

are isomorphic to T1 itself. Figure 4 shows the synchro-
nized product T1⊗T3 which is isomorphic to the final result
σ(T1 ⊗ σ(T2))⊗ T3. The shortest path from the initial state
to a goal state is of length 3.

Alternative 2: |T1|, |T2| and |T3| are less than the size
limit 4, so no shrinking on the atomic systems. The synchro-
nized product T1⊗T2 is shown in Figure 5. Since T1⊗T2 has
6 states, it needs to be shrunk before merging with T3. The
result of the minimal h-preserving shrinking of this product,
σ(T1 ⊗ T2), is shown in Figure 6. The key difference be-
tween this and Figure 5 is the transition from the initial state
to state be using operator X . This was not possible before
this shrinking occurred, it was introduced into the transition
system by combining state bd with the initial state ce. This
does no immediate harm, since the mapping is h-preserving,
but it has ramifications when this transition system is merged
with T3, where operator X plays a crucial role. With size
limit 4, we cannot refine the combined initial state (ce, bd).
The result, the synchronized product σ(T1 ⊗ T2) ⊗ T3, is
shown in Figure 7. The shortest path from the initial state to
the goal is only length 2.

The key observation here is that the late h-preserving
shrinking σ(T1 ⊗ T2), which combines bd with ce, can be
more harmful than the early h-preserving shrinking σ(T2),
which essentially combines be with bd and ce with cd but
keeps bd and ce separate in T1⊗σ(T2). Of course, when size
limits are large enough to allow a complete bisimulation re-
finement the problem would be resolved. However, in prac-
tice partial bisimulation refinements are more common and
they are not guaranteed to reverse every harmful combina-
tions induced by late h-preserving shrinking. For this exam-
ple, even if we have size limit 5, the bisimulation refinement
process will refine the combined goal state in Figure 6 but
still fail to split combined initial state because states closer to
the goal has higher priority in bisimulation refinement pro-
cess.

3.4 MS-lite enhanced M&S heuristics

We conclude this section with an experiment on a method we
call lite-enhanced M&S, in which we combine MS-lite with
a base M&S heuristic by taking the maximum of both. To re-
duce the effect of build failures, we build the MS-lite heuris-
tic first and limit the time and memory given to the base
heuristic as follows: if MS-lite finishes building its heuris-
tic within the standard 30min/2GB limit, then we attempt to
build the base heuristic within 15min/1.5GB2 limits. If this
attempt fails, we simply use the MS-lite heuristic by itself
for the A* search. Setting tighter limits for the base M&S
reduces coverage if there are hard tasks that are only solv-
able with a high quality base M&S heuristic, but improves
coverage for tasks that are solvable only with MS-lite, as
discussed in Section 3.2 . We run each lite-enhanced M&S
5 times per task, and measure the average coverage of these
runs. We test the lite-enhanced variants of SCC-DFP and
DYN-MIASM.

2In theory, we can use any memory limit smaller than 2GB,
but in our implementation, we can only check memory usage pe-
riodically and need to keep a margin of reserve memory to avoid

base method SCC-DFP DYN-MIASM
original 671 666
losses -1 -2
gains +48.8 +59.0

lite-enhanced 718.8 723.0

Table 4: Coverage of the base M&S heuristic (row “origi-
nal”) and its lite-enhanced variant (row “lite-enhanced”).

Table 4 compares the total coverages of SCC-DFP and
DYN-MIASM with and without MS-lite enhancement. Row
“lite-enhanced” shows the coverage of lite-enhanced ver-
sions of SCC-DFP and DYN-MIASM. Row “# losses” gives
the number of tasks solved by the base M&S alone, but not
by the enhanced variant. Row “# gains” gives the number
of tasks solved by the lite-enhanced method, but not by the
base method alone. There are only 1 and 4 domains where
the coverage of random runs differ for enhanced SCC-DFP
and DYN-MIASM respectively, and the difference between
the best and worst runs is only 1. DYN-MIASM enhanced
with MS-lite outperforms the previously best M&S method,
unenhanced SCC-DFP, and solves a few more tasks than en-
hanced SCC-DFP.

4 A Merging Score on Heuristic Quality

The goal of M&S is to construct a final heuristic of high
quality. In this section, we present a second new M&S
method called DM-HQ that uses heuristic quality informa-
tion for the merge decision making (HQ stands for “Heuris-
tic Quality”). DM-HQ is a variant of DYN-MIASM that
uses an additional heuristic quality scoring function to help
choose better merging candidates. Both DYN-MIASM and
our new scoring function are product-dependent: they re-
quire computing synchronized products of merge candidates
(all pairs of transition systems in the current set) before mak-
ing merging decisions. The two methods extract different in-
formation from a synchronized product. DYN-MIASM eval-
uates a merge candidate by the number of states not on any
path from the abstract initial state to an abstract goal state.
These states can be pruned in the synchronized product of
the candidate. This measure says nothing about the quality
of the heuristic of the synchronized product, and our new
scoring function focuses on such information.

4.1 Heuristic Guided Scoring Function

The generic form of our new scoring function is:

score(T1, T2) = IQ(Tp, T1, T2) (1)

where T1 and T2 are the transition systems of a merge can-
didate, and Tp is the new transition system one would get if
T1 and T2 are chosen to merge next, after possibly shrinking
them first. Q is a heuristic quality evaluator and I is an im-
provement evaluator. In the following, we discuss why we
design our scoring function in this form and what evaluation
functions we chose for Q and I.

termination of the planner during the base M&S construction.

79

How to Evaluate Heuristics? There are many possible
ways to evaluate a heuristic. For example, one could use the
average heuristic values of a set of sampled states, or an es-
timation of the search effort when using the heuristic. Like
DYN-MIASM, our scoring function depends on the prod-
uct transition system Tp produced by merging and possi-
bly shrinking T1 and T2 for each candidate. This makes the
whole M&S process very time-consuming. To avoid addi-
tional computational overhead, we simply use the heuristic
value of the initial state as the heuristic quality evaluator.
The initial heuristic is often a reasonable indicator of the
number of A* expansions, although it may not be as accu-
rate as other evaluators. Q0(T) denotes the initial heuristic
value hT (s0), where hT is the abstraction heuristic defined
by transition system T .

Why Evaluate Improvements? score(T1, T2) aims to
measure an “improvement of heuristic quality”, rather than
measuring heuristic quality alone (i.e., score(T1, T2) is not
defined to be just Q(Tp)). If we use an evaluation of heuris-
tic quality of the product transition system directly, we may
end up with a merge strategy that always prefers to merge
large transition systems, whose product gives a high-quality
heuristic simply due to its large size. This tendency to merge
large transition systems may result in a linear merge strat-
egy where a dominant transition system keeps drawing other
transition systems in. It seems an unfair bias to directly com-
pare small and large transition systems produced in an M&S
process. Instead of evaluating the heuristic quality of a prod-
uct directly, we evaluate the improvement of heuristic qual-
ity that results from merging two transition systems.

How to Evaluate Improvement? Since we evaluate
heuristic quality by heuristic Q0 scores, we can evalu-
ate the heuristic quality improvement by how much the
heuristic values increase after merging. Note that be-
fore computing Tp, shrinking T1 and T2 may be needed.
Since this shrinking is always h-preserving, Q0(Tp) ≥
max(Q0(T1),Q0(T2)). There are several ways to define
how much of an increase Q0(Tp) represents over Q0(T1) and
Q0(T2). We considered three evaluators: I+Q0

(Tp, T1, T2) =
Q0(Tp)−(Q0(T1)+Q0(T2)), Imax

Q0
(Tp, T1, T2) = Q0(Tp)−

max (Q0(T1),Q0(T2)) and Imin
Q0

(Tp, T1, T2) = Q0(Tp) −
min (Q0(T1),Q0(T2)). Our experiments show that M&S us-
ing scoring function I+Q0

solves 661 tasks in total, better than
618 for Imax

Q0
and 648 for Imin

Q0
, and slightly worse than DYN-

MIASM and SCC-DFP.
Next, we integrate evaluators into DYN-MIASM by us-

ing them for tie breaking after DYN-MIASM. Since the
two scoring functions are both product-dependent, I+Q0

intro-
duces little computational overhead to DYN-MIASM. We
only need to do the expensive product-generation compu-
tation once. DYN-MIASM with I+Q0

tiebreaker has a total
coverage of 681, which is better than 636 and 674 for DYN-
MIASM with Imax

Q0
and Imin

Q0
respectively. We denote DYN-

MIASM with I+Q0
tiebreaker by “DM-HQ”. Figure 8(a) com-

pares the number of expansions of DM-HQ and SCC-DFP.
DM-HQ solves 36 tasks on which SCC-DFP fails, but it also

fails on 26 tasks that SCC-DFP solves. In balance, DM-HQ
solves 10 more tasks than SCC-DFP.

4.2 Lite-enhanced DM-HQ

The results in Table 4 show that MS-lite is more complemen-
tary to DYN-MIASM than to SCC-DFP. This strong com-
plementarity is inherited by DM-HQ. Figure 8(b) compares
the numbers of expansions of MS-lite and DM-HQ.

The plot is quite similar to Figure 2(b). There are 65 tasks
solved by MS-lite but not by DM-HQ. Do those 65 tasks
cover any of the 26 tasks solved by SCC-DFP but not by
DM-HQ? Our final experiment on lite-enhanced DM-HQ
provides an affirmative answer. Table 5 shows the cover-
age of SCC-DFP, and increases/decreases of coverage of
DM-HQ, lite-enhanced SCC-DFP and lite-enhanced DM-
HQ with respect to SCC-DFP. Overall, lite-enhanced DM-
HQ solves 75.2 more tasks than the previous state-of-the-art
M&S method SCC-DFP. As shown in Section 3.4 , enhanc-
ing SCC-DFP with MS-lite already improves coverage by
47.8. Lite-enhanced DM-HQ solves an additional 27.4 tasks.
Figure 8(c) compares the number of expansions of lite-DH
and SCC-DFP. The commonly solved tasks distribute simi-
larly to those in Figure 8(a) implying the strength of DM-HQ
over SCC-DFP remains after the lite-enhancement. We also
see fewer points on the top edge and horizontal dashed line
and more points on the rightmost edge and vertical dashed
line, showing the enhancement from MS-lite.

Table 5 lists all domains where any of the three new
M&S methods solves a different number of tasks than
SCC-DFP. To illustrate that DM-HQ and MS-lite comple-
ment each other well regarding their strengths over SCC-
DFP, we divided these domains into 3 groups. In group
(a), lite-enhanced DM-HQ has better coverage than DM-
HQ. In group (b), DM-HQ gains no coverage improve-
ment from lite-enhancement but outperforms SCC-DFP. In
group (c), SCC-DFP solves more tasks than DM-HQ, and
lite-enhancement does not improve DM-HQ. Within each
group, domains are sorted in decreasing order of cover-
age improvement. For example, on parking in (a), DM-HQ
solves 5 fewer tasks than SCC-DFP, but enhanced DM-HQ
solves 7 more than SCC-DFP, so the total difference is +12
which is larger than the corresponding value +10 for vis-
itall. Group (a) contains most of the domains where DM-
HQ performs worse than SCC-DFP. 19 tasks from those do-
mains are solved by SCC-DFP but not DM-HQ. However,
lite-enhanced DM-HQ solves many more tasks than SCC-
DFP. Group (b) contains most domains where DM-HQ out-
performs SCC-DFP by itself, and we see no improvement
from lite-enhancement on DM-HQ. The total coverage im-
provement of DM-HQ over SCC-DFP from those domains
is 35 tasks.

5 Conclusions and Future Work

In this paper, we have presented two new M&S methods,
MS-lite and DM-HQ. MS-lite maintains only the smallest
heuristic preserving abstractions. The “minimalism” of MS-
lite avoids expensive shrinking, merging and label reduction
operations, allowing very efficient construction of heuristics

80

101 103 105 107

101

103

105

107

SCC-DFP
(a)

D
M

-H
Q

101 103 105 107

101

103

105

107

DM-HQ
(b)

M
S
-l
it
e

101 103 105 107

101

103

105

107

SCC-DFP
(c)

li
te
-D

H

Figure 8: Expansion plots as in Figure 2(b) except comparing different M&S heuristics: (a) DM-HQ heuristic (y-axis) vs.
SCC-DFP (x-axis), (b) MS-lite heuristic (y-axis) vs. DM-HQ (x-axis), and (c) lite-enhanced DM-HQ (y-axis) vs. unenhanced
SCC-DFP (x-axis).

Domains SCC-DFP DM-HQ Lite-SD Lite-DH

(a)

tidybot (30) 1 -1 +16 +16.4
parking (40) 6 -5 +7 +7
visitall (33) 12 +1 +9 +11
tetris (17) 2 -1 +6 +6
blocks (35) 26 -5 +2 +2
pipesworld (100) 31 -6 +2 +1
airport (50) 18 0 +4.8 +4.8
mystery (23) 16 -1 +1 -0.2
scanalyzer (30) 13 -1 0 -0.8

(b)

floortile (40) 6 +9 0 +9
elevators (30) 13 +7 0 +7
sokoban (30) 26 +4 0 +4
woodworking (30) 19 +3 0 +3
hiking (20) 13 +2 -1 +2
rovers (40) 6 +2 0 +2
transport (60) 17 +2 0 +2
nomystery (20) 18 +2 0 +1
logistics (63) 25 +1 0 +1
openstacks (80) 30 +1 0 +1
trucks (30) 7 +1 0 +1
depot (22) 6 +1 +1 +1

(c)

gripper (20) 20 -1 0 -1
miconic (150) 78 -1 0 -1
parcprinter (30) 26 -1 0 -1
tpp (30) 8 -1 0 -1
pegsol (35) 35 -2 0 -2
Changes (1089) 478 +10 +47.8 +75.2
Others (410) 193 0 0 0
Total (1499) 671 681 718.8 746.2

Table 5: Coverage of SCC-DFP and the increases/decreases
of DM-HQ over SCC-DFP (column “DM-HQ”), lite-
enhanced SCC-DFP over SCC-DFP (column “Lite-SD”)
and of lite-enhanced DM-HQ over SCC-DFP (column “Lite-
DH”). “Others” summarizes the 13 domains for which all
four systems have the same coverage.

even for complex tasks. MS-lite’s strengths are complemen-
tary to other M&S methods: not only its superior construc-
tion efficiency, but also its better heuristics on some tasks.
We demonstrate in an example that the active shrinking of

MS-lite can result in better heuristics than normal passive
shrinking. More importantly, the efficiency of MS-lite makes
it perfect for enhancing other M&S heuristics by using the
maximum of both heuristics for search because there is little
overhead for constructing the MS-lite heuristic. Such MS-
lite enhancement improves the coverage of SCC-DFP and
DYN-MIASM by a large number of tasks. As another con-
tribution, we presented DM-HQ, a variant of DYN-MIASM
that uses a measure of heuristic quality improvement as a
tiebreaker for its merging decisions. DM-HQ and MS-lite
complement each other better than other M&S methods.
Our experiments show that lite-enhanced DM-HQ dramati-
cally outperforms the previous state-of-the-art M&S method
SCC-DFP.

5.1 Future Work

The results in this paper suggest several directions for
follow-up investigations. The main ones are:

• In our experiments, the merge order used by MS-lite
rarely affects its performance. Theoretical analysis is
needed to determine the cause, ideally providing neces-
sary and/or sufficient conditions under which merge-order
independence is guaranteed.

• Our experiments show that in some cases MS-lite pro-
duces superior heuristics compared to more sophisticated
M&S methods. Further analysis is needed to understand
under what conditions this can happen.

• MS-lite creates transition systems with one state per h-
value. It might be possible to create a superior heuristic
by being just slightly less aggressive in the amount of
shrinking. For example, one could allow a small constant
number K > 1 of states per h-value, creating a narrow
two-dimensional structure instead of a one-dimensional
one. Another possibility is to shrink a transition system to
its coarsest f -preserving abstraction.

• There were some tasks where even MS-lite was not ef-
ficient enough to construct a heuristic within the given

81

memory limit. These cases need to be studied with the
aim of producing an ultra-lite M&S method.

• The success of the combination of MS-lite and MS-HG is
due to their complementarity: MS-lite works well on com-
plex domains that do not require especially good heuris-
tics, while MS-HG works well on low-complexity do-
mains that require good heuristics. This suggests MS-
lite might work even better in conjunction with an M&S
method that produced superior heuristics to MS-HG even
if its construction time was significantly larger.

References

Dräger, K.; Finkbeiner, B.; and Podelski, A. 2006. Directed
model checking with distance-preserving abstractions. In
Proceedings of Model Checking Software, 13th Interna-
tional SPIN Workshop, volume 3925, 19–34.
Dräger, K.; Finkbeiner, B.; and Podelski, A. 2009. Directed
model checking with distance-preserving abstractions. In-
ternational Journal on Software Tools for Technology Trans-
fer 11(1):27–37.
Fan, G.; Müller, M.; and Holte, R. 2014. Non-linear merg-
ing strategies for merge-and-shrink based on variable inter-
actions. In Proceedings of the 7th Annual Symposium on
Combinatorial Search, 53–61.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R.
2014. Merge-and-shrink abstraction: A method for gener-
ating lower bounds in factored state spaces. Journal of the
ACM 61(3):16:1–16:63.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexi-
ble abstraction heuristics for optimal sequential planning. In
Proceedings of the 17th International Conference on Auto-
mated Planning and Scheduling, 176–183.
Katz, M.; Hoffmann, J.; and Helmert, M. 2012. How to relax
a bisimulation? In Proceedings of the 22nd International
Conference on Automated Planning and Scheduling, 101–
109. AAAI.
Nissim, R.; Hoffmann, J.; and Helmert, M. 2011. Comput-
ing perfect heuristics in polynomial time: On bisimulation
and merge-and-shrink abstraction in optimal planning. In
Proceedings of the 22nd International Joint Conference on
Artificial Intelligence, 1983–1990.
Sievers, S.; Wehrle, M.; and Helmert, M. 2014. Generalized
label reduction for merge-and-shrink heuristics. In Proceed-
ings of the 28th AAAI Conference on Artificial Intelligence,
2358–2366.
Sievers, S.; Wehrle, M.; and Helmert, M. 2016. An analysis
of merge strategies for merge-and-shrink heuristics. In Pro-
ceedings of the 26th International Conference on Automated
Planning and Scheduling, 294–298.

82

