
A TIL-Relaxed Heuristic for Planning with Time Windows

Tony Allard
Cyber and Electronic Warfare Division

Defence Science and Technology Group
firstname.lastname@dst.defence.gov.au

Charles Gretton
Australian National University
firstname.lastname@anu.edu.au

Patrik Haslum
Australian National University

and CSIRO Data61
firstname.lastname@anu.edu.au

Abstract

We consider planning problems with time windows, in which
the availability of discrete resources is time constrained. We
develop a novel heuristic that addresses specifically the dif-
ficulty of coordinating actions within time windows. The
heuristic is based on solving a temporally relaxed problem
and measuring the magnitude by which the relaxed solution
violates the time window constraints. Applied in a state-space
search planner, the heuristic reduces the number of dead-ends
encountered during search, and improves planner coverage.

Introduction

Many interesting real-world problems require action within
a prescribed time window. For example, a vehicle routing
problem (VRP) where cargoes must be delivered before a
shop closes (Kolen, Rinnooy Kan, and Trienekens 1987),
a satellite transmitting data to earth while over a receiving
ground station (Globus et al. 2004), or the transportation
of oil derivatives through a pipeline network within dead-
lines (Milidiú, dos Santos Liporace, and de Lucena 2003).
Like Gerevini, Saetti, and Serina (2005) we focus on Plan-
ning Problems with Time Windows (PPTW) where time
windows are determined by exogenous events that happen
at known times. Coles et al. (2008) note that a core plan-
ning difficulty in this setting occurs where multiple actions
require exclusive use of a limited resource, and must coordi-
nate to share that resource during periods of availability.

For many PPTW the underlying causal problem—i.e., the
timeless problem of choosing a series of actions that logi-
cally achieve the goal—is easy. We caution that in general,
a causal problem in itself may of course be difficult. If the
causal problem is easy, then the difficulty of PPTWs follows
from the interaction between the causal and temporal con-
straints. For example, the small delivery problem shown in
Figure 2 requires goods to be carried first by a truck and then
by an aircraft, with several options for where to hand over
from one to the other. Causally, these options are all equiv-
alent, but the imposition of time windows can render some
of them infeasible. Recognising the implications that time
windows have on the causal structure of the plan is key to
solving PPTWs. Existing planners are not good at eliciting
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such knowledge in the early stages of search, and therefore
often explore many causal decisions which are temporally
infeasible. Late recognition of such dead-end states causes
computationally expensive search backtracking. This is il-
lustrated by the experiment result in Figure 1. Here, we have
taken a state-of-the-art temporal planner, POPF (Coles et al.
2010), and applied it to sets of instances of the multi-modal
cargo routing (MMCR) domain (Allard and Gretton 2015)
with time windows varying in tightness. We compare the
time it takes POPF to solve these problems with the time
it takes to solve a relaxation of the same instances, in which
we enforce only the logical constraints of the time windows
(i.e., their occurrance and order) but ignore the quantitative
time constraints. We call this the “TIL-relaxation” of the
problem. We do not relax any of the causal constraints on
plans. The experiment shows that the tighter time windows
become, the harder the problems are. The hardness of the
relaxed problem, however, remains unaffected.

Temporal planners based on forward state-space search,
such as POPF (Coles et al. 2010) and COLIN (Coles et al.
2012), draw on heuristics that have been developed to solve
the classical, causal, planning problem, and that do so very
effectively. While the heuristics used by these temporal plan-
ners have some adaptation to the temporal planning setting,
this experiment shows they are still not able to anticipate
time window violations casused by poor causal decisions,
leading to time-consuming search, and, in many cases, fail-
ure to solve problems with tight time windows.

Based on this insight, we propose a novel heuristic for
PPTWs that targets the specific difficulty caused by tight
time windows. This heuristic is based on solving the TIL-
relaxed problem—i.e, relaxing the quantitative time win-
dow constraints, but preserving all causal constraints—and
measuring the magnitude to which the solution to the re-
laxed problem violates the time windows of the original
problem. We have implemented this heuristic within two
forward state-space search-based temporal planners, COLIN
and POPF, in each case using the same planner to solve
the TIL-relaxed problem. Although this is computationally
demanding—we compile and solve a complete planning
problem in every heuristic evaluation—we demonstrate that
the search guidance it provides is superior in several do-
mains, leading to fewer dead-end states encountered and
fewer states evaluated overall, compared to each planner
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Figure 1: Distribution of POPF solution times for original
and TIL-relaxed instances of the MMCR domain with vary-
ing time window tightness. The instances with the loosest
time windows are at the top (tightness = 2) and the instances
with the tightest time windows are at the bottom (tightness
= 1.0625). An upper limit of 30 minutes was set for com-
putation time. The column furthest right shows the number
of problem instances for which a plan could not be found
within the time limit.

with its original heuristic. When the TIL-relaxed problem
is easy to solve (as shown in the example of the MMCR do-
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Figure 2: Example MMCR Scenario. Solid and dashed lines
indicate road and air routes respectively. The directed arc
shows the goal is to deliver two units of cargo from location
l1 to l5.

main), it is enough to translate into a reduction in the overall
runtime and an increase in instances solved.

A Motivating Example

An exemplar scenario for PPTWs is the multi-modal cargo
routing (MMCR) domain (Allard and Gretton 2015), a chal-
lenging variety of vehicle routing problem. The MMCR do-
main defines cargoes, where the goal is to have those deliv-
ered within specific time windows. This is a rich heteroge-
neous problem in which different vehicles may be capable
of reaching distinct sub-sets of locations. Vehicle movement
and loading/unloading of cargo are actions which execute
over time. Cargo can only be interacted with (loaded, un-
loaded and moved) during specific time windows defined
for each problem. In a plan, vehicles may be required to ex-
change cargo at known locations in order to complete deliv-
ery. Time windows can often be tight.

An instance of the MMCR domain is depicted in Fig-
ure 2. Nodes represent locations within a transportation net-
work. Solid and dashed edges linking nodes represent road
and air routes between the corresponding locations, respec-
tively. Edges are labelled with travel times. The goal is to
have the two units of cargo, initially located at l1, delivered
to l5. That goal can only be achieved using both the truck
and aircraft, initially located at l1 and l6, respectively. Each
vehicle requires 1 unit of time to load/unload a unit of cargo
at each location. A time window constrains any interaction
with cargo to be between the hours of 1 and 12. Generally
the MMCR domain has capacitated vehicles and locations.
To keep this running example simple, we place no such re-
strictions on either locations or vehicles.

Taking a closer look at the problem it becomes apparent
that for delivery to be successful, a handover must occur be-
tween the truck and aircraft. This can take place at any of the
locations l2, l3, or l4. While all choices provide a causally
valid plan, due to time window constraints only l3 and l4
provide a solution that is both casually valid and consis-
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tent with respect to time window constraints. For both these
plans, the schedule of actions interacting with the cargo fits
exactly within the time window duration. This is the tightest
a time window could be and still allow for a plan. Investiga-
tions have shown that planning becomes increasingly more
difficult as tightness increases (Gent et al. 1996).

Problem Description

We adopt the following definition of a PPTW, which is com-
patible with the PDDL 2.2 semantics (Edelkamp and Hoff-
mann 2004) and with the models used in previous work
(Gerevini, Saetti, and Serina 2005; Coles et al. 2008). A
PPTW is a quintuple P = 〈V,A, T, I,G〉, where:
1. V is the set of propositions, such that a complete truth

assignment describes a state, s,
2. A is the set of all actions (instantaneous and durative),
3. T is a series of exogenous events, e, of the form e =
〈t, L〉; where L specifies the literals(s) to be realised when
e occurs at a time step t,

4. I is a complete truth assignment corresponding to the ini-
tial state, and

5. G is a (partial) truth assignment which describes goal
states. State s is a goal state iff G ⊆ s.1

A durative action a is defined by a tuple
〈Scond ,Ocond ,Econd ,Seff ,Eeff , dur〉, whose ele-
ments are the starting, ending and overall conditions,
the starting and ending effects, and the action’s duration.
Durative action semantics are given according to a closed
interval, [ts, te], the action is scheduled to execute in. The
duration, dur(a), is a positive quantity, and the equality
te−ts = dur(a) must be satisfied. The state ss immediately
prior to time ts must satisfy the starting conditions, i.e.,
Scond(a) ⊆ ss. The starting effect takes place at ts,
producing a new state s′s at ts such that Seff (a) ⊆ s′s.
As usual, the values of variables not changed by the
action effects persist. Likewise, the state se immediately
before te must satisfy Econd(a) ⊆ se, and the ending of
the action produces a new state s′e at te which satisfies
Eeff (a) ⊆ s′e. Any state so that occurrs during the open
interval (ts, te) must satisfy Ocond(a) ⊆ so. We also
allow for instantaneous actions where 0 = dur(a) and
∅ = Seff (a) = Econd(a) = Ocond(a). Given a scheduled
interval [ts, te], the action effects, Seff (a) and Eeff (a),
can be modelled as events 〈ts,Seff (a)〉 and 〈te,Eeff (a)〉,
respectively. Several events (instantaneous actions, durative
action starts or ends, or TILs) can occur at the same instant,
provided they are commutative. As per PDDL 2.2 seman-
tics, occurrence times of non-commutative events must be
separated by some minimum time, which we denote with ε.

An event e = 〈t, L〉 affects the truth values of variables
associated with L so that the state st at time t is consistent
with L. When two exogenous events constrain the availabil-
ity of a resource, r, at times ts < te, we term the relationship
between the events a time window. In PDDL 2.2 (Edelkamp
and Hoffmann 2004) these events are modelled as Timed
Initial Literals (TILs). Here, r becomes available at ts, and

1As usual, we write G ⊆ s to mean all literals in G hold in s.

Algorithm 1 The TIL-Relaxed Heuristic

Input: a state s, a plan prefix Γ, PPTW P
Output: h(s), heuristic value for s

1 ŝ, P̂ ← TILRELAXATION(s, P )

2 π̂ ← Γ ∪ SOLVE(ŝ, P̂ )

3 ξ̂ ← DEORDERKK(π̂)

4 Ĝ ← BUILDSTN(π̂, ξ̂)

5 G ← TIGHTENTILCONSTRAINTS(Ĝ, T )
6 C = ∅
7 repeat
8 C ← C ∪ EXTRACTCONFLICTS(G)
9 h(s) ← MINIMUMTEMPORALRELAXATIONS(C)

10 until G is consistent
11 return h(s)

is made unavailable at te. To model a time window con-
strained resource r, we have pairs of events 〈ts, avail(r)〉
and 〈te,¬ avail(r)〉 in T .

The solution to a PPTW is a temporally flexible plan,
π = 〈α, ξ〉. Here, α = 〈e1, . . . , en〉 is the set of instances of
actions and exogenous events that describes a valid causal
transition from I to G. ξ is a set of temporal constraints be-
tween events in α. Each temporal constraint is of the form
ei − ej ∈ [l, u], i.e., bounds the difference in time be-
tween two events. ξ can be represented as a Simple Temporal
Network (STN) (Dechter, Meiri, and Pearl 1991). Figure 3
shows an example of a temporal plan as an STN. Vertices
are events, and edges temporal constraints between them.
For example, events e1 and e3 are the start and end of an ac-
tion, respectively, and the constraint [2, 2] between them is
the action’s duration. Event e14 is the start of another action,
which is causally dependent on the action ending at e3; the
constraint e14 − e3 ≥ ε expresses the precedence constraint
between the actions.

The TIL-Relaxed Heuristic (TRH)

To solve PPTW we introduce a new heuristic which com-
putes a plan for a TIL-relaxed version of the problem. In
that plan the occurrence of TIL events is relatively uncon-
strained. A plan for the TIL-relaxed problem may be invalid
for the concrete PPTW. The TRH value is the magnitude that
events must be shifted so that the TIL-relaxed plan is valid.

Algorithm 1 shows the TRH algorithm as applied to a
state, s, during planning. The inputs are the PPTW, P , the
state evaluated, s, and the actions taken from the initial state
to reach s (the plan prefix), Γ. The algorithm produces a
relaxed problem by transforming TIL events into instanta-
neous actions. This step is described in detail in the next
section. The result is a TIL-relaxed problem 〈ŝ, P̂ 〉 (line 1).
A solution to the relaxed problem is found using a general
planner (line 2). This solution is concatenated with the pre-
fix Γ to produce a relaxed plan, π̂. A deordering of the re-
laxed plan is then determined and temporal constraints be-
tween events used to construct an STN, Ĝ (lines 3-4). Tem-
poral constraints on TILs within the STN are tightened to
their original values from P (line 5), to produce a tightened
network, G. Any constraints that violate the consistency of
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the network are identified and used to determine the mag-
nitude of violation (lines 6-10). This process is described
more detail below. The magnitude of violation is returned as
a heuristic value, h(s), of the state (line 11).

Defining the TIL-Relaxed Problem: ŝ, P̂
The TRH relaxes a PPTW by removing temporal constraints
on exogenous events (TILs). In the relaxed problem TILs
are modelled as instantaneous actions. These may be exe-
cuted only once at the planner’s discretion, and affect states
as per the related TIL. The TIL-derived actions are con-
strained to occur in the order given by the original prob-
lem: if TIL ei occurs earlier in time than ej in P , then
the corresponding TIL-derived actions ai and aj are con-
strained so that ai is always executed before aj . In detail,
each TIL ei = 〈ti, Li〉 is converted into an instantaneous
action, ai = 〈Scond(ai),Eeff (ai)〉, as follows:

Scond(ai) = pai ∪Θ(ei)

Eeff (ai) = {pai
g ,¬pai , pai+1} ∪ Lai ∪ ¬Θ(ei)

(1)

The auxiliary condition Θ(ei) ensures that ai is executed at
most once. Θ(ei) is added to the initial state and removed
by Eeff (ai). The effects of the corresponding TIL ei are
given by Lai . The effect pai

g achieves a goal condition for
the relaxed problem that ensures the action ai is executed.
This is to conform with PDDL 2.2 semantics, which state all
specified TILs must be achieved in a plan.

The auxiliary variables of the form pai ensure that execu-
tion of TIL-derived actions preserve the TIL order in P . For
the earliest TIL, say e0 corresponding to TIL-derived action
a0, the proposition pa0 is added to the initial state. Breaking
ties arbitrarily, each TIL-derived action adds the condition
for the next TIL-derived action as part of its effect, pai+1 .
In this way the temporal ordering of TILs in P is preserved.
For example, in Figure 2, this would mean that cargo would
still become available for transportation and have a delivery
deadline; however the duration of availability is now at the
discretion of the planner. Since these windows of availability
are not constrained temporally, dead-ends related to schedul-
ing constraints have been removed. The relaxation provides
a simple temporal problem that is more amenable to tradi-
tional delete relaxed heuristics. In problems made challeng-
ing by the time window constraint, determining a solution to
the relaxation should be easier. Such a solution, π̂, is casu-
ally valid, but may not be temporally consistent with respect
to P , because it ignores the temporal constraints of TILs.

Scheduling the TIL-Relaxed plan π̂
After finding a plan, π̂, for the TIL-relaxed problem, the next
step is to determine if this plan is also feasible for the origi-
nal problem, or, if it is not, the magnitude of its violation of
the time constraints. This is done by building an STN repre-
sentation of π̂, altering temporal constraints to re-introduce
the timing of TILs, and checking the STN’s consistency.
Concretely, we concatenate the relaxed plan with any plan
prefix that has already been committed to by the planner to
reach the current state, setting the constraints on TIL ac-
tions to their original values in the problem, and assessing

the temporal consistency of the plan. The STN is built by
applying the KK algorithm (Kambhampati and Kedar 1994)
to get a deordering of the concatenated plan.

In the relaxed problem, actions describing TILs were al-
lowed to execute at the planners discretion. To determine the
consistency of the STN with respect to the original problem,
constraints on the execution of these actions must be tight-
ened to reflect the temporal constraint on the original TIL.
Figure 3 is the STN of a plan for the TIL-relaxation of our
motivating example. Event e0 denotes the start of plan exe-
cution (time zero). Events e2 and e24 represent the start and
end, respectively, of the time window during which the cargo
must be moved. The TIL constraints position these events
exactly with respect to e0. The precedence constraints from
e2 to e4 (the start of the loading action) and from e23 (the
end of a planned unloading action) to e24 are causal con-
straints, formed due to the plan’s causal dependency on the
TIL’s effects.

Consistency of the STN G, with original TIL constraints,
is checked by searching for negative cycles in its distance
graph, as described by Dechter, Meiri, and Pearl (1991).
We use the Shortest Path Faster Algorithm (SPFA) (Fand-
ing 1994) to determine STN consistency.

If G is not consistent, π̂ is not valid with respect to P and
the TRH needs to calculate the degree of violation in order
to provide a heuristic evaluation of the state.

Computing the Heuristic Value

When G is not consistent, our aim is to find a minimum re-
laxation (weakening) of a subset of temporal constraints that
make it consistent. The amount of relaxation that is neces-
sary to restore consistency is an indicator of how far the re-
laxed plan is from being temporally consistent with respect
to P . A procedure to compute this minimal relaxation of an
inconsistent STN was provided by Yu and Williams (2013);
we use their approach. The magnitude of the temporal relax-
ation is what we use as the heuristic value of the state.

The TRH partitions STN constraints into those that may
be relaxed (soft) and those that cannot (hard). Soft constrains
are the duration constraints between action start and end
events, while all other constraints are hard. The soft con-
straints are drawn with solid edges in Figure 3.

Yu and Williams (2013) proposed an algorithm to find the
optimal relaxation of soft constraints that restore consistency
to an STN. This is achieved by iteratively testing for tem-
poral inconsistency, extracting any violated constraints, and
posing an LP whose solution gives the magnitude of the nec-
essary relaxation to remove all violations.

In detail, if the STN G is inconsistent, then a conflict will
be extracted and represented as a violated inequality con-
straint. For example, a temporal inequality constraint present
in the STN in Figure 3 is that the sum of the lower bounds
along the path e0–e2–e4–e13–e16–e24 must be less than or
equal to the upper bound on e0–e24. This upper bound is
the result of the TIL constraints. The algorithm maintains a
set, C, of all discovered inequalities, each of which corre-
sponds to a temporal conflict invalidating π̂. At each itera-
tion of the loop on lines 7-10, an LP solver finds the minimal
weakening of the lower and/or upper bound values required
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e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e22 e23 e24

[2, 2]

[1, 1] [1, 1] [2, 2] [1, 1] [1, 1] [1, 1] [1, 1] [1, 1] [1, 1] [1, 1]

[0,∞]

[ε,∞]

[ε,∞]

[ε,∞] [ε,∞] [ε,∞] [ε,∞] [ε,∞] [ε,∞] [ε,∞] [ε,∞] [ε,∞]

[ε,∞] [ε,∞][1, 1]

[12, 12]

Figure 3: STN for a temporal plan. Events e2 and e24 are TILs, and the constraints e2 − e0 = 1 and e24 − e0 = 12 represent
the corresponding time window. Constraints drawn as dashed edges are precedence constraints and those drawn as solid lines
are action duration constraints, which may be relaxed when computing the magnitude of violation.

Algorithm 2 TRH Early Termination Subroutine

Input: a temporal network G
Output: h(s), and π, an ordered plan for P

1 if G is consistent then
2 π ← EXECUTE(G)
3 h(s) ← 0.0
4 return h(s), π
5 end if
6 return

to satisfy all inequalities in C. When G is consistent given
the relaxation implied by the solution to the LP, the mag-
nitude of all relaxations in that solution corresponds to the
heuristic value. When G remains inconsistent even with the
proposed relaxation, C is expanded according to newly dis-
covered conflicts, and iteration continues.

Like Yu and Williams (2013), we use the Incremental
Temporal Consistency (ITC) algorithm (Shu, Effinger, and
Williams 2005) to detect and extract temporal conflicts. The
ITC algorithm has been updated beyond that which was de-
scribed by Shu, Effinger, and Williams, to use a SPFA for
cycle detection and extraction.

From this evaluation of a state, the TRH provides a contin-
uous value that is used by the planner to guide search. Pro-
ceeding in the standard way for heuristic search planners,
requests for state evaluations will continue for new states
encountered until a termination criterion is reached – i.e. a
goal is found, all nodes have been encountered, or available
computational resources are expended.

Early Termination

During the heuristic evaluation of a state, it could be that the
relaxed solution π̂ is a plan for P . If this does occur, search
can be terminated early and a solution returned. This is ac-
complished with a subroutine that is executed between lines
5 and 6 of Algorithm 1. Algorithm 2 shows this subroutine
in detail. Concretely, a consistency check is performed on
G (line 1), and if it is consistent then a valid execution of
the actions within G is determined (line 2), π. Finally π is
returned as a plan for P . We term this extension, TRH with
early termination (TRH-ET).

Empirical Evaluation

Implementations We have implemented all variants of
the TRH heuristic within the COLIN and POPF planning
systems. We refer to these variants of the planners guided by

the TRH as COLIN-TRH, COLIN-TRH-ET, POPF-TRH,
and POPF-TRH-ET, respectively. COLIN and POPF are
temporal planners that support reasoning about TILs. Both
use a two stage, state-based search, guided by the Tem-
poral Relaxed Planning Graph (TRPG) heuristic. The first
stage uses Enforced Hill Climbing (EHC) search, with help-
ful action pruning like the FF Planner (Hoffmann and Nebel
2001). If EHC fails to find a solution the planner falls back
on a Best-First Search (BFS) in the second stage. All vari-
ants of TRH implemented within the COLIN and POPF
planning systems use that heuristic in both stages of search.
Irrespective of the heuristic used, all systems use helpful ac-
tion pruning in the EHC stage. To solve the TIL-relaxed
problem, π̂, in the heuristic, we invoke the corresponding
original, unmodified planner.2 All comparisons of the TRH
and TRH-ET within the COLIN and POPF planning systems
are made against their unmodified equivalents, guided by the
TRPG heuristic.

Domains and Problem Sets We evaluate the overall ef-
fectiveness of planning systems by the number of problem
instances solved within a given time limit (coverage). The
effectiveness of heuristics is also measured according to the
number of states evaluated and dead end states encountered
during search. These observations are made on five tempo-
ral domains with time windows. Specifically, the Airport,
Pipesworld and Satellite benchmark domains from the 2004
International Planning Competition (IPC), the MMCR do-
main, and the Crew Planning domain. All available problem
instances from the IPC benchmark domains were used. The
Crew Planning domain models the problem of deciding how
to schedule tasks over a period of days for a crew aboard a
space station. It was not originally formulated using TILs,
but instead using durative actions modelling the transition
from one day to the next. We replaced such actions with
TILs encoding the start and end of each day. The Crew Plan-
ning variant with TILs is what we use in our evaluation.3

We generated 450 problem instances from the MMCR do-
main with varying number and tightness of the time window
constraints. All instances have identical transport networks
and numbers of vehicles. Each vehicle can traverse a sub-

2We use COLIN to solve π̂ in all variants of TRH implemented
in COLIN, and POPF to solve π̂ in all variants of TRH imple-
mented in POPF. These planners are themselves guided by the
TRPG heuristic.

3Both the original and modified problem descriptions are avail-
able at: https://github.com/tonyallard/pddl-domains
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set of locations. To vary the number of time windows, we
generated three sets of scenarios with nC ∈ {1, 2, 3} cargo
delivery requests. Each set contains 30 MMCR scenarios,
where cargo origin/destination and vehicle origin have been
sampled uniformly from valid locations.

The difficulty of solving PPTWs has been observed to cor-
relate with the tightness of time window constraints (Savels-
bergh 1985). To evaluate the impact of time window tight-
ness, each scenario was turned into five instances that dif-
fer only by having cargo delivery deadlines of increasing
tightness. The duration of each cargo’s time window is the
minimum action sequence duration required for its delivery,
dur(Ac), multiplied by a factor, τ . (We refer to this factor
as “tightness”, although it is actually the inverse of tight-
ness.) We used values of τ ∈ {2, 1.5, 1.25, 1.125, 1.0625},
meaning the loosest time windows are twice the minimum
delivery time, and the tightest time windows are only 6.25%
longer than the duration of an optimal plan found for each
cargo item in isolation. This method of setting time windows
does not guarantee that the resulting problem is solvable, be-
cause the minimum delivery time for each cargo item is cal-
culated ignoring the others. 16 of the MMCR instances were
proven unsolvable by at least one of the trialled planners.
We remove these problems from the remainder of analysis.
Similarly, we also generated three new sets of instances of
the Pipesworld domain by scaling down the subgoal dead-
lines of the original instances in the IPC 2004 set by a factor
τ ∈ {0.9, 0.8, 0.7}. Again, we removed instances that were
proven unsolvable by at least one of the trialled planners,
leaving 25, 22 and 19 instances, respectively.

Experiment Setup Evaluation took place on Dell Pow-
erEdge M620 blade servers, each with 2 Intel Xeon E5-2680
2.70GHz CPUs and 192GB of RAM. Each planner was al-
lowed 30 minutes and 2GB of RAM to solve each prob-
lem instance. To account for randomisation in some plan-
ner implementations (LPG-TD), we ran each planner on
each problem 30 times and report the averages. All plans
generated (except LPG-TD, see below) were validated by
VAL (Howey, Long, and Fox 2004).

Results Table 1 shows coverage for each domain. Results
for the MMCR domain are broken down by tightness and by
the number of time windows. The new sets of Pipesworld
instances with tightened time windows are likewise shown
separately. We also measured the number of states evaluated
and number of dead ends encountered during search. Here, a
dead end is a state from which no relaxed plan can be found.
This holds for both the original TRPG and TRH-guided ver-
sions of both planners. Table 2 shows the average numbers
of states evaluated and dead ends encountered, with the av-
erage taken over all instances that were solved by both the
baseline and the corresponding TRH-guided planner.

Using the TRH only for search guidance reduces cover-
age in most domains. The one exception is MMCR, where
COLIN-TRH achieves a better result than baseline COLIN
on the sets of instances with more or tighter time windows.
As Table 2 shows that the amount of search (states evalu-
ated) with TRH is almost uniformly lower, often by one or
more orders of magnitude. Therefore this drop in coverage

can be attributed to the overhead of invoking the planner on
the TIL-relaxed problem for each state evaluation.

The TRH-ET variant results in a significant coverage
boost for COLIN in all domains, and equal or better cov-
erage in several domains compared to POPF. The base-
line (TRPG-guided) version of POPF is almost always bet-
ter than baseline COLIN, which is expected since it is built
on COLIN and adds several enhancements. Thus, it is note-
worthy that COLIN-TRH-ET outperforms both POPF and
POPF-TRH-ET in the Pipesworld and MMCR domains,
particularly as time windows are tightened. The causes be-
hind the impact of the TRH on the mechanisms that differ-
entiate POPF from COLIN is an area for future investiga-
tion. In most domains where one planner version achieves a
higher coverage than another the set of solved instances is a
superset, but there are a few exceptions: for example, base-
line COLIN solves two MMCR instances that COLIN-TRH-
ET does not, and POPF-TRH-ET solves one instance of
Satellite and two of instances of Pipesworld with τ < 1 that
baseline POPF does not.

Results in the MMCR domain have been separated along
two dimensions, tightness (τ ) and number of time windows
(nC), in order to show the effect of these parameters on
planner performance. As time windows tighten, the num-
ber of instances solved by all planners decreases, but it de-
creases more slowly for the planners using TRH, and even
more so for the planners with TRH-ET. Recall that MMCR
problems were constructed such that instances of the same
scenario with different tightness factors differ only by the
tightness of the time windows, as do the instances of the
Pipesworld domain with τ < 1. This allows us to evalu-
ate how performance on the same causal problem drops as
time windows are tightened. A factor τ = 2 should pro-
vide sufficient slack that the remaining challenge is only
solving the underlying causal problem. Looking at cover-
age at each tightness level as a percentage of the cover-
age when τ = 2 yields insight into performance degrada-
tion due specifically to tightness. Using this ratio, cover-
age in MMCR at τ = {1.5, 1.25, 1.125, 1.0625} shows that
COLIN-TRH-ET degrades at a reduced rate (88.8%, 73.0%,
67.4%, and 66.3%) compared to COLIN-TRH (89.4%,
80.3%, 63.6%, and 62.1%), and COLIN (81.7%, 62.0%,
56.3%, and 54.9%). POPF-TRH-ET shows a similar pa-
tern (86.5%, 73.0%, 67.4%, and 66.3%) over POPF-TRH
(79.3%, 72.0%, 53.7%, and 52.4%) and POPF (79.1%,
68.6%, 60.5%, and 59.3%). A slower rate of degradation
as time windows tighten can be observed for COLIN also
in Pipesworld, using the ratio to the number of original in-
stances solved at each tightness level. Here COLIN-TRH-
ET degrades at a reduced rate (44.0%, 31.8%, and 10.5%),
compared with COLIN-TRH (12.0%, 9.1%, and 0.0%) and
COLIN-TRPG (16.0%, 13.6%, and 5.3%). However, we do
not see the same for POPF-TRH-ET. These observations
indicate that the TRH-ET improves the robustness of planner
performance on PPTWs as time windows increase in num-
ber, and as they become tighter.

Table 2 shows that the TRH-guided planners consistently
evaluate fewer states and encounter fewer dead ends dur-
ing search, across commonly solved instances. The TRPG
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Table 1: Number of problems solved in each domain. Parenthesis indicate the number of problems in the problem domain. Bold
terms indicate if TRH variants exhibit better coverage compared to the based planner with RPG guidance.

Problem Domain
COLIN POPF OPTIC LPG-TD

TRPG TRH TRH-ET TRPG TRH TRH-ET TRPG SLFRP

Airport (50) 9 8 9 8 7 8 8 8 42.10
Crew Planning (30) 14 11 23 30 19 30 30 30 11.00
Pipesworld (30) 12 5 24 23 12 17 24 0 25.83

τ=0.9 (25) 4 3 11 8 2 5 8 0 11.00
τ=0.8 (22) 3 2 7 7 1 4 7 0 9.00
τ=0.7 (19) 1 0 2 0 0 1 3 0 5.00

Satellite (36) 1 1 3 5 4 4 10 1 19.33
MMCR τ=2 (90) 71 66 89 86 82 89 88 0 90.00

τ=1.5 (88) 58 59 79 68 65 77 76 0 84.00
τ=1.25 (86) 44 53 65 59 59 65 64 0 70.00
τ=1.125 (85) 40 42 60 52 44 60 60 0 66.00

τ=1.0625 (85) 39 41 59 51 43 59 58 0 59.00
nC=1 (150) 149 149 150 150 150 150 150 0 150.00
nC=2 (143) 78 81 124 106 94 123 124 0 128.00
nC=3 (141) 25 31 78 60 49 77 72 0 91.0

Table 2: Average number of states evaluated (left) and dead ends encountered (right) during search, by domain. Averages are
taken over the subset of instances solved by all three configurations of each planner (TRPG, TRH and TRH-ET). Bold entries
indicate the best result in each problem domain.

Domain COLIN POPF
TRPG TRH TRH-ET TRPG TRH TRH-ET

Airport (50) 723.0 201.38 35.0 0.00 1.0 0.00 690.3 282.14 34.1 0.00 1.0 0.00

Crew Plan. (30) 249.6 5.55 28.1 0.00 1.0 0.00 453.1 1.42 36.6 0.00 1.0 0.00

Pipesworld (30) 27947.8 21073.40 2609.6 1178.80 22.6 7.60 14264.4 8553.83 626.7 260.17 36.9 8.33
τ=0.9 (25) 2811.7 1780.33 1855.7 906.67 36.0 13.33 346.0 150.00 33.0 6.50 1.0 0.00

τ=0.8 (22) 15863.5 11267.50 29.5 7.00 1.0 0.00 393.0 181.00 2944.0 1611.00 1.0 0.00

τ=0.7 (19) – – – – – – – – – – – –
Satellite (36) 195.0 9.00 17.0 0.00 1.0 0.00 617.7 59.67 21.3 0.00 1.0 0.00

MMCR τ=2 (90) 11562.4 4311.77 38.9 6.79 1.2 0.02 861.2 25.32 53.6 11.54 1.3 0.06
τ=1.5 (88) 13136.1 5061.90 30.6 5.25 1.0 0.00 745.2 128.05 40.7 8.70 1.4 0.06
τ=1.25 (86) 31869.8 13864.53 31.0 5.74 1.5 0.09 220.0 10.45 48.6 13.54 1.5 0.11

τ=1.125 (85) 21530.7 10158.39 163.1 36.42 2.8 0.36 216.2 3.41 90.1 28.02 2.2 0.32

τ=1.0625 (85) 23344.5 10927.26 170.0 38.15 2.9 0.38 205.7 2.65 89.3 28.09 2.2 0.33

nC=1 (150) 253.5 57.20 33.7 7.45 1.3 0.08 238.7 0.53 49.6 12.91 1.4 0.11
nC=2 (143) 45852.8 18435.12 181.3 37.95 2.8 0.30 246.8 7.58 71.4 22.23 1.9 0.20

nC=3 (141) 85495.6 41392.72 61.1 9.06 1.7 0.06 1877.3 215.29 75.3 15.70 2.0 0.18

heuristic makes limited inference about deadlines, so it of-
ten misleads search into causal decisions which ultimately
do not yield a schedulable plan, resulting in dead ends.
TRH considers deadlines and thus is better able to direct
search away from dead ends caused by the time window con-
straints. This translates into fewer state evaluations. Ending
the search when a plan for the TIL-relaxed problem can be
scheduled with time windows is a key mechanism. This is
how the TRH-ET-guided planners are able to solve a large
number of instances with a single call to the heuristic. Re-
garding the time to find a plan, on commonly solved in-
stances, results are less conclusive. In most domains, the

original COLIN and POPF planners are faster; Crew Plan-
ning is an exception. Partly, this may be because the com-
monly solved instances are mainly easy ones. The overhead
of compiling the TIL-relaxed problem and invoking a full
planner (COLIN and POPF, respectively) involved in each
TRH evaluation pays off only on problems that require a
longer time to solve. The dramatic reduction in states eval-
uated and dead ends encountered suggests that greater time
savings should be obtainable with a better engineering.

Table 1 includes coverage results for the OPTIC, OPTIC-
SLFRP (Tierney et al. 2012), and LPG-TD (Gerevini,
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Saetti, and Serina 2005) planners.4 OPTIC is comparable to,
sometimes better than, POPF, yet still solves slightly fewer
instances of MMCR, at all levels of time window tightness,
than both COLIN-TRH-ET and POPF-TRH-ET. The SL-
FRP variant behaves like OPTIC in the Airport and Crew
Planning domains, but solves almost no problem otherwise.
LPG-TD appears to work well in all domains except crew
planning, where it fails to parse some instances. A caveat
here, however, is that plans produced by LPG-TD could
not be validated by VAL, because it does not enforce ep-
silon separation between actions. Thus, for LPG-TD only
the coverage is based on the planner’s own reported suc-
cesses, not on the number of plans independently validated.

Related Work

The problem of planning with exogenous events is not new
to the planning community. Early work by Vere (1983) in-
vestigated modelling such events in DEVISER, a partial or-
der causal link (POCL) planner. DEVISER initialises a par-
tial plan with exogenous events in a pre-processing step. A
depth-first search strategy is used to determine actions which
achieve goals, and are consistent with the exogenous events.
No search guidance was used, and indeed the exploration
strategy is described by Vere as a “simulation”.

In describing the state-space forward search planner TGP,
Smith and Weld (1999) discuss translating exogenous events
into dummy actions. A dummy action has no preconditions,
and its execution is forced by the planning system when-
ever considering a time at or beyond the corresponding event
time. Several planners, such as CRIKEY3 and COLIN, build
on this approach to support problems with time windows.
For the purpose of heuristic guidance, dummy actions are in-
distinguishable from other actions, so such approaches may
not foresee scheduling problems caused by time windows as
their heuristics do not reason about all temporal constraints.

Constraint-based planners, such as OMPS (Magrelli and
Pecora 2010) and ITSAT (Rankooh and Ghassem-Sani
2015), also model exogenous events as actions and rely on
a causal plan search engine. They use temporal consistency
checking, e.g., via STNs, to detect scheduling conflicts im-
plied by causal planning choices. Such scheduling conflicts
may be represented using simple mutex constraints, or rich
sequencing constraints expressed compactly as regular ex-
pressions. Learnt constraints restrict the causal search, to
eventually produce a plan that can be scheduled without con-
flict. However, the weakness of this approach is also that the
guidance of the causal plan search does not anticipate con-
flicts arising from time windows.

Tierney et al. (2012) investigated separating the planning
and scheduling components of a PPTW by extracting all
temporal constraints and modelling them in a mixed inte-
ger program (MIP). They modelled exogenous events as bi-
nary variables within the MIP. This technique was imple-
mented in POPF, and its search guidance was still provided
by the TRPG heuristic, however with special rules to not re-
lax TILs. Tierney et al. also developed LTOP, an optimal

4We also wanted to include results for the TEMPLM planner,
but were unable to obtain the planner or results from its authors.

POCL planner capable of reasoning about PPTWs. Similar
to POPF the temporal (and optimisation) model was com-
pletely abstracted from the action model into a MIP. LTOP
is an optimal planner and used domain dependent heuristics
to be competitive with a regular MIP model.

Marzal, Sebastia, and Onaindia (2014) investigated tem-
poral landmarks as an approach to the related problem of
planning with deadlines. Their planner TEMPLM constructs
a skeleton plan from temporal landmarks discovered in a
step prior to search. During search, candidate plan prefixes
are pruned if they violate temporal constraints described by
the landmarks. This allows pruning inconsistent causal plans
earlier, and thus assists in avoiding dead ends. The pruning
information provided by temporal landmarks is orthogonal
to the guidance information provided by TRH, and the two
could be combined to better tacke hard PPTWs.

The transportation science literature has investigated
PPTWs for some time, in the study of Vehicle Routing Prob-
lems with time windows (VRPTW) (Solomon 1987). A re-
cent survey of approaches to optimisation in a transporta-
tion setting with time windows is given by Hashimoto et
al. (2013). In that setting, a number of Large Neighbour-
hood Searches have been devised which are guided, at least
in part, by cost-of-violation style heuristics – i.e. the costs
of violating time windows include, but are not limited to: (i)
having to pay a driver to sit and wait, (ii) the opportunity
cost of missing a delivery, and (iii) bringing on an additional
vehicle and driver to ensure all deliveries are made.

Conclusion
We introduced a new planning heuristic, the TRH, for plan-
ning problems whose principal difficulty lies in scheduling
actions within time windows. Based on solving a relaxed
problem without time window constraints, the TRH provides
a continuous estimate of the violation of those constraints
in the relaxed solution. Implemented in two heuristic-search
temporal planners, COLIN and POPF, we showed that the
TRH improves planner performance in some domains, in
particular as time windows tighten.

The greatest benefit, however, comes from avoiding
search altogether when the relaxed solution is a plan also
for the problem with time windows. Future work should in-
vestigate other uses of the TIL-relaxation and analysis of
violations, for example identifying causal constraints that
prevent the planner from exploring infeasible areas of the
search space.
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