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Abstract

Interacting actions – actions whose joint effect differs from
the union of their individual effects – are challenging both
to represent and to plan with due to their combinatorial na-
ture. So far, there have been few attempts to provide a suc-
cinct language for representing them that can also support
efficient centralized and distributed privacy preserving plan-
ning. In this paper we suggest an approach for representing
interacting actions succinctly and show how such a domain
model can be compiled into a standard single-agent planning
problem as well as to privacy preserving multi-agent plan-
ning. We test the performance of our method on a number of
novel domains involving interacting actions and privacy.

Introduction

What happens when multiple agents perform actions concur-
rently? In principle, every combination of actions performed
concurrently by a group of agents – a joint action – may
define a different state-transition function. But as the num-
ber of joint-actions is exponential in the number of agents,
specifying an explicit model for each combination of single-
agent actions is impractical except for very simple cases.

To be succinct, a representation for joint actions must
be compositional. That is, there must be some way of de-
ducing the effect of the concurrent execution of actions
a1, . . . , an from the effects of smaller combinations. One
option is to use a logical language and describe the effects
of such combinations via formulas in this language. But
for this, classical logic does not suffice. If we want each
set of formulas to yield a unique model (that is, to spec-
ify a unique transition function), we must use some sort
of non-monotonic logic, such as (Lin and Shoham 1992;
Poole 1997; Baral and Gelfond 1997). While this might
yield a satisfying representation scheme, it makes planning
exceedingly difficult – indeed, most planners have difficulty
even handling classical logic deductions.

Thus, the primary challenge for planning for multi-agent
systems with interacting actions is finding a model for joint
actions involving large sets of agents and large sets of single-
agent actions, that is both succinct in ”natural” settings and
supports efficient planning.
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Due to the difficulty of representing and planning with
interacting actions, most work on multi-agent planning al-
gorithms ignores this issue, and considers concurrent non-
interacting actions or sequential actions only. In the former
case, only actions that impact different variables, or have
the same effect on shared variables are considered. In that
case, the effect of a joint-action is the union of effects of its
single-agent components. In the latter case, joint-actions are
not considered, and sequential plans containing actions by
different agents are generated.

While much can be achieved without considering joint in-
teracting actions, there are many settings where agents must
coordinate their actions carefully to obtain desirable effects:
a single-agent may be unable to lift or push heavy items,
whereas this is possible for multiple agents acting together;
if a table is not lifted from both sides concurrently, objects
on it will fall; in robot soccer, more advanced teams perform
coordinated maneuvers, such as one agent passing the ball to
a free region while the intended receiver moves to this area
at the same time; and in more complex manipulation tasks,
coordinated activities of two or more arms are needed. In
these examples, the effect of each move on its own is quite
different from the effect of the coordinated actions.

The primary contributions of this paper are an intu-
itive formalism for specifying joint-actions in a composi-
tional way and the definition and empirical evaluation of a
compilation-based approach to planning by teams of agents
with interacting actions, as well as privacy, for which we
introduce a number of new domains. In addition, this pa-
per highlights and discusses subtle issues that arise when
attempting to model and plan with interacting actions.

To define the effect of joint-actions, we introduce collab-
orative actions. A collaborative action is a minimal com-
bination of single-agent actions that cannot be defined as
the union of its components. A joint action is defined as a
well-defined set of single-agent and collaborative actions. A
joint-action is well defined if its components (single-agent
and collaborative actions) cannot be combined to yield more
complex components. For example, consider box-pushing
agents. A single-agent push action is effective when the box
is light. A two-agent collaborative action 2push – composed
of two concurrent single-agent push actions – is effective
when the box is heavy, as well. Given this, a joint action con-
sisting of two single-agent push actions is not well-defined
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because these actions can be combined to form the collabo-
rative 2push action.

The difficulty of planning with joint actions depends on
what interactions are allowed, and whether a distributed and
privacy preserving algorithm is required. In the simplest
case, only non-interacting concurrent actions are allowed in
order to reduce make-span. A slightly more interesting case
is when concurrent actions can destroy each other’s pre-
conditions. For example, suppose that a building becomes
locked once an agent is detected entering it. Here, sequen-
tial execution allows a single-agent to enter the building, but
parallel execution allows more agents to enter the building.
In both cases, the effect of concurrent execution is the union
of effects of the single-agent actions. Thus, there is no rep-
resentational issue. But while sequential planning with post-
processing works in the first case, a sequential planner can-
not insert two enter-building actions. More complicated is
the case where the effects of actions performed together dif-
fer from the union of their effects. Finally, on top of each of
these cases, one can introduce the goal of preserving privacy.
We will describe our compilation methods that support all
cases, as well as the notion of object cardinality constraints
introduced by (Crosby, Jonsson, and Rovatsos 2014).
Reproducibility. The source code and the domains we
used are available on the corresponding author’s home page.

Concurrent Actions – Related Work

Most work in classical planning allows for concurrent non-
interacting actions in order to reduce the plan make-span
and, in some cases, the depth of the search tree (see
e.g., (Blum and Furst 1997)). Actions can occur concur-
rently if they do not interact with each other. However, there
is no real notion of multiple agents, and the accepted se-
mantics of this ”concurrency” is that actions can be exe-
cuted in any order with the same effect. A sufficient con-
dition for this is that the union of effects and preconditions
of concurrent actions is consistent. An alternative, called
the ∃ semantics (Dimopoulos, Nebel, and Koehler 1997;
Rintanen, Heljanko, and Niemelä 2006) was studied in the
context of planning as satisfiability. It allows for interacting
actions, provided they can be ordered in some sequentially
legal way. But this semantics does not address true paral-
lelism. Rather, it is a means of generating plans with fewer
steps, for search efficiency reasons. It can be ambiguous,
when multiple orderings are possible, and moreover, some
natural examples described later do not have even a single
legal sequential ordering.

Recently, (Crosby, Jonsson, and Rovatsos 2014) (hence-
forth, CJR) introduced an approach for centralized planning
for multi-agent systems. In their formalism a joint-action is
executed in each time step. The joint-action contains one
single-agent action per agent, where that action can be a
no-op. The preconditions and effects of a joint-action are
the union of the preconditions (and resp. the effects) of its
single-agent actions. In addition, they introduce a limited
form of interaction among actions through object cardinality
constraints. Every action is associated with a set of objects,
and every set of objects may have constraints limiting the

number of agents that can manipulate these objects concur-
rently. For example, a ship can sail if at least two agents sail
it concurrently, or a bridge can be crossed by at most three
agents concurrently. A joint-action is applicable in a state s
if (1) its preconditions hold in s; (2) its effects are consistent;
and (3) it satisfies the cardinality constraints on objects that
appear in it. This formalism captures a limited form of in-
teraction via cardinality constraints in a natural manner, but
still assumes that the effect of a set of concurrent actions is
the combined effect of the single-agent actions in this set.

Boutilier and Brafman (BB) (Boutilier and Brafman
1997) were the first to extend STRIPS-like languages to ad-
dress interacting actions and to propose an extension of a
standard planning algorithm to handle such domains. This
technique was later formalized in an extension of PDDL3.1
to multi-agent planning (Kovacs 2012).

BB’s extension to STRIPS is conceptually simple: in ad-
dition to a list of preconditions, an action a has a concur-
rency condition that specifies which actions must or must not
be executed concurrently with a for a’s effects to hold. Ef-
fects can also be conditional on which actions are executed
concurrently. For example, consider an action for lifting the
sides of a table. If performed by two agents on both sides,
objects on the table will remain. But if performed by a single
agent, the objects will fall. Thus, the action of lifting the left
side of a table will have, beyond its regular preconditions
and effects, a conditional effect with concurrent effect con-
dition that states that when the action of lifting the right side
is not performed concurrently, objects on the table will no
longer remain on the table. Another example is box pushing
– if the box is heavy and one agent pushes it, it remains in
place. If two agents push it then it will move. Thus, the box
movement is a conditional effect with a concurrency condi-
tion requiring another push action.

To deduce the effect of a joint action, one must take the
union of the effects of the individual actions (assuming they
are consistent), where the effect of each individual action
takes into account the other actions performed.

BB’s method is clean and clear semantically, but it has
some potential shortcomings: 1. It introduces the additional,
non-standard, concurrency condition. 2. The list of condi-
tional effects when interactions are more involved – espe-
cially if the effects are non-monotonic in the number of
agents – can be quite complex, and its consistency must be
ensured (as when complicated conditional effects are used).
3. Action schema generally requires existential quantifiers
in their specification. If the effect of action a changes when
a′ is concurrently executed, this usually holds for multiple
instantiations of parameters of a′. These must be existen-
tially quantified in the concurrency condition. For example,
all actions have an agent parameters whose identity usually
does not impact the interaction. 4. Their planning algorithm
is based on partial order planning, a method not competitive
with the state of the art.

Brafman and Zoran (2014) consider an alternative formu-
lation in which actions involving multiple agents (which we
call collaborative actions here) are specified (Brafman and
Zoran 2014). That work was preliminary, did not carefully
consider the issue of subsumed actions (discussed later) nor
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did it support concurrent actions that affect each other’s pre-
conditions. To support this new input language, the authors
modified the MAFS algorithm (Nissim and Brafman 2014)
by introducing new messages types. Our work provides a
more careful and general definition and treatment of joint
actions. Our compilation approach makes it easy to use off-
the-shelf, state-of-the-art privacy-preserving planners, such
as (Maliah, Shani, and Stern 2017), which is appealing from
the engineering point of view. In addition, we support ob-
ject cardinality constraints and interacting actions that mod-
ify each others’ preconditions, and provide a more complete
experimental evaluation.

Earlier work in knowledge representation considered the
issue of concurrent actions, too, e.g., (Lin and Shoham 1992;
Baral and Gelfond 1997; Poole 1997). These work focus on
the representational issue only, and use non-monotonic for-
malisms, often within a rich first-order language such as the
situation calculus (Reiter 1991). As noted earlier, such for-
malism are hard to integrate efficiently within modern plan-
ning algorithms. Of these formalisms, it is worth noting the
action language Ac (Baral and Gelfond 1997) which we find
the simplest and most intuitive. It is also closest semanti-
cally to our approach and uses propositional logic. In this
language, the basic statements are of the form: ”p is an effect
of A if c”. That is, if the actions in set A are executed con-
currently in a state satisfying c then p will hold. This implies
that p is also an effect of every B ⊇ A given c, as long as
there is no other set of actions D such that B ⊇ D ⊇ A and
¬p is an effect of D given c. This formalism, too, is non-
monotonic – as you add actions to a set, effects that held
for the subset may no longer be true. Our approach can be
viewed as a monotonic variant of this semantics that forces
the planner to be more explicit about the desired effects and
restricts the extension of sets that might invalidate them.

Modeling Joint Actions
We start with an informal overview: The language used to
describe a domain has two types of actions: single-agent
actions and collaborative actions. Single-agent actions de-
scribe the effect of an action executed by a single-agent
when no other action is executed concurrently. Collabora-
tive actions describe the effect of a set of single-agent ac-
tions executed concurrently when no other actions are exe-
cuted concurrently. A collaborative action must be specified
whenever its effect is different from the union of the effects
of the single-agent actions it contains.

Ultimately, we seek to define what happens when all
agents act concurrently – i.e., joint actions. To this end, we
define multi-actions. A multi-action is a set of single-agent
and collaborative actions with consistent preconditions and
consistent effects such that no agent participates in more
than one of the actions in this set. The effect of a well-defined
multi-action is the union of the effects of the actions it con-
tains. We associate a joint action with every well-defined
multi-action. The elements of the joint action are the single-
agent actions contained in this multi-action (some of which
are contained in collaborative actions), with no-ops added
for any non-acting agent. The transition function induced by
this joint-action is that of its underlying multi-action. While

we require the four types of actions for our definitions, later
we will use the term action to refer to a single-agent or a
collaborative action, and drop the distinction between multi-
actions and joint actions, simply using the former term.

To illustrate these concepts, consider a domain with
three agents on a one dimensional grid with boxes, where
each agent can either move, push a box out of the grid,
or do nothing, and boxes can be light or heavy. The
single-agent actions are move-left, move-right, push, no-op.
When an agent pushes a heavy box, it does not move
out of the grid, but when two agents push it, it does.
To capture this, we add a collaborative action 2push
for every pair of agents. When b is heavy, the effect
of 2push(a1, a2, b) is thus different from the union of
the effects of the push(a1, b) and push(a2, b) actions it
consists of. A multi-action would be {move-left(a1),move-
right(a2)} or {move-left(a1),2push(a2, a3, b)}. {move-
left(a1),push(a2, b),push(a3, b)} is also a multi-action,
but as we will see, it is not well-defined because
some of its components can be replaced by a collab-
orative action – i.e., {push(a2, b),push(a3, b)} can be
replaced by 2push(a2, a3, b). Finally, the multi-set {move-
left(a1),2push(a2, a3, b)} corresponds to the joint-action
(move-left(a1),push(a2, b),push(a3, b)), and the multi-
set {move-left(a1),move-right(a2)} corresponds to the
joint-action (move-left(a1),move-right(a2),no-op3).

Language A multi-agent planning domain specification
consists of 〈P, I, g,Φ, {A1, . . . An}, Ac〉, where P is a set
of ground propositions, I ⊂ P is the initial state, g ⊂ P is
the goal condition, Φ is a set of agent names, Ai is a set of
single-agent actions, and Ac is a set of collaborative actions.

A literal l is a, possibly negated, proposition from P , i.e.
l = p or l = ¬p for some p ∈ P . Given a set of literals L,
let L+ = {p ∈ P |p ∈ L} (the positive propositions in L),
and let L− = {p ∈ P |¬p ∈ L} (the negative propositions
in L). L is well-defined if L− ∩ L+ = ∅.

A single-agent action has the form a =
〈symbol , pre(a), eff (a)〉, where symbol is the action
name, and pre(a) and eff(a) are well-defined sets of literals.
pre(a)+ is the set of positive pre-conditions, pre(a)− is
the set of negative pre-conditions, eff(a)+ is the set of add
effects, and eff(a)− is the set of delete effects.

A collaborative action has the form ac =
〈symbol , pre(a), eff (a), e = {a1, . . . , ak}〉, where
symbol, pre(a) and eff(a) are as above, and e is a set
of single-agent action symbols, such that no two action
symbols in e belong to the same agent in Φ.

To simplify notation, clarity and reduce clutter we use the
generic name action to refer to either a single-agent action
or a collaborative action whenever possible; we will drop
the distinction between an action and its symbol; and we
write e(a) to denote the elements of an action a. When a
is a single-agent action, e(a) = {a}, and in a collaborative
action e(a) is simply e, the set of single-agent actions in a’s
definition. We also write Agt(a) to denote the set of agents
acting in a: Agt(a) = {φi|∃ai ∈ e(a), ai ∈ Ai}, i.e., agents
for whom a contains an element from their action set.
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Model Our formal semantic model is essentially a tran-
sition system. Transitions correspond to joint actions, and
hence their special structure needs to be reflected. A multi-
agent planning model 〈S,A, s0, G,Φ, {Ai : 1 ≤ i ≤ n}〉
is defined as follows: S is a set of states; A is a set of joint
actions; s0 ∈ S is the initial state, G ⊆ S is the set of goal
states, Φ is the set of agents, where |Φ| = n by conven-
tion; and Ai are the single-agent action symbols for agent
φi ∈ Φ, where Ai will always contain no-opi. Every action
a ∈ A consists of a partial function from S to S and a vector
(a1, . . . , an) of single-agent action symbols. We write e(a)
to denote the single-agent action symbols associated with a.
We write a(s) to denote the state obtained when applying a
in state s. A plan π = a1, a2, . . . , ak is a sequence of joint
actions such that ak(· · · (a1(s0))) ∈ G.

Interpretation The correspondence between the domain
specification and the model is defined as follows: The set of
states S corresponds to all possible truth assignments to P .
We often equate a state with the list of propositions satisfied
in it. Thus, s0 is the state associated with I . G consists of all
states containing the propositions in g.

Given a specification of actions, we define a multi-action
to be a set of actions am ⊆ Ac ∪ (∪n

i=1Ai) such that (1)
for every a, a′ ∈ am : Agt(a) ∩ Agt(a′) = ∅, and (2)
∪a∈ampre(a) and ∪a∈ameff (a) are both well defined. Con-
dition (1) ensures that no agent will be an actor in more than
one action in am. Condition (2) ensures that the effects and
the preconditions of the actions in am do not conflict. In that
case pre(am) = ∪a∈am

pre(a) and eff(am) = ∪a∈am
eff(a).

Given a multi-action a, the result of applying a in s, a(s),
is well defined if pre+(a) ⊆ s and pre−(a) ∩ s = ∅. In that
case, a(s) = (s \ eff −(a)) ∪ eff +(a).

We extend the notation e and Agt to multi-actions in
the natural manner: e(am) = ∪a∈am

e(a); Agt(am) =
∪a∈am

Agt(a). We will refer to members of e(am), which
are all single-agent actions, as its elements, and to the ac-
tions in the set am as its members.

A key concept in the interpretation is that of a well-defined
multi-action. Let ac = {a1, . . . , al} and a′c = {a′1, . . . , a′m}
be two multi-actions. We say that ac is subsumed by a′c if:
(1) e(a′c) = e(ac); (2) for every ai ∈ ac there is some
a′j ∈ a′c such that e(ai) ⊆ e(a′j); and (3) m < l. That
is, both multi-actions involve the same set of elements, and
moreover, for every member of ac, there is a member of a′c
that contains all the elements of ac, and that this containment
is strict in at least one case (and hence, m < l).

The rationality behind this definition is as follows:
because we want the effect of a multi-action to be the
union of effects of its member actions, we do not want to
allow multi-actions that contain multiple actions that can
be combined into a single action, as then the corresponding
joint action (defined below) will have an incorrect transi-
tion function. As an example, consider our box-pushing
domain with 3 agents, and assume that in addition to
push and 2push, we also have a three-agent push, 3push,
whose elements are three push actions, one for each agent.
The multi-action {push(a1, b),push(a2, b),push(a3, b)}
has 3 elements, which are also its members. It is sub-

sumed by {2push(a1, a2, b),push(a3, b)} which has
the same set of elements but only two member ac-
tions, and push(a1, b),push(a2, b) are mapped into
2push(a1, a2, b). Both are subsumed by {3push(b)}.
However, neither {2push(a1, a2, b),push(a3, b)} subsumes
{push(a1, b),2push(a2, a3, b)} nor does the latter subsume
the former. Of all these multi-actions, only {3push(b)}
is well-defined, as the others are subsumed by it. If,
on the other hand, we had only push and 2push, but
not 3push, then {push(a1, b),push(a2, b),push(a3, b)}
would not be well defined because it is subsumed by
{2push(a1, a2, b),push(a3, b)}. The latter, as well as
{push(a1, b),2push(a2, a3, b)}, would be well defined.

Now we can complete the definition of the interpretation.
The definition of Ai for every φi ∈ Φ is immediate, as the
input contains a set of single-agent actions for each agent.
To define the set of joint actions A, we first associate a
joint action with every well-defined multi-action am – the
joint action obtained by adding no-opi to am for every agent
ϕi 
∈ Agt(am). Now am associates a single-agent action
with every agent in Φ, and we just need to present them
as a vector. Thus, in our example domain, the multi-action
{2push(a2, a3, b)}, which contains a single collaborative ac-
tion, corresponds to the joint action (no-op1, push(a2, b),
push(a3, b)). We define the set of joint actions A in our
model to be the set of all joint actions that correspond to
some well-defined multi-action.

Note one potential weakness of this interpretation.
In our example above, e({2push(a1, a2, b),push(a3, b)})=
e({push(a1, b),2push(a2, a3, b)}): in both multi-actions all
three agents perform a push action. Yet it is possible that the
effects of these multi-actions will be different. For example,
the agent doing the individual push action may become tired,
but the agents doing the 2push actions will not. This is con-
sistent with our semantic model, but ideally, we would have
liked to associate a single joint-action with every vector of
single-agent actions. This is a price we pay for simplicity
and monotonicity (the ability to add elements without inval-
idating previous effects) and the onus is on the modeler to
address it, much like ensuring consistency of complex con-
ditional effects. There are two ways to address it: specifying
enough collaborative actions, or restricting multi-actions. In
our example above, if the effect of three push actions dif-
fers from the union of 2push and push, the modeler must
specify a 3push action. Alternatively, the modeler can also
restrict the number of agents that can manipulate an object
using cardinality constraints. In our example, we can restrict
the number of agents manipulating a box to at most two, in
which case, the multi-action {2push(a1, a2, b),push(a3, b)}
could not be considered by the planner. In future we hope to
augment our software with a verification tool that will an-
alyze a given domain and point out different multi-actions
that have the same set of elements – allowing the user to
modify the domain description in case this is problematic.

Finally, our input language is not really based on
ground actions, but we take a PDDL view of plan-
ning in which actions are instantiated from action tem-
plates by replacing parameters with suitable objects.
An example of the 2push action template would be:
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2push(?agt1,?agt2,?box,?loc1,?loc2)
pre: at(?agt1,?loc1) & at(?agt2,?loc1)

& at(?box,?loc1) & heavy(?box);
effect: NOT at(?agt1,?loc1) & at(?agt1,?loc2)

& NOT at(?agt2,?loc1) & at(?agt2,?loc2)
& NOT at(?box,?loc1) & at(?box,?loc2)

elements: Push(?agt1,?box,?loc1,?loc2),
Push(?agt2,?box,?loc1,?loc2)

Acting agents typically appear as parameters, as above, but
nothing prevents the parameters from including other agents
as well. Sometimes these agents will be actors, as in a col-
laborative action, and sometimes they can be passive objects.

Object Cardinality Constraints CJR’s object cardinality
constraints constrain the set of legal joint actions. Their in-
tuition is very appealing – actions typically interact through
joint objects, and the number of agents that can manipulate a
set of objects concurrently is often constrained. For example,
there is a maximal number of agents that can cross a bridge
at one time, or there is a minimal number of agents that can
use a boat at the same time – e.g., because at least two are
required to sail the boat. According to the semantics of CJR,
a legal joint action is any combination of single-agent ac-
tions that satisfies the cardinality constraints, and the union
of the preconditions and the union of the effects of its con-
tained actions is well defined. In the service of simplicity
and space, we do not discuss these constraints formally in
this paper. It is not hard to use CJR’s ideas to extend our de-
scription to support them, and our implementation does this.
See (Crosby, Jonsson, and Rovatsos 2014) for more details.

Planning With Multi-Actions

We now consider planning with multi-actions, separating the
treatment into two cases: multi actions whose member ac-
tions do non-interact, i.e., no action adds or deletes a precon-
dition of another action (recall – effects are not deleted by
definition), and the more general case, referred to as multi-
actions with pre/eff interactions.

Non-Interacting Actions If multi-actions containing in-
teracting actions are not allowed, then all allowed interac-
tions are already captured by the use of collaborative ac-
tions. Hence, the only benefit of performing them jointly
is make-span reduction. That is, the set of states reachable
with multi-actions and with (single-agent and collaborative)
actions is identical. Thus, we can use any single-agent clas-
sical planning algorithm to solve the problem by combin-
ing single-agent and collaborative actions together to obtain
a single-agent planning algorithm in which the agents are
simply objects. Once a plan is obtained, a parallelization al-
gorithm, such as CJR’s, can be used to reduce make-span by
concurrently executing non-interacting components.

Object cardinality constraints can be supported similarly.
Maximum constraints can be enforced directly by the par-
allelization algorithm without modifying the domain model
or the planning algorithm. Minimum cardinality constraint
can be compiled away as follows: replace the single-agent
actions with a collaborative action (or multiple collabora-
tive actions in some cases) involving the minimal number of
agents. For example, if exactly two people are required to
cross a bridge, we remove the cross action, replacing it with

a 2cross collaborative action consisting of two cross actions.
If two or more can cross the bridge, we remove cross and
add both 2cross and 3cross actions: any number of agents
> 2 can cross the bridge by sequencing multiple 2cross and
3cross actions without losing completeness, because if the
actions do not interact, there is no difference between exe-
cuting k cross actions followed by m cross actions versus
doing all k +m actions at the same time.

To summarize, we can address the multi-agent model
of CJR by introducing collaborative actions that capture
minimality constraints, and use the original domain with
these added actions + post-processing. At most two action
schema with an arity of 3 are required – leading a number of
ground actions cubic in the number of agents.

Multi-Actions with Pre/Eff Interactions The above
compilation scheme may become both unsound and incom-
plete when we allow multi-actions that contain actions that
delete or add preconditions of other actions. Such action in-
teractions seem natural when we consider true concurrency.
For example, there is no reason we would want to exclude
two agents from concurrently pushing a box, even though
each push action deletes the preconditions of the other, as
it changes the location of the box. Note that this is an issue
regardless of collaborative actions. For example, if sailing
a boat changes its location, then multiple agents cannot sail
the boat if we do not allow multi-actions that destroy each
others’ preconditions. In some cases, the goal may be reach-
able with multi-actions of this kind, and unreachable without
them. In that case, post-processing action sequences will not
suffice, and we need to actively generate well-defined multi-
actions. This requires a non-trivial compilation scheme.

If we allow actions that delete preconditions of each other,
we must also address the subtle semantic issue of when
do two actions conflict. If we allow a multi-action contain-
ing sail(a1, boat, origin, destination) and sail(a2, boat, ori-
gin, destination), why should we not allow a multi-action
containing sail(a1, boat, origin, destination1) and sail(a2,
boat, origin, destination2)? Intuitively, we view the effects:
at(boat, destination1) and at(boat, destination2) as inconsis-
tent. While this would be clear with a multi-valued formula-
tion of the problem, it is not obvious in the boolean case, as
the two propositions are logically consistent. In single-agent
planning such situations (e.g., on(a,b), on(a,c)) do not arise
when the initial state is consistent and actions are formulated
properly. But as evident, this is no longer true in the multi-
agent case. Thus, in this paper we assume that additional
declarative information about when actions conflict is pro-
vided. We will use this information to rule out actions with
inconsistent effects. In our implementation, we handle this
by adding additional cardinality constraints on concurrent
actions. For example, we constrain the number of possible
destinations of sail actions for the same object to 1.

The compilation scheme We now explain how to com-
pile problems with collaborative actions into single-agent
planning problems. This part can be viewed as extending
the compilation of CJR to (1) Properly address pre/eff con-
flicts; (2) Support collaborative actions; and (3) Ensure that
multi-actions are well-formed. Their basic idea was to rep-
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resent a joint-action as a sequence with the same effects. As
noted, when actions in a multi-action do not interact, this is
relatively straightforward. Our compilation alters the action
description so that such serialization can still work in the
more general case.

The description below strives for simplicity, rather than
economy, and ignores the handling of cardinality con-
straints, which is identical to CJR. Furthermore, CJR assume
that every multi-agent action manipulates a particular set of
objects. This has practical benefits, but we ignore this opti-
mization to simplify the presentation.

Given a specification of a multi-agent planning prob-
lem 〈P, I, g,Φ, {A1, . . . An}, Ac〉, we generate the classical
planning problem 〈PCl, ACl, ICl, gCl〉. In what follows let
A = A1 ∪ · · · ∪An ∪Ac.
• PCl = P ∪ Pact ∪ Pneg ∪ Ppos ∪ Ptaken ∪ {in}, where
Pact = {pa : a ∈ A};Pneg = {Neg-p|p ∈ P};Ppos =
{Pos-p|p ∈ P}; and Ptaken = {takeni|φi ∈ Φ}. In-
tuitively, pa ∈ Pact tells us that the current multi-action
contains a; Pneg and Ppos keep track of changes in the
multi-action; Ptaken keeps track of which agents are in-
volved in the current multi-action; and in tells us that the
current multi-action has not ended yet.

• ACl = {a′|a ∈ A}∪{astart, aend}, where each a′ ∈ ACl

is a modification of some a ∈ A, astart makes in true, and
aend marks the end of a multi-action and does some book
keeping and updates.

• ICl = I • gCl = g ∧ ¬in
We explain the role of the additional variables and the
changes in the actions below.

1. astart : pre(astart) = {¬in}, eff(astart) = {in}. Together
with aend (defined below) it marks the start and end of
multi-action. Thus, the multi-actions {a1, a2, a3} will ap-
pear in the compiled plan as astart, a′1, a

′
2, a

′
3, aend.

2. Every action a ∈ A is modified as follows:
(a) Every effect p and ¬p is replaced by Pos-p and Neg-p,

respectively. This is used to allow actions in a multi-
action that destroy each other’s preconditions. In the
compiled problem, instead of destroying p, we add
Neg-p. aend will update the value of P at the end of the
multi-action based on the value of these propositions.

(b) We add pa to its effects. In addition, if a is a single-
agent action, we add pa to the effect of every collabo-
rative action ac such that a ∈ e(ac).

(c) For every action a′, if the effects of a and a′ are incon-
sistent, we add ¬pa′ as a precondition to a. Recall our
earlier discussion of inconsistent effect – the user may
need to explicitly express the fact that certain effects
are inconsistent.

(d) If e(ac) = {a, a1, . . . , ak} for some collaborative ac-
tion ac, add ¬(pa1 ∧ · · · ∧ pak

) as a precondition to a.
This is done to ensure the generation of well-defined
multi-actions.

(e) To ensure no agent acts more than once in a multi-
action, an additional effect of agent φi’s action is
takeni and an additional precondition is ¬takeni.

3. aend has the effect ¬in, to denote that a multi-action has
ended; the conditional effect Pos-p → p and Neg-p →
¬p for every proposition p, to update the state with the
effects of all elements of the multi-action; and the effect
¬pa for every a ∈ A and ¬takeni for every agent, to reset
these propositions; and the effect ¬Pos-p and ¬Neg-p for
every p ∈ P , to reset these variables.

We stress again, that a more economical representation is
possible, where multi-actions consider a fixed set of ob-
jects only. On the one hand, this requires multiple copies
of various propositions and actions, but each action is much
smaller. In particular, the end action for a specific object will
have to update only propositions relevant to this set of ob-
jects and actions that manipulate this set of objects.

Formal Properties The main property of our compilation
is that it is sound and complete:

Lemma 1. Let ΠS = 〈P, I, g,Φ, {A1, . . . An}, Ac〉 be a
specification of a multi-agent planning problem. Let ΠM =
〈S,A, s0, G,Φ, {Ai : 1 ≤ i ≤ n}〉 be the model it specifies.
Let ΠCl = 〈PCl, ACl, ICl, gCl〉 be the classical planning
problem into which ΠS is compiled. ΠM is solvable iff ΠCl

is solvable.

Lemma 2. The size of the classical encoding is worst-case
cubic in the size of the multi-agent planning problem.

For the proofs, see the longer version of the paper on the
corresponding author’s home page.

Adding Privacy

Privacy Preserving Planning (PPP) (Nissim and Brafman
2014) supports agents that wish to plan collaboratively with-
out revealing private information about their local state, their
private actions, and their cost. For example, producers coop-
erating on a joint product will want to expose the capabilities
they can contribute to the project, without necessarily reveal-
ing the identity of their suppliers and employees, their inter-
nal processes, and their inventory level. PPP algorithms are
able to compute a joint-plan in a distributed manner without
revealing private information. We now explain how to mod-
ify our specification and compilation technique to support
PPP with interacting actions.

The input to a PPP problem differs from that of a central-
ized multi-agent planning problem: Each agent has a sepa-
rate domain specification that contain a description of its ac-
tions. This specification also differentiates between private
and public propositions and between private and public ac-
tions. A proposition may be private to an agent only if it does
not appear in the description of actions of other agents. An
action can be private only if its description contains private
propositions only. Public actions may contain both private
and public propositions. Their public projection is obtained
by removing all private propositions from their description.

Modifying the Representation In PPP, the domain de-
scription of each agent contains: a complete description of
all its actions and the public projection of the public ac-
tions of other agents; together with public propositions and

237



propositions private to the agent. We extend this descrip-
tion with collaborative actions. While a collaborative action
is public by definition, some of its preconditions or effects
could be private to one of the agents. For example, the ac-
tion 2push(a1, a2, b) may have the precondition healthy(a1)
private to a1, and a private effect tired(a1). The description
of 2push in a2’s domain description will not include these
preconditions and effects, i.e., they are projected out. No-
tice that while the specification is now distributed among n
agents, the semantics remains the same.

PPP with Collaborative Actions Existing PPP algo-
rithms are distributed, and this raises the question of when
to insert a collaborative action into the plan. One agent can-
not commit to a collaborative action in the name of another
agent because it does not know if the private preconditions
of that agent hold. (Brafman and Zoran 2014) added a spe-
cial message between the agents to address this. We believe
that splitting collaborative actions as follows is a simpler so-
lution which allows us to use any existing PPP planner.

1. Add the precondition ¬in-joint to all existing public non-
collaborative actions;

2. For each collaborative action am involving k agents:
(a) Separate am into k actions a1m, . . . , akm, where aim is

obtained from am by removing the private precondi-
tions and effects of agents other than φi. The parame-
ters of each new action that do not appear in its precon-
ditions or effects are removed.

(b) Add to a1m precondition ¬in-joint and effect in-joint.
(c) Add to akm the effect ¬in-joint.
(d) For all i < k, add to aim the effect next-ai+1

m .
(e) For all i > 1, add to aim the precondition next-aim and

the effect ¬next-aim.
For example, we split 2push(a1, a2, b) into 2push1(a1, a2,
b) and 2push2(a1, a2, b). If a2 is not mentioned in the de-
scription of 2push1 and a1 is not mentioned in the descrip-
tion of 2push2, we obtain 2push1(a1, b) and 2push2(a2, b).
Thus, the first pushing agent need not commit to the iden-
tity of the second pushing agent. 2push1 will have ¬in-joint
as a precondition and in-joint ∧ next-2push2 as an effect.
2push2 will have next-2push2 as a precondition and ¬in-
joint ∧¬next-2push2 as an effect.

There remains one subtle issue when a MAFS-based al-
gorithms (Nissim and Brafman 2014) is used. In MAFS,
agents must end every sequence of private actions with a
public action. Imagine that we attempt to insert into a plan,
a collaborative action such as 2push(a1, a2, b) that has two
preconditions: p1 is private to a1 and p2 is private to a2,
and these preconditions are initially false. Suppose that the
first agent uses private action ap1 to achieve p1 and then ap-
plies push1(a1, b) (which is public and was split as described
above). At this point a2 cannot apply push2(a2, b) because
p2 does not hold. Suppose ap2

is private and achieves p2. We
must allow a2 to perform ap2

before applying push2(a2, b).
This is indeed possible because ¬in-joint is not a precondi-
tion of private actions. However, the actions now appear in
the order: ap1

, push1(a1, b), ap2
, push2(a2, b). But collabo-

rative actions must be executed in the same time, so we must

Domain Ins (#agt) Size Length Makespan Time (sec)

M
az

e

P01 (3) 50 12 12 0.5
P02 (4) 50 44 40 11.6
P03 (4) 51 37 33 18.6
P04 (5) 49 27 25 4.4
P05 (4) 52 29 24 182.0
P06 (5) 54 51 38 811.6

Ta
bl

e-
M

ov
er

P01 (3) 9 23 15 1.0
P02 (4) 11 29 20 9.1
P03 (4) 13 64 49 392.3
P04 (5) 16 56 41 399.6
P05 (5) 15 60 43 2753.5

B
ox

-
Pu

sh
in

g

P01 (3) 8 15 11 0.03
P02 (4) 14 82 51 6.1
P03 (4) 24 185 125 614.4
P04 (5) 27 244 157 1002.4
P05 (5) 27 229 154 1108.5

A
pr

t-
M

ov
er

P01 (3) 14 27 19 1.5
P02 (4) 24 97 69 24.2
P03 (4) 32 146 106 151.1
P04 (5) 32 144 106 1102.9
P05 (5) 36 179 136 1565.5

Table 1: Performance on compiled domains without privacy
for single-agent version using FD.

push back all intermediate private actions to before the first
part of the collaborative action, to obtain ap1

, ap2
, push1(a1,

b), push2(a2, b). Because private actions of one agent do not
interact with actions of other agents, such re-ordering does
not impact the result of the plan, and is correct.

Empirical Evaluation

As there are no implemented algorithms to compare against
and no established domains with interacting actions, our
contribution consists of defining a new set of domains and
instances and evaluating the scalability of our approach. For
each domain we generate a centralized version and a dis-
tributed version with private elements.

Domains We used four MA-PDDL domains in our exper-
iments. Two are new, and two modify earlier domains.
Maze. This is a modified version of CJR’s Maze domain.
Agents on a 2D-grid must reach their respective goal loca-
tion by crossing bridges, rowing a boat, or passing through
a door. Only one agent can pass through a door. A bridge
can be crossed by multiple agents, but it collapses after the
first crossing. A boat requires at least two agents to row. To
open a locked door, a switch, present at an arbitrary location
in the grid, must be pushed. We added a collaborative ac-
tion (2row) and used the cardinality constraints. In the PPP
settings, an agent’s location is private.
TableMover. A complex domain with a number of tables
and rooms. Each table has something fragile on top. The
goal is to place each table in its destination while keeping
objects intact. If an agent lifts or drops a table alone, ob-
jects on it are no longer intact. The two-agent collaborative
actions lift-table and drop-table lift and drop the table re-
spectively, and keep things on top of it intact. Agents can
move a table only if they are charged. Charging points are
available only in some rooms.
BoxPushing. A modified version of a domain from (Braf-
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Ins (#agt) Time (sec) Length Makespan SA Time
Pdp01 (3) 62.2 3 1 8.0
Pdp02 (4) 270.1 25 22 10.7
Pdp03 (4) 104.8 17 10 13.0
Pdp04 (5) 407.9 17 10 15.7
Pdp05 (5) 142.7 26 15 18.4
Pdp01 (3) 2.9 7 5 0.7
Pdp02 (4) 23.1 20 16 2.8
Pdp03 (4) 65.5 28 22 5.6
Pdp04 (5) TO – – 4.6
Pdp05 (5) TO – – 39.9
Pdp01 (3) 2.9 8 4 0.7
Pdp02 (4) 5.72 12 7 2.4
Pdp03 (4) 322.2 26 16 321.0
Pdp04 (5) 766.6 25 18 420.9
Pdp05 (5) 1497.1 39 25 691.3
Pdp01 (3) 12.8 16 10 15.7
Pdp02 (4) 241 31 23 47.0
Pdp03 (4) 301.0 36 28 35.0
Pdp04 (5) 254.5 44 38 200.0
Pdp05 (5) 781.6 26 20 160.9

Table 2: GPPP’s performance on compiled domains with pri-
vacy. SA Time: time of centralized solution with no privacy.

man and Zoran 2014). A set of boxes must be pushed to their
goal positions. Action push shifts the box to a connected po-
sition. An agent pushing a box alone will hurt her back and
cannot perform additional push actions. But when using the
collaborative action (2push) the box moves without this side
effect. An agent’s location and whether her back hurts are
private propositions.
ApartmentMover. A domain based on the classical De-
pot domain. Agents move furnitures and electronics between
apartments via trucks. Electronic items are fragile and must
be packed first. A packed box requires exactly two agents to
load and unload, and there is a two-agent collaborative ac-
tions for this. Driving a truck requires exactly two agents. An
agent can walk between two connected locations, and it be-
comes tired after executing a public action, e.g., drive-truck.
The location of an agent and whether she is tired is private.

Results Experiments were carried out on an Intel
Core i5 3.20 GHz with 64-bit processor and 4GB of RAM.
A time limit of 30 minutes was set per problem. Our trans-
lation scheme generates a standard single-agent planning
problem if there is no privacy involved in the domain de-
scription which is identical to that of CJR’s method’s out-
put when there are no pre/eff interactions and privacy, ex-
cept for a small overhead associated with maintaining data-
structures required to detect and correctly handle inputs with
Pre/Eff Interactions. Hence, there is no point comparing the
two. Their implementation overlooks Pre/Eff Interactions
and can return incorrect solutions or miss valid solutions
when such interactions exist.

Table 1 shows how our compilation algorithm scales in
each domain with no privacy. For each problem, the transla-
tion step generates a single-agent problem, which is given to
Fast-Downward (FD) (Helmert 2006). The search approach
used in FD is lazy-greedy with hFF heuristic (Hoffmann and

D
om

Ti
m

e Original Compiled

Predicate Total Action Predicate ActionSA Collab.
Maze 0.003 7 4 1 22 10
TM 0.002 8 5 3 32 17
BP 0.001 4 2 1 20 8
AM 0.007 13 7 4 57 29

Table 3: Original vs compiled domains.

Nebel 2001). Size refers to the number of objects, includ-
ing agents. As can be seen in the Maze domain, it is not
always correlated with the difficulty of planning. Indeed, in
the Maze domain, the nature of the objects and how they
constrain the possible path plays a more significant role.

Compilation time is negligible, while the size of the trans-
lated domain is roughly four times larger. This information
is described in Table 3.

In Maze, we used CJR’s random problem generator. Prob-
lems P03 and P04 have similar complexities with differ-
ent number of agents. P04, with more agents, has a much
reduced run-time. P05 is similar to P04, but with more
switches, boats, and doors, but fewer bridges. This results
in much larger running time, though similar plan length and
makespan. Table-Mover is a complex domain, and the com-
pilation does not scale well. For example, P04, involves 7
rooms, 4 tables, and 5 agents. In P05, we increase the num-
ber of rooms to 8, place each table in a different room ini-
tially, and decrease the number connections between them
by 2, and the planner exceeds our time bound (but solves
the problem in 2753.5 seconds). Memory is also an issue
in this domain, unlike Box-Pushing and Apartment-Mover,
where FD generates plans with 200 steps approximately,
well within the time bound.

Table 2 shows results for distributed PPP, for which we
used the distributed PPP solver GPPP (Maliah, Shani, and
Stern 2017) with the distributed hFF heuristic. This planner
is far less optimized than FD (on single-agent problems it
was 123 times slower, with average ratio per domains rang-
ing from 40 to 287). Hence, we used simpler problems than
in Table 1. For each problem, beyond showing the results of
running GPPP on the compiled problem, we also describe
(last column) the running time when the problem is solved
by GPPP with a single-agent (that has access to all actions).
This gives a sense of the relative difficulty associated with
privacy, which we can see is non-negligible, generally be-
tween 4-20 times slower. The gap in Table-Mover is largest,
and Box-Pushing and Apartment-Mover, smallest.

Summary

Building on earlier work, we presented a new approach to
modeling and planning with interacting actions and privacy
that is both intuitive and supports efficient planning. We de-
scribed a compilation scheme from our input language to
single-agent planning and distributed PPP, which is the first
to extend both the language and algorithms of classical plan-
ning to handle these issues.
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