
Sampling Strategies for Conformant Planning

Alban Grastien,1,2 Enrico Scala2,3

1 Data61, Canberra, Australia
2 The Australian National University, Canberra, Australia

3 Fondazione Bruno Kessler, Trento, Italy

Abstract

We present a generalisation of CPCES, a conformant planner
that uses two procedures: candidate plan generation and sam-
pling of the initial belief state. The new CPCES better distin-
guishes these two procedures and therefore provides a clearer
framework for the resolution of conformant planning prob-
lems. We study CPCES theoretically by analysing the sam-
pling phase through the lens of tags, width and basis. The
benefit of this new interpretation is twofold: firstly it allows
us to bound the maximum number of iterations required by
CPCES, and second it allows us to individuate sampling strate-
gies that guarantee the discovery of subsets of minimal bases.
An experimental analysis reported in the paper shows that the
greedy sampling (the original version of CPCES) is the more
effective strategy, coverage wise. However, when either the
quality of the plans or the size of the resulting samples is im-
portant a more sophisticated sampling is more effective.

1 Introduction

Conformant planning is the problem of finding a valid plan
in an uncertain environment (Smith and Weld 1998). We
consider here deterministic conformant planning, i.e., the
variant where uncertainty is only encountered in the initial
state, and not in the effects of the actions.

Consider the problems of Fig. 1 where an agent with un-
known initial location must reach the center (g) position.
The agent may move in all four directions north (N), south
(S), east (E), and west (W), and stays in its current position
if it hits a wall. The example on the right also includes a
swamp and a wall right next to it (it is impossible to leave
the swamp, but the agent is initially outside it). A solu-
tion for instance a. is (E×4)(W×2)(N×4)(S×2) and for in-
stance b. is (E×4)(N×4)(E×2)(W×2)(S×2). Interestingly,
in instance a. the solutions are precisely the plans valid for
two opposite corners (e.g., 〈0, 0〉 and 〈4, 4〉); these two initial
states form a (minimal) basis (Albore, Ramı́rez, and Geffner
2011). This implies for instance that some of the uncertainty
about the initial situation (i.e., the agent could be in one of
the locations not surrounded by any walls) can be ignored.

Leveraging the idea that, actually, many of those possi-
ble initial states are not relevant, the recently proposed con-
formant planner CPCES (Grastien and Scala 2017a) uses a

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Instance a.

g

0
1
2
3
4

0 1 2 3 4

N

S
EW

Instance b.

g

0
1
2
3
4

0 1 2 3 4

Figure 1: Two conformant planning problems: find a confor-
mant path to location g; thick black lines are walls; striped
regions are swamps.

counter-example based refinement strategy that works as fol-
lows. CPCES firstly computes a candidate plan valid for a
sample of the initial belief state; then it tries to validate this
plan through a process that generates a counter-example, i.e.,
an initial state for which the plan is invalid; this counter-
example is then added to the sample (which is initially
empty) and a new candidate plan is generated until a valid
plan is produced or it is proved that there is no plan.

Complementary to other attempts done in solving confor-
mant planning problems (e.g, (Cimatti, Roveri, and Bertoli
2004; To, Pontelli, and Son 2009; Castellini, Giunchiglia,
and Tacchella 2003; Palacios and Geffner 2009)), we pro-
vide an in-depth theoretical investigation of CPCES. We
study the connection between this approach and known con-
cepts from the conformant planning literature: bases, tags,
and width (Bonet and Geffner 2014; Albore, Ramı́rez, and
Geffner 2011). Tags are statements about the initial state that
are sufficient to track the value of a variable during the ex-
ecution: for instance in instance a. the initial horizontal po-
sition of the agent is sufficient to determine its horizontal
position after any sequence of actions; this no longer applies
to instance b. as the vertical component also matters to deter-
mine if the swamp or a wall was reached. Finally the width
represents the maximum number of variables that appear in
some tag: it is one for Fig. 1.a and two for Fig. 1.b.

Our theoretical analysis unearthes a number of interest-
ing insights. First, we present a generalisation of CPCES that
provides flexibility in the way the sample is computed; it al-
lows us to try to identify states that can be ignored. Second,
we characterise the output of the sample of CPCES with re-

Twenty-Eighth International Conference on Automated Planning and Scheduling (ICAPS 2018)

97

spect to the notion of basis. Third, we provide complexity re-
sults for CPCES, given in terms of the width and the number
of tags. In particular, we show that dominance-preserving
sampling leads CPCES to converge, in the worst case, in a
number of steps that is linear with the number of tags, and
so exponential in the width of the problem. Finally, we pro-
vide variants of CPCES that propose different strategies to
compute samples. One of such allows us to only generate
minimal bases subsets. This helps in explaining unsolvable
problems, and limiting the burden of our plan generation
phase. The next section reports formal definition of confor-
mant planning and notions relevant to this work. Section 3
describes the generalised version of CPCES and individuates
different classes of sampling. Section 4 studies the previous
algorithms theoretically, while the last section studies them
from an empirical standpoint.

2 Preliminaries

In this section we present the problem of conformant plan-
ning and the CPCES algorithm of Grastien & Scala (2017a).

2.1 Conformant Planning Problem

Following Geffner and Bonet (2014), a (deterministic) con-
formant planning problem is a tuple P = 〈V, A,ΦI ,ΦG〉
where V is a set of state variables v each with a domain Dv ,
A is a set of actions, ΦI is the initial belief, and ΦG is the
goal formula. A variable assignment is a variable v and one
of its possible values: d ∈ Dv . An action a ∈ A is a pair
〈p, eff 〉 where p is a precondition on the values of V and eff
is a function (called the effects of a) that associates each pos-
sible assignment of each variable with a precondition on the
values of V . We assume that the conditions of two inconsis-
tent effects are inconsistent: ∀v ∈ V. ∀{d1, d2} ⊆ Dv. d1 �=
d2 ⇒ eff (v, d1) ∧ eff (v, d2) |= ⊥. We further assume that
ΦG and the precondition of each action are conjunctions of
variable assignments

A state is a complete assignment of the state variables.
An action a = 〈p, eff 〉 is applicable in state s if its precon-
dition is satisfied: s |= p. The result of applying a in s is
the state s[a] in which the variable v is assigned to d iff ei-
ther eff (v, d) holds in the current state s, or v was already
assigned to d in s and eff (v, d′) holds in s for no d′ ∈ Dv .

A belief state Φ is a Boolean formula on the value of V
(ΦI is such a belief state) that represents the set of states
consistent with Φ. We use indiscriminately the formula or
its set of states to represent a belief state; in the latter case
we use the symbol B.

Action a = 〈p, eff 〉 is applicable in belief state Φ iff it is
applicable in every one of its states or, equivalently, if Φ |= p
holds. The result of applying action a in the belief state Φ is
the set of states defined by applying a in every state of Φ:
Φ[a] = {s[a] | s ∈ Φ}.

A plan π = a1 . . . ak is a (possibly empty) sequence of
actions. The application Φ[π] of the plan is the incremental
application: Φ[a1] . . . [ak]. The plan is applicable if each of
its actions ai is applicable in Φ[a1] . . . [ai−1].

A solution to the planning problem is a plan π that is ap-
plicable from ΦI and that leads to the goal set: ΦI [π] |= ΦG;

we say that a solution is a valid plan. We write Π(P) the set
of solutions to the planning problem P . A solution is opti-
mal if there is no shorter solution. Given a belief state Φ, we
write PΦ the planning problem 〈V, A,Φ,ΦG〉 (i.e., where
ΦI is replaced with Φ).

A planning problem is classical if it has a single initial
state. Classical problems are generally easier to solve than
conformant ones (PSPACE-complete (Bylander 1991) vs EX-
PSPACE-hard (Haslum and Jonsson 1999; Rintanen 2004)).

2.2 Relevant Concepts of Conformant Planning

A basis (Palacios and Geffner 2009) is a subset B of ini-
tial states such that Π(PB) = Π(P). We say that a basis is
minimal if none of its proper subset is a basis.

We also introduce the notion of optimality-basis. An
optimality-basis is a subset B of initial states such that the
optimal plan for B is the optimal plan for the conformant
planning problem: argminΠ(PB) = argminΠ(P). Notice
that all bases are optimality-bases too, although a minimal
basis may not be a minimal optimality-basis.

Bases are interesting objects, in particular because they
provide a “justification” for the selected plan. Indeed for
each invalid plan that a user might come up with, there is
a state in the basis for which this plan is invalid. Optimality-
bases are also useful, because they justify the optimality of
the solution: for any invalid plan that is cheaper than the
optimal solution, there is a state in the optimality-basis for
which this plan is invalid. If the (optimality-)basis is small
this verification can be made manually (i.e., by a human).
The size of the basis is therefore crucial: for instance ΦI is
a basis, but hardly a useful one. For this reason we are inter-
ested in subset-minimal bases.

The width of a conformant planning problem is a measure
of its complexity (Bonet and Geffner 2014). Intuitively, the
width captures interactions among uncertain variables. The
context ctx(v) of a variable is the set of relevant variables
of v defined iteratively by:
• v is relevant to v;
• if eff (v1, d) is different from ⊥ for some action 〈p, eff 〉 ∈

A and v2 appears in eff (v1, d) or in the precondition p,
then v2 is relevant to v1;

• if v2 is relevant to v1 and v3 is relevant to v2, then v3 is
relevant to v1 (relevance is transitive).

The width of a variable v is the number of elements in
ctx(v)∩Vu where Vu is the set of variables that are initially
uncertain. The width w of a conformant planning problem is
the largest width of any of the variables in its goal or action
preconditions.

There are two important results linking the width to the
complexity of conformant planning. Firstly there exists a
basis of size exponential in the width (Bonet and Geffner
2014). The second known result (Palacios and Geffner 2007)
is a correct and complete reduction (called KTM) of confor-
mant planning to classical planning that multiplies the num-
ber of state variables by a factor exponential in w. KTM re-
lies on the notion of tags and merges that we describe now.

For a variable v and a belief state B a tag t ∈ Tags(B, v)
is a complete assignment of the state variables in ctx(v) that

98

can be true in B. The number of tags is exponential in w and
linear in v. A merge is the set of tags generated for each
variable (Tags(ΦI , v) in our notation): in other words in
each merge, exactly one tag is initially true. For each assign-
ment 〈v, d〉 and each tag t KTM introduces the propositions
K(v = d)/t and K¬(v = d)/t that can be interpreted as
follows: if t was true in the initial state, then v is known to
now evaluate (or not) to d. We refer to (Palacios and Geffner
2007) for the complete details on the reformulation.

2.3 CPCES

CPCES is a conformant planner presented by Grastien
& Scala (2017a). It relies on the following property:
Π(PB1∪B2

) = Π(PB1
) ∩Π(PB2

). In particular B |= ΦI im-
plies Π(PB) ⊇ Π(P), which can be interpreted as follows:
a plan invalid for a subset of initial states is invalid for the
complete problem. CPCES interweaves two procedures.

The first procedure generates a candidate plan for a sub-
set of the initial states (i.e., B |= ΦI); subset of initial states
called a sample. In practice this procedure is solved by re-
ducing conformant planning (with a small number of initial
states) to classical planning. Initially the sample is empty
(B = ∅) and the first plan is generally empty (π = ε).

The second procedure computes a counter-example, i.e.,
a state q ∈ ΦI for which the candidate plan is invalid. This
problem is CO-NP-complete (Grastien and Scala 2017b) so
in practice it is solved by using a SAT solver.

The sample is defined as the set of all counter-examples
computed so far, so that the candidate plan is guaranteed
to be different at each iteration. When one of the two pro-
cedures fails to find a solution either the problem has been
proved unsolvable (failure to generate a candidate plan) or it
has been solved (failure to find a counter-example to the—
hence valid—candidate plan).

CPCES has been proved sound and complete, and scales
much better than the other standard algorithms for problems
with a non-trivial width.

Consider the example of Fig. 1.a. Starting with an empty
plan ε, CPCES might produce the counter-example 〈0, 0〉:
the empty plan does not lead the agent to g if the agent
starts in location 〈0, 0〉. The plan generator might then
propose plan EENN; the initial state 〈1, 0〉 is however a
counter-example to this plan. A plan that would apply
to both counter-examples is then WEENN. More counter-
examples can be produced, but we assume here that the
state 〈4, 4〉 is now exhibited. The next candidate plan
is (E×4)(W×2)(N×4)(S×2). Since this plan is valid, no
counter-example is produced and the solution is returned.

3 CPCES: A Family of Conformant Planner
In this section we present the CPCES family as summarised
in Fig. 2. Arrows in the figure indicate implementations:
for instance, dpCPCES is an implementation of the general
CPCES. Properties enjoyed by the different variants are dis-
cussed in Section 4.

3.1 Generalised CPCES

A result of our study of CPCES is that it is an instance of a
more general class of algorithms that we present now.

CPCES

dpCPCES minCPCES

hCPCES
gCPCES

(Grastien and Scala 2017a)
refCPCESh = 0

Figure 2: The CPCES Family. The optimal variant is orthog-
onal and therefore not represented on the graph.

We use the notation � = {π1, . . . , πm} to refer to a set
of (invalid) plans. Let B = {q1, . . . , qk} be a subset of ini-
tial states. We say that B is a counter-example set of � if
B contains at least one counter-example for all plans in �:
∀i ∈ {1, . . . ,m}. ∃j ∈ {1, . . . , k}. πi �∈ Π(P{qj}). Equiv-
alently: � ∩ Π(PB) = ∅. A counter-example set is minimal
for � if no strict subset is a counter-example set of �.

Consider again the execution of CPCES for Fig. 1.a as
presented before. The belief state B1 = {〈0, 0〉, 〈1, 0〉} is
a counter-example set for the set of invalid plans � =
{ε, EENN}. However, so is B2 = {〈1, 0〉} ⊂ B1. Therefore
B1 is not minimal for �.

Based on this notion of counter-example set, we define a
new version of CPCES (Algo. 1). Given a current sample B
CPCES calls the procedure candidate-plan that gener-
ates a candidate plan π. This plan is added to � and a new
counter-example set B is calculated; if no such B exists, then
the new candidate plan is valid and returned by CPCES.

Algorithm 1 A new CPCES.
1: � := ∅
2: B := ∅
3: loop
4: π := candidate-plan(B)
5: if there is no such π then
6: return there is no plan
7: � := � ∪ {π}
8: B := counter-example-set(�)
9: if there is no such B then

10: return π

CPCES as defined by Grastien & Scala (2017a) is an in-
stantiation of Algo. 1. Indeed this algorithm implements
Line 8 by collecting counter-examples in a greedy fash-
ion:

8.1: q := counter-example(π)
8.2: B := B ∪ {q}

For this reason, we refer to the original algorithm from
Grastien & Scala as gCPCES, i.e., greedy CPCES.

If the candidate generator (Line 4) returns the optimal
plan for the current sample, we prefix CPCES with o-.

3.2 Dominance-Preserving CPCES

In CPCES the function of the sample is to reduce the set
of valid plans so that the plan generated on Line 4 is valid

99

for the conformant problem. A relevant property is therefore
the fact that the set of valid plans for the sample decreases
monotonically at each iteration of CPCES.

We say that belief state B dominates belief state B′ if its
valid plans form a subset of those of B′: Π(PB) ⊆ Π(PB′).

A sampling strategy is said to be dominance-preserving
if at each iteration it keeps a counter-example set that dom-
inates all the previous samples (or equivalently, that domi-
nates the previous sample). We write dpCPCES the class of
implementations of CPCES that use a dominance-preserving
strategy.

gCPCES is a dominance-preserving dpCPCES. Indeed in
gCPCES the sample is a super set of the sample at the pre-
vious iteration; its set of solutions is therefore a subset of
the set of solutions at the previous iteration.

3.3 Minimised CPCES

We mentioned that the role of the sample is to reduce the
number of valid solutions. A different ambition is to reduce
the size of the sample, either for computational purposes (the
candidate plan generation is simpler if the size of the sample
is smaller) or to provide a smaller justification.

We say that a state q ∈ B is redundant for � if all plans of
� that are invalid for q are also invalid for some other state of
B. A counter-example set B is minimal iff none of its states
is redundant, since one such state could be removed from B
without affecting its coverage.

We call minCPCES an implementation of CPCES that
computes a minimal counter-example set in Line 8. We
present refCPCES, an implementation of minCPCES. As
gCPCES, refCPCES only differs from CPCES by instantiating
its Line 8:

8.1: q := counter-example(π)
8.2: B := B ∪ {q}
8.3: B := minimise(B,�)

The method of Line 8.3 computes a subset of the current
sample B that forms a minimal counter-example set of �.
This procedure iteratively verifies whether the sample in-
cludes a redundant state. The minimisation procedure is pre-
sented in Algorithm 2. Notice that the procedure requires to
check whether a given plan is valid from a given state, which
is very simple to verify.

refCPCES guarantees that the sample is always minimal; it
is therefore an implementation of minCPCES. Compared to
a dpCPCES implementation, refCPCES proposes a very ag-
gressive strategy to reduce the sample. This strategy can
be counter-productive as the counter-examples that are dis-
carded may be relevant.

We consider (a simplified variant of) the dispose do-
main, and the instance where the single item is in one of
n locations and must be picked up before being disposed of;
the initial location of the item is unknown. The optimal plan
π∗ consists in visiting all locations to pick up the item be-
fore disposing of it. For any subset of initial states, a plan
shorter than π∗ exists: skip the pick-up action in the loca-
tions that do not contain the item. Therefore an implementa-
tion of o- CPCES terminates only when π∗ is generates, i.e.,
when the sample is exactly the set of initial states.

Algorithm 2 Minimising the sample.
1: procedure minimise sample(B)
2: for all q ∈ B do
3: if state is redundant(q,B \ {q}) then
4: B := B \ {q}
5: return B
6:
7: procedure state is redundant(q,Q)
8: for all π ∈ � do
9: if π is invalid for q then

10: if ¬ has counter example(π,Q) then
11: return false {q is the only counter-example to π}
12: return true
13:
14: procedure has counter example(π,Q)
15: for all q′ ∈ Q do
16: if π is invalid for q′ then
17: return true
18: return false

Refined sample Plan Counter-example
∅ ε L1

{L1} G1 P D L2
{L2} G2 P D L1

{L1, L2} G1 P G2 P D L3
{L3} G3 P D L1

{L1, L3} etc.

Table 1: Execution of o-refCPCES for dispose: Li is the
initial state where the item is in the ith location, G stands for
goto, P for pick up, and D for dispose.

Let us look at the execution of o-gCPCES. From the ini-
tial plan (ε) is produced the counter-example L1 in which
the item is in the first location. A plan is generated for this
counter-example (go to location 1, pick-up item, dispose of
item). A counter-example L2 is produced in which the item
is in the second location. A more sophisticated plan is now
generated (go to location 1, pick-up item, go to location 2,
pick-up item, dispose of item). This procedure goes on until
all possible initial locations have been accounted for.

Now let us look at the execution of o-ref CPCES. This exe-
cution is summarised in Table 1; notice that the refined sam-
ple at any time step is a minimal subset of the sample at the
previous time step plus the last counter-example that con-
tradicts all plans found so far. The execution is originally
similar, but then the algorithm notices that L2 is a counter-
example of the first plan (ε). Therefore the algorithm con-
cludes that L1 is redundant. A new plan is produced for
{L2}, which leads to the counter-example L1 being pro-
duced again. This time, L1 is not redundant and a plan
must be produced for {L1, L2}. The counter-example {L3}
is then produced, which allows the algorithm to ignore the
previous two counter-examples. It is possible to prove that
all subsets of initial states will eventually be generated as
samples.

100

Algorithm 3 Heuristic Refinement.
1: for all q ∈ B do
2: if state is redundant(q,B \ {q}) then
3: if h+(B \ {q}) = h+(B) then
4: B := B \ {q}

3.4 hCPCES

We argued in the previous subsections (and prove formally
in the next section) that dominance-preserving strategies re-
quire fewer iterations than worst-case CPCES. We also ar-
gued that reducing the size of the sample is beneficial. It is
possible to define a strategy that minimises the sample while
preserving dominance. Computing such sample is however
hard1 so we settle for a heuristic approach instead.

We say that a counter-example q is useful for B iff B∪{q}
restricts the set of solutions, i.e., the resulting set dominates
the starting one: Π(PB∪{q}) ⊂ Π(PB). We approximate this
reachability problem by using a delete-free relaxation based
heuristic of the classical reduction of Π given a counter-
example set B; we call such a relaxation Π+(PB), and its op-
timal solution h+(PB).2 We say that q is probably-useful for
B if h+(PB) is lower than h+(PB∪{q}). This gives us guar-
antees that the addition of q is at least contradicting all the
plans of length i) strictly less than h+(PB∪{q}) and ii) longer
than h+(PB). These plans were less obviously contradicted
before. The idea is to use this heuristic notion of usefulness
to reconsider a reasonable subset of counter-examples dis-
carded by refCPCES. Algo. 3 sketches its overall functioning.

Nicely, refCPCES can be seen as a special case of this ap-
proach: it suffices to substitute the h+ function with a trivial
admissible heuristic returning 0 for each input.

We name the resulting sampling strategy hCPCES.
On the negative side however, hCPCES only approximates

a dominance preserving sampling strategy: There could be
counter-examples that the heuristic does not consider as
helpful, but that in principle would lead to the actual domi-
nant counter-example set for that iteration.

Finally, for alleviating the computational burden within
the sampling, we approximate h+ using the hFF heuristic3.

We illustrate hCPCES with dispose. Assume we are
given the counter-examples L1 and L2 presented before. In
ref CPCES, L1 would be removed from the sample because it
is redundant. Consider the delete-free relaxation of the con-
formant problem with initial belief {L2}; the relaxed plan
of {L2} involves going to the second location, picking up
the item from the second location, and disposing of it. If the
initial belief is {L1, L2}, the relaxed plan also involves nav-
igating to the first location (which could be in the way of the
second location, so it might not increase the length of the

1Proving Π(PB\{q}) = Π(PB), i.e., determining if q can be
removed from B while preserving dominance, is PSPACE-complete
for an enumerated set B; proof omitted here.

2This heuristic is computed by first translating the problem into
a classical planning problem following (Grastien and Scala 2017a);
then applying the delete-free relaxation (Bonet and Geffner 2001).

3Let us recall that solving the delete-free relaxation problem
optimally is NP-Hard (Bylander 1991).

relaxed plan) and picking up the item from the first location
(the PDDL action is distinct from the one in the second lo-
cation). hCPCES therefore keeps L1 in the sample.

We now consider the example of Fig. 1.a. Assume that the
current sample is {〈0, 0〉, 〈0, 1〉, 〈4, 4〉}. Clearly the middle
state is not useful. The delete-free relaxation will compute
plan EENNWWSS which, while incorrect, is the same as the
delete-free relaxed plan for {〈0, 0〉, 〈4, 4〉}. hCPCES there-
fore correctly ignores the middle state.

4 Properties of CPCES

4.1 Termination

The proof of termination of gCPCES (Grastien and Scala
2017a) relied on the fact that an initial state is added to
the sample at each iteration, together with the fact that there
are finitely many initial states. This fact no longer holds in
CPCES. Yet, we can still retain soundness and completeness
as long as plan generation is correct and the sampling cor-
rectly generates a counter-examples set.

Theorem 1 If the procedures candidate-plan and
counter-example-set are correct, CPCES (Algo. 1)
always terminates, and is sound and complete.

Proof: If the algorithm terminates, then clearly the result is
correct (because either it returns a plan for which there is no
counter-example or it notifies that no plan was found for a
sample of the initial states).

Secondly, consider the sample Bi ⊆ states(ΦI) at some
iteration of CPCES; consider the candidate plan π computed
for Bi; and assume that the plan is not valid for ΦI . Then π
will be added to �. Consequently, at any later iteration, the
sample Bj (a counter-example set for � ⊇ {π}) will be dif-
ferent from Bi. Since there is a finite number (2|states(ΦI)|)
of possible samples the algorithm eventually terminates. �

Remark that Th. 1 carries over to all implementations of
CPCES.

4.2 Number of Iterations

From the proof of Th. 1 we can deduce that the maximum
number of iterations is 2|ΦI |. We present better bounds how-
ever.

Given a belief state B, a variable v and a tag t ∈
Tags(B, v) (remember that t assigns a value to all variables
in ctx(v)) the projection of the planning problem P on t is
the (classical) planning problem Pv,t = 〈ctx(v), A′, t,Φ′G〉
defined as follows:
• For each action a = 〈p, eff 〉 ∈ A there is an action a′ =
〈p′, eff ′〉 ∈ A′ where p′ is the subset of variables assign-
ments of p that involve ctx(v) and eff ′(v′, d) = eff (v′, d)
for all variable v′ ∈ ctx(v) and d ∈ Dv .

• Φ′G is the restriction of ΦG to the variables of ctx(v).
We assume that the actions are still the same (A′ = A) al-
though their semantics are modified, so that the set of valid
plans of Pv,t can be compared to that of P .

Using the example of Fig. 1.a, consider the variable x that
represents the horizontal position of the agent. Remember:
ctx(x) = {x}. Consider the tag t = (x = 1) (the agent is

101

in column 1). In the problem Px,t the actions W and E are
unchanged while N and E become blank actions. The goal of
Px,t is to reach x = 2 (the vertical position is ignored in the
goal). The set of plans for this problem includes: E, WWEE,
NESS, and (E×4)(W×2)(N×4)(S×2).

Lemma 2 The set of conformant plans of a sample is the
intersection of the plans for each tag:

Π(PB) =
⋂

v∈V

⋂

t∈Tags(B,v)
Π(Pv,t).

Proof: (Sketch) We prove Π(PB) ⊆ Π(Pv,t) by noticing
that Pv,t is essentially a relaxation of problem PB.

We now prove Π(PB) ⊇ ⋂
v∈V

⋂
t∈Tags(B,v) Π(Pv,t). If

π is invalid for B, there is a state q ∈ B and a variable v
whose value is incorrect at some point during the execution
of π from q (the value contradicts either an action precon-
dition or the goal). Let t be the restriction of q to the vari-
ables ctx(v); notice that t ∈ Tags(B, v). The problem Pv,t

“simulates” the value of v during the execution of a plan.
Therefore π is invalid for Pv,t. �

We write Tags(B) = ⋃
v∈V Tags(B, v) the tags covered

by B and T = |Tags(ΦI)| the number of tags for the initial
belief. Remember that T = O(|V| × Dw) where D is the
size of the largest domain Dv for some variable.

Theorem 3 CPCES requires at most 2T iterations.

Proof: Consider the sample B at some iteration. This sam-
ple allows the candidate plan π generated at that iteration.
If π is invalid, it is added to � and all later samples B′ will
contain a state that contradicts π. Therefore from Lemma 2
Tags(B′) �= Tags(B), and no two samples during CPCES
cover the same set of tags. Since there are T tags, this im-
plies that the number of iterations is at most 2T . �

We showed in Subsection 3.3 that some implementations
of CPCES sometimes require indeed O(2T) iterations.

Theorem 4 dpCPCES requires at most T + 1 iterations.

Proof: Consider the sample B at some iteration and the sam-
ple B′ at the next iteration. Because dpCPCES is dominant-
preserving, we know that Π(PB′) ⊂ Π(PB). Consequently,
from Lemma 2 there is a tag t covered by B′ that was not
covered by B or by any previous sample. So each iteration
except the first one can be associated with a different tag. �

Notice that this indicates that dpCPCES requires fewer iter-
ations than other CPCES implementations in the worst case.
Yet the classical planning problems solved during dpCPCES
are generally larger, which can be detrimental to the runtime.
This is studied empirically in Section 5.

4.3 Samples

Theorem 5 In general, the sample computed at the end of
CPCES may be neither a subset nor a superset of a minimal
basis. The sample computed at the end of minCPCES is a
subset of a minimal basis. The sample computed at the end
of o- CPCES is an optimality-basis. The sample computed at
the end of o-minCPCES is a minimal optimality-basis.

Proof: The call to candidate-plan(B) used by the
general version of CPCES may produce a valid plan even
if B is not a basis; on the same token, the procedure
counter-example-set(�) is not guaranteed to return
a minimal counter-example set (for instance, when applying
gCPCES to Fig. 1.a, adding 〈1, 0〉 to the sample guarantees
that the final sample will never be minimal).

The sample computed during minCPCES at any step con-
tains no redundant state for a subset of invalid plan. There-
fore it contains no redundant state for A∗ \Π(P).

The plan π returned by o- CPCES is argminΠ(PB) where
B is the final sample. Because this plan is optimal it satisfies
π = argminΠ(P). Therefore B is an optimality-basis.

Finally all the invalid plans in � computed by o-minCPCES
have a lower cost than the optimal solution. Furthermore
the procedure minimise of minCPCES removes from B the
states that are not necessary to invalidate some element of
�. Therefore the optimality-basis returned by o-minCPCES
is also minimal. �

5 Experiments
This section reports an experimental analysis studying the
practical implications of the different sampling configura-
tions of CPCES. Each sampling strategy has potential effect
on both efficiency of the planning process and quality of the
produced solutions. We measure efficiency by considering
run-time and total number of iterations necessary to find a
solution, or to prove its absence. Then we measure quality
differently depending on whether the instance is solvable or
not. For solvable instances, solution quality is the length of
the plan. For unsolvable instances the quality of the strategy
is given by the size of the counter-examples set justifying
the non-existence of a solution. We expect the greedy policy
to outperform the other strategies in terms of iterations (this
is in fact the only dominance-preserving strategy), but at the
price of compromising solution quality. The first point has
implications on run-time, but it is not clear how much. As a
matter of facts, while fewer iterations can translate in faster
convergence, each iteration may need to deal with classical
planning instances of non-negligible size. This experimental
analysis is aimed at studying this relation from an empiri-
cal standpoint. For comparison reasons, we also use the T1
planner (Albore, Ramı́rez, and Geffner 2011), which is one
of the state of the art available conformant planner.

Our benchmark suite includes instances presented in
Grastien and Scala (2017a) that feature a balanced mix of
problems with width = 1 and with width > 1. To this set
we added two variants of the domain presented in Section 1;
both variants feature a swamp somewhere in the grid but dif-
fer from the possible presence of a wall within the grid. This
domain has been designed to stress problems with a non-
trivial width (instances of this domain have all width equals
to 2), which make them challenging in the conformant plan-
ning literature; in particular for planners which make direct
use of the width either in the heuristic (Albore, Ramı́rez,
and Geffner 2011) or in the reduction to classical planning
(Palacios and Geffner 2007). For both variants we generate
18 instances, which scale on the size of the grid (from 3× 3
to 20 × 20); the swamp is chosen randomly in the grid. We

102

refer to such two variants EMPTYGRID and WALLGRID, re-
spectively. Note that instances from EMPTYGRID are solv-
able only when the swamp is next to one of the border of
the grid. In the WALLGRID instances, we make sure that the
swamp is always surrounded by at least one wall (which can
be either the border of the grid, or a wall positioned on the
immediate left side). Instances from WALLGRID are then all
solvable.

For the experimental setting we used z3 (de Moura and
Bjørner 2008) to find a counter-example for the validity of
the candidate plan. In order to solve the classical planning
problem we use FF-V2.3 (Hoffmann and Nebel 2001) with
the reduction presented in Grastien and Scala (2017a). We
also tried other planners, yet FF-V2.3 was the fastest in
general, especially in our context where we need a plan-
ner with quick startup. The remaining part of architecture
is implemented in Java 8, while the heuristic in hCPCES
is obtained using a modified version of FF-V2.3. The or-
chestration among the various modules is obtained using the
SMTLIB and PDDL languages respectively for interacting
with the z3 solver and FF-V2.3. Computation ran on an
Xeon@3.4 GHz with 4800 secs and 4GB memory cut-off4.

5.1 Results for the IPC Domains

Table 3 presents experimental data collected for the IPC do-
mains. It measures, on a per domain basis, the run-time,
number of samples generated at the end of the iterations,
and number of iterations for each of the presented sampling
strategies: gCPCES, hCPCES, refCPCES.

The greedy sampling is the only proved to be a
dominance-preserving strategy and because of that, it gen-
erally converges faster towards the solution. However, both
hCPCES and refCPCES compute much smaller samples in the
end. hCPCES substantially improves on the number of it-
erations required by refCPCES, whilst keeping the number
of samples generally way lower than gCPCES. However, in
these domains, only in few instance this translates to an over-
all run-time lower than gCPCES. The benchmark suite also
includes two unsolvable instances; one for BLOCK, the other
for RAOSKEY. refCPCES terminates with a sample of size
one for both instances. hCPCES also only finds one counter-
example for RAOSKEYS, but finds instead two counter-
examples for the unsolvable instance of BLOCK. Another
interesting phenomena to be observed is the quality of the re-
sulting plans for each of the tested strategy. refCPCES finds
shorter plans in general than gCPCES; this also applies for
hCPCES, except for UTS. Note that none of the configura-
tions use an optimal planner for the generation phase. Yet it
seems that the quality of the plans is statistically correlated
to the size of the sample. refCPCES, in LOOKANDGRAB,
decreased the average plan length by 20%. This is however
not completely surprising, as it is expected from a subopti-
mal planner to greedily select longer plans in addressing a
larger number of initial states. On the other hand, it can re-
main closer to optimal if only a subset of them needs to be
addressed.

4The software, the instances and the experimental data are
available at https://bitbucket.org/enricode/cpces.

Run Time Iterations Samples Plan Length
I G H R G H R G H R G H R T1
9 0.23 0.34 0.62 3 3 4 2 2 2 10 10 10 0.05

16 0.32 0.30 0.41 5 5 11 4 2 2 18 18 18 0.05
25 0.29 0.73 0.55 5 5 19 4 3 4 20 20 20 0.05
36 0.29 0.81 0.41 4 11 9 3 4 2 24 24 24 0.05

256 4.69 25.45 11.54 26 135 119 26 11 8 F
289 11.32 10.83 21.16 39 59 193 39 8 7 F
324 6.88 14.80 16.27 28 72 138 28 10 8 F
361 46.29 46.53 10.82 54 159 96 54 9 4 F
400 733.20 28.81 14.07 138 109 93 138 9 10 F

(a) EMPTYGRID

Run Time Iterations Samples Plan Length
I G H R G H R G H R G H R T1

144 7.49 123.27 92.99 54 633 818 53 25 26 76 76 76 F
169 31.71 221.85 159.80 89 807 1021 88 27 28 80 80 80 F
196 46.56 348.15 276.65 89 1066 1156 88 29 32 88 88 88 F
225 82.32 464.67 439.47 104 1148 1437 103 32 35 94 94 94 F
256 90.04 808.90 679.39 93 1519 1588 92 35 37 102 102 102 F
289 117.26 2396.05 925.68 98 2674 1957 97 42 37 108 108 108 F
324 210.20 2829.33 2381.65 115 2911 2791 114 40 45 114 114 114 F
361 667.82 F F 146 F F 145 F F 120 F F F
400 1497.59 F F 185 F F 184 F F 126 F F F

(b) WALLGRID

Table 2: Selection of EMPTYGRID and WALLGRID instances.
I indicates the size of the grid. G stands for the Greedy, H
for Heuristic and R for Refined sampling strategy. The right
most column reports runtime for T1

In Table 4, we report, for each domain, the largest in-
stances solved by all, where we contrast time spent for plan
generation versus time spent for sampling. It turned out that
the overhead for the sampling in hCPCES is large (e.g, the
instance selected for BOMB), but sometimes can fasten plan
generation. For instance in DISPOSE-ONE, hCPCES takes
20.36 seconds for plan generation in 462 iterations, generat-
ing a plan which is half the plan generated by gCPCES. Other
times however hCPCES and gCPCES end with a very similar
size sample, and so the effort spent by hCPCES to reason
over the counter-example set is only detrimental against the
overall run-time.

Another interesting aspect is the comparison between the
size of the samples generated by hCPCES and refCPCES. Al-
though hCPCES is not guaranteed to find minimal bases, in
many cases it generates a sample that is of size comparable
to the one generated by refCPCES. This empirically shows
that the employed heuristic estimate provide a good trade-off
between the size of the sample, and the number of iterations.

5.2 Results for the Grid-Based Domains

Table 2 shows a selection of 10 out of 18 instances for the
two grid based domains. We took the largest solvable and
the unsolvable instances (if applicable). In EMPTYGRID, all
the instances larger or equal to 256 cells (16 × 16) are not
solvable: the swamp is not surrounded by any wall.
EMPTYGRID. Unexpectedly, all the sampling strategies lead
to the same plan length, but differ on the size of the samples
generated, sometimes considerably. When the differences

103

Coverage Run Time Samples Iterations Plan Length
Domain G H R G H R G H R G H R G H R T1(Cov.)

BOMB(9) 8 3 0 1.2 140.1 NA 26.3 25.3 NA 27.3 197.3 NA 40 40 NA 9

COINS(9) 8 8 1 0.80 2 23.40 16 6 5 17 16 348 31 30 29 9

DISPOSE(11) 5 3 0 9 17.90 NA 30 27.70 NA 31 30 NA 72 69.70 NA 8

UTS(16) 15 11 6 0.60 4.50 171.10 9.50 7 7 10.50 9.50 919 19 19.50 19 14
BLOCKS(3) 3 3 2 0.30 20.10 1.10 4.50 3.50 2 5.50 4.50 14 12.50 11.50 10 2
BLOCKU(1) 1 1 1 0.43 2.78 6.67 5 2 1 5 6 121 NA NA NA 0

LOOKANDGRAB(18) 18 18 18 20 35.50 217.70 8.50 6.60 3.70 9.50 13.30 283.10 49.80 46.70 36.30 15
DISPOSE-ONE10 5 5 2 0.60 3 19.60 14 5 5.50 15 14 290.50 34.50 31 33 4

RAOSKEYS(2) 2 2 2 0.70 2.10 1870.80 13 9.50 8.50 14 12.50 6931 36 34.50 34 1
RAOSKEYUS(1) 1 1 1 0.61 3.21 1.67 9 1 1 9 12 46 NA NA NA 0

Table 3: Overview of the results on the IPC domains, track on uncertainty. G, H, R stands for gCPCES, hCPCES and refCPCES.
Last column shows coverage for T1. Bold highlights best result.

Generation Time Sampling Time Samples Size Iterations Plan Length
Problem G H R G H R G H R G H R G H R

DISPOSE(P4.3) 1.95 2.89 NA 3.18 21.83 NA 40 36 NA 41 40 NA 94 87 NA
BLOCKU(P4) 0.07 0.06 2.11 0.14 0.37 3.11 5 2 1 5 6 121 NA NA NA

RAOSKEYUS(P4) 0.12 0.11 0.34 0.33 2.44 0.85 9 1 1 9 12 46 NA NA NA
DISPOSE-ONE(P2.3) 0.25 0.16 11.68 0.38 1.86 13.59 19 6 6 20 14 502 45 38 40
DISPOSE-ONE(P4.2) 2093.55 20.36 NA 9.24 272.26 NA 75 30 NA 76 462 NA 205 111 NA

LOOKANDGRAB(P8 3 3) 6.25 4.54 4.43 1.33 11.39 3.90 10 7 4 11 16 34 60 58 42

BOMB(P20-10) 0.65 13.29 NA 0.67 374.50 NA 31 30 NA 32 533 NA 40 40 NA
UTS(P6) 0.18 0.26 38.42 0.35 2.45 902.71 15 12 12 16 14 4114 34 37 34

COINS(P10) 0.16 0.12 8.55 0.26 1.52 7.25 16 6 5 17 16 348 31 30 29

Table 4: A per instance based analysis contrasting plan generation and sampling time over the proposed strategies. Times here
are cumulative. Bold highlights best result when significant for our evaluation.

are negligible, so is the run-time. When the sizes are in-
stead very different, and this happens for the last 5 instances,
the strategies with smaller samples (in this case hCPCES and
refCPCES) lead to improvement of the performances to the
point to be even more efficient than gCPCES. This happens
in particular for instance 361 and instance 400.5 Remark-
able are the performances of refCPCES which does not seem
to be affected by the size of the grid for the unsolvable in-
stances, and can quickly find a minimal counter-examples
explaining the unsolvability of the task. Let us recall that, in
this case, the classical planner is the component responsible
for proving the unsolvability. The classical planning prob-
lem is much smaller and has a more representative initial
state when generated by either hCPCES or refCPCES.
WALLGRID. In this case all the strategies lead to the same
plan too, but the trend is different from that of EMPTY-
GRID. gCPCES outperforms both hCPCES and refCPCES in
terms of run-time. For both hCPCES and refCPCES, the size
of the sample generated at the end of the computation is
in fact on the average only half the size of that gener-
ated by gCPCES. Interestingly, and unexpectedly, hCPCES
sampling leads to samples that are even smaller than the
ones generated by refCPCES. Let us remember the reader
that refCPCES is aimed at finding minimal, not minimum,
counter-examples set.

From our experiments T1 managed to solve (very quickly)

5Strategies on much larger instances (till 900 cells) highlighted
speed-ups till 2 orders of magnitude (refCPCES vs gCPCES).

only the small instances for both domains, timing out on all
the instances larger than 36 cells. This further motivates our
interest in looking at methods in the CPCES framework.

6 Conclusion

We study the properties of CPCES, a recent conformant plan-
ner, with respect to known concepts in the literature: bases,
tags, and width. We propose different variants of CPCES and
study their performance (runtime, quality of output) from
a theoretical and an empirical perspective. As a result of
this investigation we can bound the number of iterations of
CPCES using the number of tags needed to solve a prob-
lem. This holds as long as we use a strategy that satisfies
the property of being dominance-preserving. We also iden-
tify another class of sampling which instead guarantees the
discovery of minimal basis, and a heuristic-based sampling
strategy providing a middle ground between these two ex-
tremes. A spin-off of this work is a different characterisation
of the plan generation phase. We expect that an incremental
plan generation can provide substantial speed up, especially
in problems which exhibit clear decompositions.

Acknowledgements

The authors want to thank the reviewers and Patrik Haslum
for their interesting feedback.

104

References

Albore, A.; Ramı́rez, M.; and Geffner, H. 2011. Effective
heuristics and belief tracking for planning with incomplete
information. In ICAPS.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1-2):5–33.
Bonet, B., and Geffner, H. 2014. Belief tracking for plan-
ning with sensing: width, complexity and approximations.
Journal of Artificial Intelligence Research (JAIR) 50:923–
970.
Bylander, T. 1991. Complexity results for planning. In
Twelfth International Joint Conference on Artificial Intelli-
gence (IJCAI-91), 274–279.
Castellini, C.; Giunchiglia, E.; and Tacchella, A. 2003.
Sat-based planning in complex domains: Concurrency, con-
straints and nondeterminism. Artificial Intelligence 147(1-
2):85–117.
Cimatti, A.; Roveri, M.; and Bertoli, P. 2004. Conformant
planning via symbolic model checking and heuristic search.
Artificial Intelligence 159(1-2):127–206.
de Moura, L., and Bjørner, N. 2008. Z3: an efficient SMT
solver. In Fourteenth International Conference on Tools and
Algorithms for the Construction and Analysis of Systems
(TACAS-08), 337–340.
Grastien, A., and Scala, E. 2017a. Intelligent belief
state sampling for conformant planning. In 26th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-17),
4317–4323.
Grastien, A., and Scala, E. 2017b. Verifying
the validity of a conformant plan is co-NP-complete.
http://vixra.org/abs/1705.0340.
Haslum, P., and Jonsson, P. 1999. Some results on the com-
plexity of planning with incomplete information. In Fifth
European Conference on Planning (ECP-99), 308–318.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research (JAIR) 14:253–302.
Palacios, H., and Geffner, H. 2007. From conformant into
classical planning: Efficient translations that may be com-
plete too. In ICAPS, 264–271.
Palacios, H., and Geffner, H. 2009. Compiling uncertainty
away in conformant planning problems with bounded width.
Journal of Artificial Intelligence Research (JAIR) 35:623–
675.
Rintanen, J. 2004. Complexity of planning with partial ob-
servability. In ICAPS, 345–354.
Smith, D. E., and Weld, D. S. 1998. Conformant graphplan.
In Fifteenth National Conference on Artificial Intelligence
and Tenth Innovative Applications of Artificial Intelligence
Conference, (AAAI/IAAI-98), 889–896.
To, S. T.; Pontelli, E.; and Son, T. C. 2009. A confor-
mant planner with explicit disjunctive representation of be-
lief states. In ICAPS.

105

