump Point Search (Harabor and Grastien 2014) (JPS). Since
JPS is a key ingredient for our work we describe it in some
detail in Section 3.1. Recent variations of this method, which
may further improve performance, are described in (Sturte-
vant and Rabin 2016). Other related works include studies
into alternative search strategies, such as the bi-directional
algorithm NBS (Chen et al. 2017) — which is sometimes
preferable to A* on grids — and studies into more efficient
implementations of the OPEN list, such as those evaluated
in (Larkin, Sen, and Tarjan 2014).

For grid path planning with offline preprocessing the
speed state of the art belongs to methods that exploit all-
pair-shortest-path (APSP) data. Compressed Path Databases
(CPDs) are a family of such methods and the variant known
as SRC (Strasser, Harabor, and Botea 2014) is a key ingre-
dient for our work. We describe these approaches in Sec-
tion 3.2. In (Rabin and Sturtevant 2016) APSP precomputa-
tion is used to develop a method known as JPS+BB. This
work is in some ways similar to our own and has more
modest memory requirements. Its speed performance for full
path computation is comparable to SRC, a method which in
this work we significantly improve upon. A further advan-
tage of our work vs JPS+BB is that we are able to compute
a first optimal move, or a prefix of the optimal path, much
faster, without solving the entire problem first.

A broader cross-section of recent grid-based path plan-
ning techniques from across the literature — including opti-
mal and sub-optimal, some online and others preprocessing-
based — appears in the results from the 2014 Grid-based
Path Planning Competition (Sturtevant et al. 2015).

3 Background

A gridmap is a two-dimensional environment with n X m
square cells or tiles. Each tile is marked as traversable or
non-traversable and has up to 8 adjacent neighbours. Navi-
gating across a gridmap involves transitioning from one tile
to the next by repeatedly applying a move operator v. There
are eight possible moves corresponding to each of the four
cardinal directions (N, S, E, W) and each of the four ordinal
directions (NW, NE, SE, SW). Each cardinal (or straight)
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Figure 1: Examples of moves that are allowed and disallowed.

move has a cost of 1 while each ordinal (or diagonal) move
has a cost of v/2. A move © is valid when it is used to tran-
sition between two traversable tiles. In this work we also
consider a number of common rules which further constrain
the validity of a move. These are illustrated in Figure 1 and
often appear in computer games and the literature.

A path is a sequence of valid moves 7 = (vg,...,U%)
used to transition from a start tile s to a target tile ¢. The cost
of a path ¢(7) is equal to the sum total of all its move costs.
When ¢(7) is minimum, among all paths between s and ¢,
that path is said to be (grid) optimal.

3.1 Jump Point Search

Jump Point Search (JPS) (Harabor and Grastien 2014) is
the combination of A* (Hart, Nilsson, and Raphael 1968)
with an online pruning technique that allows for fast and
optimal pathfinding on a grid. JPS works by eliminating
path symmetry; i.e., equivalences between sets of paths
that are very similar and often found together on a grid.
Consider, for example, a sequence of moves such as cor-
respond to the path (E,E,NE, E) which has a cost =~
4.4142. Obstacles notwithstanding, it is easy to see that
there are several permutations of this path, all of which
are equivalent w.r.t. the start and target location and all
of which have the same cost. These permutations are ob-
tained by taking the moves in a different order, such as:
(E,E,E,NE), (NE, E, E, E), (E, NE, E, E)

To avoid enumerating all such paths JPS applies a series
of simple and recursive pruning rules during node expan-
sion. The intuition is as follows: when generating a succes-
sor which can be reached along several different but sym-
metric paths, JPS prefers the path where diagonal moves ap-
pear sooner. All other equivalent paths can be safely pruned.
Stated differently, this strategy imposes over the set of all
grid moves a canonical partial order known as diagonal-first.

Diagonal-first pruning can dramatically reduce the
branching factor of a node, often leaving just a single suc-
cessor. By recursing in such cases JPS can avoid (i.e. “jump
over’) many non-branching nodes that would otherwise
need to be explicitly expanded. The recursion stops when
one of two conditions are met: (1) an obstacle is encoun-
tered, in which case the recursion is said to have failed and
no successor is returned, or (2) the recursion reaches a so-
called jump point: a node with multiple successors, all di-
agonal first, and none of which can be further pruned. By
“jumping” from one node to the next JPS can improve the
performance of A* search, in grid pathfinding scenarios, by
an order of magnitude and sometimes more.



JPS+ It is possible to further improve the performance of
Jump Point Search using offline pre-processing. One such
approach involves computing, for every node in the grid, the
number of steps to the next jump point in each of the eight
available move directions.

JPS exploits this information during online search to tra-
verse the map more quickly: for each valid move v; at the
current node x, simply repeat v; exactly k times, where & is
the number of steps to the next jump point (or to an obsta-
cle, if no jump point successor exists). Such pre-processing
is very fast, typically requiring just a few seconds even for
grids with millions of nodes. The memory overhead intro-
duced by this procedure is at most eight integers per grid
node. In our implementation an integer is 16-bits wide which
allows a maximum jump distance of 65535 steps. Smaller
integers can reduce the total memory size, possibly at the
expense of more time per online search.

3.2 Compressed Path Databases

A Compressed Path Database (CPD) is a pre-processing
based speedup technique which uses all-pairs path data to
find optimal shortest paths without the need for state-space
search. The idea is simple: given a grid with m traversable
nodes we compute and store a m x m matrix IM where each
entry M[i, j] = v, indicates the first move on the optimal
path from node ¢ to node j. To extract a shortest path using
M one need only recursively look up and apply the optimal
move vy, stopping only when 7 = j.

The matrix M is created offline. Populating each row re-
quires a Dijkstra search, making for a total of m Dijkstra
searches. However, since every row is independent from all
the rest the time requirements can be easily improved us-
ing parallel computation. To improve the space requirements
of M — which in a naive encoding would require O(m?)
records — a variety of row-based compression schemes have
been suggested. Common to all is the following idea: group
together nodes which are located in close proximity on the
grid and which share the same first move. There are many
possible ways to group nodes including quad-trees (Sankara-
narayanan, Alborzi, and Samet 2005), rectangle decompo-
sitions (Botea and Harabor 2013) and run-length encod-
ing (Strasser, Harabor, and Botea 2014). As a general rule
bigger groups yield better compression.

We use SRC (Strasser, Harabor, and Botea 2014), a state-
of-the-art CPD method which was also the fastest entry in
GPPC-2014. On data such as GPPC gridmaps, SRC can ex-
tract a single move within the order of 100 nanoseconds or
less. Its compression ratio is often in the range of 300 to 400,
compared to an uncompressed table.

4 Our Approach

Algorithm 1 shows our approach in pseudocode. At line 3,
the SRC oracle returns an optimal move ¢ from a current
state s towards a target state ¢. The second oracle, based on
JPS+, tells how many times the move ¢’ can be applied before
querying the SRC oracle again (line 4). At line 5, a corre-
sponding number of copies of the move are appended to the
solution. The current state becomes the result of performing
these moves (line 6), and the process repeats.
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Algorithm 1: Method Topping

input : init state s, target state ¢
output: optimal path from s to ¢

17+ 0
2 while s # t do
3 U« getMoveSRC (s, t)
4 ¢ < getNrStepsJPS(s, ¢, ¥)
5 append c copies of U to path 7
6 s < makeMoves(s, U, ¢)
7 return m
Path CPU time Speedup w.r.t.
length A* SRC  JPS+ Topping| A* SRC JPS+
[0, 150] 252 4.7 8.2 1.6 | 157 29 5.1
(150, 300] 1948 9.7 41.5 2.8 | 676 33 144
(300, 500] 5029 149 99.8 4.3 |1160 3.4 23.0
(500, 750] 9420 22.6 184.0 6.2 [1502 3.6 294
(750,1200]| 17024 352 437.0 6.3 [2664 5.5 634
> 1200 23039 63.1 527.0 14.9 |1546 4.2 354

Table 1: Average CPU time (micro-seconds) required by A*,
SRC, JPS+, and Topping to compute a full path, and average
speedup factor of Topping w.r.t. A*, SRC, JPS+.

Algorithm 1 is obtained from the way that SRC computes
paths with a slight but effective modification. Specifically, if
we remove line 4, and use a value of ¢ = 1, we fall back
on the path extraction technique utilized in CPD-based ap-
proaches, such as Copa (Botea 2012) and SRC.

Our approach is a simple and effective combination of
two oracles with complementary strengths, available in two
modern pathfinding systems, SRC and JPS+. The combina-
tion is easy to implement. It requires integrating one call to
a JPS+ method into the SRC path computation loop.

In addition, SRC and JPS+ need to break ties among opti-
mal moves in a similar fashion. As said earlier, JPS+ prefers
to make diagonal moves first. We have modified the Dijk-
stra search in the CPD preprocessing, to give priority to di-
agonal first moves. In other words, when two or more op-
timal moves are available from a current node s towards a
target ¢, and at least one is diagonal, the CPD returns a di-
agonal move. Intuitively, this tie-breaking synchronization is
needed to stay within the framework of Lemma 1 below. The
lemma is further needed to prove Theorem 1. The proofs are
left for a longer report.

Lemma 1. Consider a jump point p and a move v available
in p. Consider further that p and v belong to an optimal path
that is not pruned by the JPS+ rules. Then the entire segment
from p to the next jump point in the direction of U belongs to
an optimal path.

Theorem 1. Topping computes optimal paths.

5 Experimental Results

In this section, we present the results of an experimental
analysis conducted with the aim of evaluating the effective-
ness of using the Topping method.



Path length SRC  Topping | Ratio

[0, 150] 62.11 11.27 | 5.51
(150, 300] 192.70 3242 | 594
(300, 500] 340.70 52.03 | 6.54
(500, 750] 517.10 73.70 | 7.02
(750, 1200] 830.90 120.30 | 6.91

> 1200 | 1344.70 210.30 | 6.69

Table 2: Average number of binary searches performed by
SRC and Topping in the CPD, and ratio of these average
numbers for different path lengths.

The test data consist of 8-connected gridmaps ranging
from about 538 to 137,375 nodes (Sturtevant 2012). We used
54 real game maps from games Dragon Age: Origins, and
Baldurs Gate 11. Each map comes with a set of shortest-path
queries. Overall, the number of queries is 82,850. Maps are
undirected. Straight edges have weight 1 and diagonal edges
have weight V2.

The experiments were conducted using an Intel(R)
Core(TM) 17-3820QM CPU @ 2.70GHz CPU running
Ubuntu 16.04. The SRC code is taken from the 2014 GPPC
repository.” The JPS+ code is taken from the public repos-
itory of the original author.? All algorithms were compiled
using g++ 5.4.0 with -03.5

Table 1 compares for different path lengths the average
time used by A*, SRC, JPS+, and Topping to compute the
full path. In each case Topping is the fastest. Table 1 also
shows the speedup of Topping as compared to the other
approaches. For every considered path length but lengths
longer than 1200, the performance gaps between Topping
and A* and between Topping and JPS+ increase consistently
with the path length increase. Topping is up to more than
three orders of magnitude faster than A* and up to 63 times
faster than JPS+. For paths longer than 1200, the perfor-
mance gap is still largely in favor of Topping.

When comparing SRC and Topping, Table 1 shows that,
for every considered path length, the performance gap is
similar: Topping is from about 3 to 5 times faster than SRC.
As mentioned earlier, in the approaches using SRC the CPD
queries are performed by a binary search in a compressed
string of symbols stored in the CPD. The reason why Top-
ping is faster than SRC is a combination of related factors:
querying the JPS oracle is much faster than SRC performing
a binary search; and moves can often be applied repeatedly,
with no need to query the oracles in between.

Table 2 shows the average number of binary searches per-
formed by SRC and Topping in the CPD. The results in-
dicate that Topping performs many fewer binary searches.
Interestingly, for every considered path length the ratio be-
tween the average number of binary searches performed by
SRC and Topping is about the same. This is the reason why
the performance gap between SRC and Topping is relatively
stable across different path lengths (i.e., the second last col-

thttps://code.google.com/archive/p/gppc-2014/

*https://bitbucket.org/dharabor/pathfinding

$For an easier reproducibility of the results in the paper, our
code and experimental data will be available on request.
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Figure 2: Performance gap between SRC and Topping.
Queries are ordered so that the curve in monotonic.

Systems | Mem CPU time [pusec] Speedup of Topping

[MB] | Full path 20 mov. | Full path 20 mov.
SRC 10.40 25.10 3.95 3.84 6.41
JPS+ 3.99 216.00  216.00 33.00  355.00
Topping | 23.00 6.54 0.61 - -

Table 3: Average memory, average CPU time to compute the
full path, average time to compute the first 20 moves of SRC,
JPS, and Topping, and average speedup factor of Topping
w.r.t. SRC, JPS+ for all maps and queries.

umn in Table 1).

Figure 2 shows the ratio between the time required by
SRC and Topping to answer every query. Ratio values above
the dashed line represent a speedup for Topping. It is inter-
esting to observe that often Topping is more than five times
faster than as SRC, and sometimes it is even more than one
order of magnitude faster.

Table 3 shows a comparison in terms of CPU time and
used memory for all maps and queries of our benchmark.
Overall, Topping is the fastest path planning system in terms
of time required to compute both the full path and the first
20 moves. However, Topping requires more memory than
the other approaches. The memory used by Topping is about
two times the memory used by SRC. As mentioned in Sec-
tions 1 and 4, there are two reasons for this: Topping needs to
store the preprocessing information of JPS+, and the mem-
ory used in Topping to store the CPD increases.

6 Conclusion

We have presented an approach that significantly improves
state-of-the-art speed results in optimal path planning on
grid maps. Our technique is a combination of two oracles
readily available in two modern path planning systems, SRC
and JPS+. The need to synchronize the two oracles, in terms
of their tie-breaking scheme across optimal moves, results
in an increase in the size of a compressed path database.

In future work, we plan to further reduce the size of CPDs,
and to further speed up the computation of optimal paths
and path prefixes. A generalization to neighbourhoods larger
than 8 is another interesting direction.
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