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Abstract

Goal Recognition Design (GRD) is the task of redesigning
environments (either physical or virtual) to allow efficient on-
line goal recognition. In this work we formulate the redesign
problem as an optimization problem, aiming at early goal
recognition. To this end, we use a measure of worst case dis-
tinctiveness (wcd), which represents the maximal progress an
agent may make before his goal is revealed. With the objec-
tive of minimizing wcd, we construct a search space in which
each node in the space is a goal recognition model (one of
which is the original model given as input) and one can move
from one model to another by applying a model modification,
chosen from a set of allowed modifications given as input.
Our specific contribution in this work includes the specifica-
tion of a class of modifications for which we can prune the
search space using strong stubborn sets. Such positioning al-
lows reducing the computational overhead of design while
preserving completeness. We show that the proposed modi-
fication class generalizes previous works in goal recognition
design and enriches the state-of-the-art with new modifica-
tions for which strong stubborn set pruning is safe. We sup-
port our approach by an empirical evaluation that reveals the
performance gain brought by the proposed pruning strategy
in different goal recognition design settings.

Introduction

Goal Recognition Design (GRD) (Keren, Gal, and Karpas
2014; 2015; 2016a; Wayllace et al. 2016; Son et al. 2016) is
the task of redesigning environments (either physical or vir-
tual) to allow efficient online goal recognition. GRD finds
a valid sequence of modifications to some initial model
which minimizes the worst case distinctiveness (wcd) of
the model, representing the maximal progress an agent may
make before his goal is revealed. GRD is relevant to any do-
main for which quickly performing goal recognition is es-
sential and in which the model design can be controlled,
e.g., intrusion detection (Jarvis, Lunt, and Myers 2004;
Kaluza, Kaminka, and Tambe 2011; Boddy et al. 2005), as-
sisted cognition (Kautz et al. 2003), and human-robot col-
laboration (Levine and Williams 2014).

Analyzing GRD problems involves two main tasks; eval-
uating the wcd of a goal recognition model and optimizing a
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model by redesigning it. In this work we focus on the latter
task, aiming at efficient ways to search for an optimal re-
design strategy. With this objective, we construct a search
space in which each node in the space is a goal recognition
model, one of which is the original model. One can transi-
tion from one model to another by applying a model modifi-
cation, chosen from a set of allowed modifications given as
input.

Our main contribution in this work involves the charac-
terization of a class of GRD models for which an effective
pruning of the search space can be done using Strong Stub-
born Sets (Valmari 1989; Wehrle and Helmert 2014). Orig-
inally suggested in the area of computer aided verifications,
Strong Stubborn Sets are used to guarantee that the subset
of modifications applied at each node in the search are cho-
sen in a way that preserves completeness. Such position-
ing allows reducing the computational overhead of design
while ensuring an optimal redesign strategy is found. We
show that the proposed class generalizes previous works in
GRD and enriches the state-of-the-art with new modifica-
tions that can be applied within GRD models and ensure
valid pruning using Strong Stubborn Sets. Specifically, we
present two new modification methods in this class, action
conditioning, which enforces a partial order between actions
and single action sensor refinement, which improves the ob-
server’s sensor model.

We support our approach by an empirical evaluation that
reveals the performance gain brought by the proposed prun-
ing strategy in different GRD settings. We show that by en-
riching the set of possible modifications we gain wcd reduc-
tion in a variety of settings.

Model

A GRD problem has two components: the analyzed goal
recognition setting and a design model, specifying the pos-
sible ways to modify the goal recognition setting. Adopting
notation from Keren, Gal, and Karpas (2016b; 2017) we for-
mulate each component separately before integrating them
into a GRD model (Definition 3).

Based on the STRIPS formalism (Fikes and Nilsson 1972),
we support the analysis of goal recognition models based on
planning domains as follows.
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Definition 1 A goal recognition model R is represented by
the tuple R = 〈F, I,A,C,G,O, S〉 where:
• F ⊆ F is a set of fluents
• I ⊆ F is the initial state,
• A ⊆ A is a set of actions.
• C : A → R specifies the cost of each action.
• G is a set of possible goals g s.t. |G| ≥ 2 and g ⊆ F .
• O is a set of observation tokens, including the special ob-

servation token o∅, denoting that an action could be non-
observable.

• S : A → 2O \ ∅ is a sensor model, mapping each action
a ∈ A into a set of observation tokens S(a) ⊆ O that
may be emitted when a is executed.

We let R represent the set of goal recognition models that
comply with Definition 1. We assume agents are agnostic to
the goal recognition system. Each agent, aiming at one of
the goals g ∈ G, enters the system at the initial state I and
executes one of the legal plans π ∈ Πleg(g), which are the
plans that achieve g and are allowed under the assumptions
made on the behavior of the agent. The set of legal paths
�Πleg(g) is the set of prefixes of the plans in Πleg(g).

The sensor model S refers to the way the goal recognition
system observes agent actions, while agents are assumed to
have full observability of the world state. This creates a dis-
tinction between the agent’s activity and the way it is per-
ceived by the system. Consequently, each executed path
�π may emit any one of its possible observable projections
op(�π), the observation token sequences that may be emitted
when �π is performed.

Following (Keren, Gal, and Karpas 2016b), an observa-
tion sequence �o satisfies a goal g if it is a possible observ-
able projection of a path to g. A path is non-distinctive if
at least one of its observable projections satisfies more than
one goal. We let �Πnd(R) represent the set of non-distinctive
paths in R. The worst case distinctiveness(wcd) of model
R, denoted by wcd(R), is the maximal cost of a path in
�Πnd(R).

We note that the set Πleg(g) of legal plans to goal g
can be described either explicitly or symbolically. (e.g.,
the set of all optimal paths that do not make use of ac-
tion a). In particular, when agents are optimal and the
environment is fully observable the wcd can found using
the compilation to planning based technique presented in
(Keren, Gal, and Karpas 2014). Similarly, the compila-
tions suggested in (Keren, Gal, and Karpas 2015; 2016a;
2016b) can be used to find the wcd for settings where agents
are bounded-suboptimal and the environment is partially ob-
servable. In any case, the framework we present for wcd re-
duction is independent of the method used for its calculation.

The design model is defined next.

Definition 2 A design model D is represented by the tuple
D = 〈M, δ, φ〉 where:
• M is a finite set of atomic modifications that can be ap-

plied. A modification sequence is an ordered set of modi-
fications �m = 〈m1, . . . ,mn〉 s.t. mi ∈ M and �M is the
set of all such sequences.

• δ : M × R → R ∪ {R∅} is a deterministic modifica-
tion transition function, specifying the goal recognition
model that results from applying a modification to a goal
recognition model. Non-applicable transitions result in
the invalid model R∅.

• φ : �M×R → {0, 1} is a constraint indicator that spec-
ifies the modification sequences that can be applied to a
goal recognition model.

We assume all modifications have uniform cost and the
cost of a sequence is equal to its length (C(�m) = |�m|). Also,
we assume a valid modification sequence cannot have an in-
valid prefix.

We let app(R) represent the set of modifications that
are applicable in R, i.e., all modifications m such that
φ(m,R) = 1. In addition, we let R�m represent the result of
applying a valid modification sequence �m to model R. Ap-
plying any modification to R∅ results in an invalid model,
i.e., ∀m ∈ M, δ(m,R∅) = R∅.

Finally, we define a goal recognition design model.

Definition 3 A goal recognition design (GRD) model is
given by the pair T = 〈R0, D〉 where
• R0 is an initial goal recognition model, and
• D is a design model.

The design model D imposes a set RT ⊆ R of goal
recognition models reachable from the initial model R0 by
applying a valid modification sequence.

Given a GRD model T = 〈R0, D〉, our objective is to
find a modification sequence �m∗ ∈ �M to apply to R0 that
minimizes wcd under the constraints specified by φ. We
let wcdmin(T ) represent the minimal wcd achievable in T
when applying an optimal modification sequence and R�m

0
represent the model that results from applying �m to R0. The
objective of the GRD problem is formulated as follows.

wcdmin(T ) = minimize
�m∈ �M|φ(�m,R0)=1

wcd(R�m
0 ) (1)

In particular, given the minimal wcd possible, we prefer
solutions with minimal length.

The Redesign Process

We view the model redesign process as a search in the space
of modification sequences �m ∈ �M (and their corresponding
models R�m

0 ) for a sequence that minimizes wcd. The oper-
ators are the modifications M that transition between goal
recognition models.

A basic wcd reduction method uses a breadth first search
(BFS), possibly replaced with a Dijkstra-based exploration
in the case of non-uniform modification cost. The root node
of the search is the empty sequence �m∅ and the initial model
R0. Each successor node appends a single modification to
the sequence applied to the parent node. If the sequence is
valid, it is added to a queue of sequences. For each explored
node we calculate wcd, updating the minimal wcd and op-
timal modification sequence when needed. The search con-
tinues, increasing at each level of the tree the size of applied
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modification sequences until a model in which wcd = 0 is
found or until there are no more nodes to explore. The result
is a modification sequence �mmin ∈ �M that minimizes the
wcd.

In addition to satisfying the main objective of minimizing
wcd under the specified constraints, this iterative approach
fulfills our secondary requirement, ensuring finding a modi-
fication sequence of minimal length.

A key question involves the modifications to be consid-
ered at each stage. A naı̈ve approach is to consider all
valid combinations of modifications, which we refer to as
exhaustive-reduce. In the worst case, exhaustive-reduce ex-
amines all valid modification sequences.

We let �Πwcd(R) ⊆ �Πnd(R) represent the set of non-
distinctive paths with maximal length. Seeking improve-
ment through pruning, Lemma 1 shows that wcd of a
model cannot decrease if at least one non-distinctive path
in �Πwcd(R) remains non-distinctive in the modified model.

Lemma 1 Given a goal recognition design model T and
goal recognition models R,R′ ∈ RT , if ∃�π ∈ �Πwcd(R)

s.t. �π ∈ �Πnd(R′) then wcd(R) ≤ wcd(R′).

Proof: The wcd of a model is the maximal cost over non-
distinctive paths �Πnd(R), which is the cost of �π. If �π is
non-distinctive in R′ the wcd is at least the cost of �π and
wcd(R) ≤ wcd(R′).

The pruned-reduce algorithm (Algorithm 1), presented
first by Keren, Gal, and Karpas (2014) and extended here
to partially observable settings, exploits Lemma 1 to avoid
unnecessary computations by pruning sequences �m ·m that
are guaranteed not to have an effect on the wcd plans of a
model Πwcd(R�mcur

0 ), which are a pair of complete plans that
lead to two different goals, and at least one has a wcd path
�π ∈ �Πwcd(R�mcur

0 ) as its prefix while the other has a prefix
that shares an observable projection with �π.

Typically, the wcd calculation of a goal recognition model
(performed for example using the methods of Keren, Gal,
and Karpas (2014; 2016a; 2016b)) yields a pair of wcd plans.
The effect of a modification on a path is characterized by
the set of affected actions A(m,R). Action a belongs
to A(m,R) either because m changes its implementation
(by changing pre(a), add(a) or del(a)) or its observability
(by changing the set of tokens a may emit). The pruned-
reduce algorithm prunes modifications m for which the set
of affected actions A(m,R�mcur

0 ) includes no action that be-
longs to Πwcd(R�mcur

0 ) (Line 11).

Safe Pruning for GRD using Generalized Strong
Stubborn Sets

To justify the pruning performed by pruned-reduce we ob-
serve it can be viewed as a form of partial order reduction
used to reduce the size of the search space. Specifically,
we show that for every node the modifications not pruned
form a strong stubborn set (Valmari 1989), a subset of mod-
ifications that include the first modification in a sequence

Algorithm 1 pruned-reduce(T = 〈R0, D〉)
1: wcdmin = ∞ (init)
2: �mmin = �m∅ (init with empty sequence)
3: Create a queue Q initialized to �m∅
4: while Q is not empty: do
5: �mcur ← Q.dequeue()
6: if wcd(R�mcur

0 ) < wcdmin then

7: wcdmin = wcd(R�mcur
0 )

8: �mmin = �mcur

9: end if
10: for all m ∈ MD do
11: if {φ(�mcur ·m,R0) = 1} and

{ ∃a ∈ A(m,R�mcur
0 ) s.t. a ∈ Πwcd(R�mcur

0 )}
then

12: enqueue �mcur ·m onto Q
13: end if
14: end for
15: end while
16: return �mmin

that minimizes the wcd of the goal recognition model repre-
sented by the node.

Specifically, we use the formulation of Generalized
Strong Stubborn Sets (GSSS) (Wehrle and Helmert 2014)ł
which considers planning tasks and adopt it to our optimiza-
tion task of finding a valid modification sequence to apply to
the initial goal recognition model to minimize the wcd.

We consider a modification sequence �m to be strongly op-
timal for model R if it is a minimal length sequence that
minimizes the wcd of R. A terminal node either minimizes
the wcd or has no valid successor modifications. The set
Opt(T ) represents the strongly optimal solutions for model
R0 in T . Finally, a successor function �: R → 2M yields
for every node R a set of successor modifications.

We let �pr represent the successor function of the pruned-
reduce algorithm, that yields for every node R a set of suc-
cessor modifications �pr (R) ⊆ app(R). According to
Algorithm 1, �pr prunes transitions that either violate the
constraints or have no effect on the set of wcd plans of the
current model.

Since we want to minimize wcd, we need to make sure our
pruning method is safe, i.e., it is guaranteed that an optimal
solution for the given goal recognition design task can still
be found in the pruned search tree. Specifically, a successor
function is safe if for every non-terminal model R, �pr (R)
includes at least one operator that starts an optimal solution
for R. As described by Wehrle and Helmert (2014), assum-
ing all modifications have non-zero uniform cost, this is a
necessary criterion for safety.

Given a GRD model T , we let TR represent the model
that is the same as T but with R as its initial goal recog-
nition model. The set �pr (R) is a GSSS in R if it com-
plies with three requirements. First, for every modification
m ∈�pr (R) that is not applicable in R, the set contains a
necessary enabling set for m and Opt(TR), which are the
modifications that are applied before m in all sequences in
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Opt(TR) in which m is applied. Second, for every modifi-
cation m ∈�pr (R) that is applicable in R, the set contains
all modifications that interfere with m in R. Two modifi-
cations m1,m2 ∈ M interfere in R if they either disable
or conflict in R. Modification m1 disables m2 in R if both
are applicable in R but m2 /∈ app(δ(m1, R)). Two applica-
ble modifications conflict in R if applying them in any order
to R is valid but yields different non-distinctive paths (i.e.,
�Πnd(Rm1,m2) �= �Πnd(Rm2,m1)). The final condition re-
quires that �pr (R) contains at least one modification from
at least one strongly optimal solution for TR.

Note that while the original formulation by Wehrle and
Helmert (2014) requires non-interfering operators to yield
the same state for different orders of application, we only
require them to yield the same set of non-distinctive paths
which is enough to guarantee both models share the same
wcd value. Also, the original formulation of GSSSs consid-
ers an envelope of modifications that are sufficient to con-
sider at each node. As can be seen in Line 10 of Algorithm 1,
all modifications are considered at every step setting the en-
velope, hereon omitted from our description, to be the set of
all modifications. Considering tighter envelopes that allow
more pruning are beyond the scope of this paper but offer
promising extensions for future work.

The definition of GSSSs guarantees that for every non-
terminal node, at least one permutation of a strongly optimal
solution is not pruned. Note that verifying a given set is a
GSSS does not require complete knowledge of the sets of
strongly optimal solutions. If the specified conditions can
be verified for an over-approximation of the sets, they hold
for the actual sets. Accordingly, we show that the pruning
performed by the pruned-reduce uses an over-approximation
of the optimal solutions for every explored node.

Theorem 1 ensures that successor pruning based on
GSSSs is safe.

Theorem 1 Let � be a successor pruning function defined
as succ(R) = G(R)∩app(R), where G(R) is a generalized
strong stubborn set in R. Then � is safe.

The proof is omitted due to space considerations but follows
that of (Wehrle and Helmert 2014).

Independent, Persistent, Monotonic-nd
GRD Models

We are now ready to present a characterization of a class of
GRD models that can take advantage of the GSSS charac-
terization and perform effective pruning, using Algorithm 1.
Clearly, to make use of GSSSs, one must provide an efficient
method for their computation. We show that in this case the
computation of a GSSS is given with a low computational
overhead, as part of the wcd computation (Line 6).

A useful observation here is that a GRD model and its
constraint function induce a space of valid modification se-
quences. To guarantee �pr is safe i.e., that the space state
induced by �pr includes a strongly optimal sequence, we
require the GRD model to be independent, persistent, and
monotonic-nd. Independence ensures no two modifications

interfere. Persistence ensures model constraints under mod-
ification permutation. Finally, monotonicity ensures no new
non-distinctive paths are added as a result of model modi-
fication. After introducing these characterizations formally
we show they are sufficient to guarantee the safety of �pr.

Definition 4 (independent model) A GRD model is inde-
pendent if for any modification m ∈ M:
• the necessary enabling set of m and Opt(T ) is empty, and
• there are no modification m′ and goal recognition model

R s.t. m′ interferes with m in R.

Definition 5 (persistent model) A GRD model T is persis-
tent if for any goal recognition model R ∈ RT and modifi-
cation sequences �m, �m′ ∈ �M:
• If �m is a prefix of �m′, and φ(�m,R) = 0 then φ(�m′, R) =
0

• If �m′ is a permutation of �m and φ(�m,R) = 1 then
φ(�m′, R) = 1.

Persistence and independence are sufficient for pruning
invalid sequences or sequences that are guaranteed to have
a permutation that is not pruned. To prune modifications
that do not affect the pair of wcd plans when no new non-
distinctive paths may be added to the model, we define
monotonic-nd models as follows.

Definition 6 (monotonic-nd model) A GRD model T is
monotonic-nd, if for any goal recognition model R ∈ RT

and modification m ∈ M, �Πnd(Rm) ⊆ �Πnd(R).

In a monotonic-nd model valid modifications may only
remove paths from the set of non-distinctive paths. There-
fore, applying them cannot increase wcd.

Lemma 2 Given a GRD model T , if T is monotonic-nd then
for every goal recognition model R ∈ RT and modification
m ∈ M s.t. φ(m,R) = 1,

wcd(Rm) ≤ wcd(R)

Proof: According to Definition 6, modifications in a
monotonic-nd model do not add non-distinctive paths. In
particular, there are no non-distinctive paths with a cost
higher than wcd(R) that are added to the model and
wcd(Rm) ≤ wcd(R).

In a monotonic-nd model, applying a modification that does
not modify the pair of wcd plans of the current model leaves
the wcd unchanged.

Corollary 1 Let T be a monotonic-nd GRD model. For
every modification m ∈ M and goal recognition model
R ∈ RT s.t. φ(m,R) = 1, if ∀a ∈ A(m,R) a /∈ Πwcd(R)
then wcd(Rm) = wcd(R).

Proof: According to Lemma 2, in a monotonic-nd
GRD model wcd cannot increase as a result of applying a
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valid modification, i.e., wcd(Rm) ≤ wcd(R). Since no ac-
tion in the pair of plans Πwcd(R) is affected by m, both re-
main applicable in Rm and the wcd path �πwcd(R) remains
non-distinctive in Rm. Moreover, since T is monotonic-nd
no non-distinctive paths are added to the model. This, ac-
cording to Lemma 1, means that the wcd cannot decrease
i.e., wcd(Rm) ≥ wcd(R), leaving wcd unchanged.

Finally, we specify the conditions under which the
pruned-reduce algorithm is guaranteed to produce an opti-
mal solution, or alternatively, the conditions under which
�pr yields a GSSS for every model encountered in the
search.

Theorem 2 Given a GRD model T = 〈R0, D〉 where R0 is
the initial model and D = 〈M, δ, φ〉, if T is independent,
persistent, and monotonic-nd then for every model R ∈ RT ,
the set �pr (R) is a GSSS.

Proof (sketch) The proof, for which the complete version
can be found in an extended techincal report (Keren, Gal,
and Karpas 2018), shows that under the specified assump-
tions, for every strongly optimal sequence that is pruned, we
can use the method suggested by Wehrle and Helmert (2014)
to construct a strongly optimal sequence that is not pruned
by �pr. �

Theorem 1 and Theorem 2 guarantee that for independent,
persistent, and monotonic-nd GRD models �pr generates a
GSSS for every node R ∈ RT , which means that �pr is safe
and the search will find an optimal modification sequence.

As a final note we observe that Algorithm 1 can be ex-
tended to support non-independent models in which case
modifications that interfere with or enable modifications that
affect the wcd plans are not pruned. In the next section we
focus on creating a class of modifications that extends those
proposed in previous work while complying with the speci-
fied requirements.

New Modifications for Independent,

Persistent, Monotonic-nd GRD Models

Equipped with the conditions under which the pruning per-
formed by the pruned-reduce algorithm is safe we now de-
scribe a general design model D = 〈M, δ, φ〉 that com-
plies with these conditions. We do this by specifying the
constraints (φ) and modifications (M) and prove their com-
pliance with the requirements. In particular, we extend the
state-of-the-art in GRD by offering new redesign modifica-
tion types while preserving the completeness of the pruned-
reduce algorithm.

We assume agents follow bounded sub-optimal paths,
which means they have a limited budget for diverting from
optimal behavior (or no diversion budget if they are opti-
mal). The constraint function is budget preserving, enforc-
ing a design budget that limits the number of modifications
that can be applied. Such a budget can either be a limit on
the overall number of modifications or a separate budget for
each modification type. The constraint function is also cost
preserving, requiring that the maximal cost of a legal plan

to any of the goals g ∈ G does not increase. Note that for
settings where bounded sub-optimal paths are legal, existing
methods for wcd calculation, e.g. (Keren, Gal, and Karpas
2014; 2016b), reveal the maximal cost to goal, meaning this
condition can be verified with no overhead cost.

The modification set consists of four modification types,
two of which were already presented in the literature,
namely action removal (Keren, Gal, and Karpas 2014;
Wayllace et al. 2016) and sensor placement (Keren, Gal, and
Karpas 2015). We next present, in addition, action condi-
tioning and single action sensor refinement. Letting A de-
note the set of all actions and preR(a) the preconditions of
action a in model R.

Definition 7 A modification m is an action conditioning
modification if for every goal recognition model R ∈ R,
Rm is identical to R except that for every action a ∈ A
preR(a) ⊆ preRm(a).

When conditioning (i.e., adding preconditions to) an ac-
tion from the model, some paths in the model may become
invalid. Specifically, action conditioning can be used to dis-
allow specific permutations of paths by forcing a partial or-
der between actions. Action removal is an extreme special
case, where actions are removed from the model. Removing
an action is equivalent to adding an unsatisfiable precondi-
tion.

Action conditioning may potentially decrease wcd by re-
moving non-distinctive paths. In general, however, ac-
tion conditioning may increase the optimal cost to a goal
(and the wcd) by eliminating all optimal paths that lead
to it. We show that when the constraint function is cost-
preserving, action conditioning modifications cannot add
non-distinctive paths.

Lemma 3 Let T = 〈R0, D〉 be a GRD model. If φ is cost
preserving, then for any action conditioning modification
m ∈ M and model R ∈ RT , �Πnd(Rm) ⊆ �Πnd(R).

Proof: Let Π∗
R(g) represent the optimal plans to goal g in

R. Assume, by way of contradiction, that there is an action
conditioning modification m s.t. there exists a goal recogni-
tion model R with a path �π ∈ �Πnd(Rm) but �π /∈ �Πnd(R)
(non-distinctive in Rm but distinctive in R). This implies
there are at least two optimal plans π′ ∈ Π∗

Rm(g′) and
π′′ ∈ Π∗

Rm(g′′) to two different goals g′ �= g′′ one of which
has �π as its prefix and the other shares the observable pro-
jection of �π in Rm but not in R (w.l.o.g we say that �π is a
prefix of π′).

Under the assumption that m is an action conditioning
modification, it is easy to see that both plans are valid in R
(i.e., π′ ∈ ΠR(g

′) and π′′ ∈ ΠR(g
′′)). Moreover, since φ

is cost preserving we know that both plans are optimal in R
(π′ ∈ Π∗

R(g
′) and π′′ ∈ Π∗

R(g
′′)). The sensor model of R

and Rm is the same. Therefore, �π is a prefix of π′ and shares
an observable projection with a prefix of π′′ which means �π
is non-distinctive in R, thus contradicting our choice of �π.

The second newly introduced modification type is single
action sensor refinement, which sets the observability of a

145



single action. We let AS [a] ⊆ A represent the set of actions
(excluding action a) that share an observation token with ac-
tion a according to sensor model S and define single action
sensor refinement as follows.

Definition 8 A modification m is a single action sensor re-
finement modification if for every goal recognition model
R ∈ R, R and Rm are identical except that:
(1) for every action a ∈ A, if o∅ ∈ SRm(a) then o∅ ∈ SR(a)
and
(2) there exists an action am ∈ A s.t. for every action a ∈ A
a �= am, ASRm [a] = ASR

[a] \ am.

Note that the token set of a given action can include the
empty token in the refined model, only if it was included
in the original model. Single action refinement (hereon re-
ferred to as sensor refinement) modifications assign a unique
token (or a set of tokens) to one of the actions, previously
mapped to a set of other tokens.

A special case of sensor refinement is sensor place-
ment (Keren, Gal, and Karpas 2016a) which exposes a
non-observable action (previously mapped to the null to-
ken) by mapping it to a unique token. To show sensor
refinement (and placement) modifications never add non-
distinctive paths we show that for every path, the number
of paths that may share its observable projection cannot in-
crease due to sensor refinement.

Lemma 4 Given a sensor refinement modification m and
two goal recognition models R and R′, if R′ = m(R) and
φ(m,R) = 1 then �Πnd(R′) ⊆ �Πnd(R).

Proof (sketch) By definition, sensor refinement only
changes the system’s sensor model and not the set of legal
paths to each goal. For every action a, ASRm [a] ⊆ ASR

[a]
(the set of actions that share a token with a is reduced in the
modified model). Consequently, the set of paths that share
an observable projection with �π in Rm is a subset of the
paths that share observability with �π in R. Therefore, a path
which is distinctive in R cannot become non-distinctive in
Rm.

�
Before concluding our description we show that our

model complies with the specified requirements that guar-
antee the safety of �pr. We start by showing that a model
with only action conditioning and sensor refinement modifi-
cations and a cost-preserving constraint function is guaran-
teed to be monotonic-nd.

Lemma 5 Given a goal recognition design model T =
〈R0, D〉 where R0 is the initial model and D = 〈M, δ, φ〉,
if φ is cost-preserving and the modification set M consists
only of action conditioning and sensor refinement modifica-
tions, then T is monotonic-nd.

Proof: According to Lemma 3 and assuming the constraint
function φ is cost preserving, action conditioning modifica-
tions never add paths to the model and non-distinctive paths

in particular. Corollary 4 shows this is true for sensor refine-
ment modifications in any goal recognition design model.
Therefore, for any modification m ∈ M and model R ∈ RT

�Πnd(Rm) ⊆ �Πnd(R) and T is monotonic-nd according to
Definition 6.

Next, we show that when the modifications set M con-
sists only of action conditioning and sensor refinement mod-
ifications, the model is independent.

Lemma 6 Let T = 〈R0, D〉 be a goal recognition design
model where R0 is the initial goal recognition model and
D = 〈M, δ, φ〉 is the design model. If M consists only
of sensor refinement and action conditioning modifications,
then T is independent.

Proof (sketch) According to Definition 7 and 8 both ac-
tion conditioning and sensor refinement modifications are
applicable at any model R ∈ RT and do not affect the ap-
plicability of other modifications. According to Definition 4,
to show T is independent we are left with the need to show
there are no modifications that conflict in some model R.

Assume to the contrary that ∃R ∈ RT and modifica-
tions m1 and m2 s.t. the modifications conflict in R s.t.
�Πnd(Rm1,m2) �= �Πnd(Rm2,m1).

W.l.o.g we let �π represent a path that belongs to
�Πnd(Rm1,m2) but not to �Πnd(Rm2,m1). Because �π is non-
distinctive in Rm1,m2 we know that there exists a path �π

′

s.t. �π and �π
′

share an observable projection that satisfies at
least two goals in Rm1,m2 but not in Rm2,m1 (otherwise �π
would be non-distinctive in both models). This can happen
in one of two cases: either both �π and �π

′
are valid in Rm1,m2

but one of them is invalid in Rm2,m1 or the two paths, share
an observation sequence in Rm1,m2 but not in Rm2,m1 . We
show that the first case cannot happen since Rm1,m2 and
Rm2,m1 have the same set of actions and valid paths. The
second case cannot happen since action conditioning modifi-
cations do not change the sensor model, and for every action
the set of possible tokens is the same in both ASRm1,m2

and
ASR

[ai]\am2\am1 . Accordingly, the set of possible observ-
able projections of every path is the same in both models,
and any path that is non-distinctive in Rm1,m2 and belongs
to �Πnd(Rm1,m2) is also non distinctive in Rm2,m1 (and be-
longs to �Πnd(Rm2,m1)), thus contradicting our choice of �π
and concluding our proof. �

The third condition requires that our goal recognition de-
sign model is persistent. The persistency of a model depends
on the definition of its constraint function.

Lemma 7 Given a goal recognition design model T =
〈R0, D〉 where R0 is the initial model and D = 〈M, δ, φ〉, if
φ is cost-preserving and budget preserving and the modifica-
tions set M consists only of action constraining and sensor
refinement modifications, then T is persistent.

Proof: To show the model is persistent, we consider a se-
quence �m in T . If �m is pruned because it violates the design
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Figure 1: An example of a goal recognition design problem

budget then adding modifications is not allowed and there
is no sequence that has �m as its prefix that is valid. If �m is
valid, the sequence and all its permutations respect the bud-
get constraints.

According to Definition 7 the set of actions affected by a
modification is the same for any model R ∈ R (for sensor
refinement the preconditions of all action are unchanged).
Therefore, if sequence �m′ is a permutation of �m it will have
the same set of paths and optimal paths in particular. If �m
maintains the optimal cost to all goal, so will any of its per-
mutations �m′. Similarly, if �m causes the optimal cost of one
of the goals to increase, appending modifications to �m will
not decrease the costs and therefore any sequence that has �m
as its prefix will be invalid, thus concluding our proof that T
is persistent under the specified conditions.

Finally, we combine the ingredients specified above to de-
scribe a goal recognition design model for which the pruned-
reduce algorithm is guaranteed to an optimal modification
sequence.

Lemma 8 Given a goal recognition design model T =
〈R0, D〉 where R0 is the initial model and D = 〈M, δ, φ〉,
if φ is both cost-preserving and budget-preserving and the
modifications set M includes only action constraining and
sensor refinement modifications then �pr (R) is safe.

Proof: According to Theorem 1, if a pruning function is
guaranteed to produce a GSSS for every node in the search,
it is safe. According to Theorem 2, if T is independent,
persistent and monotonic-nd the set �pr (R) is a GSSS for
every model R ∈ RT . Lemma 5 guarantees that under the
specified constraints T is monotonic-nd, Lemma 6 guaran-
tees it is independent and finally Lemma 7 concludes our
proof by guaranteeing the model is persistent.

Example 1 As an example of a controllable environment
consider Figure 1 which depicts a variation of the well
known BlockWords domain where a robot uses a gripper to
move blocks around in order to achieve one of two possi-
ble configurations. In our setting the blocks and gripper are
hidden from the observer who knows the initial setting (de-
picted on the left) and possible goals (depicted on the right),

FO PO
Exhaustive Pruned Exhaustive Pruned

Solved Expanded Solved Expanded Solved Expanded Solved Expanded

GRID 48 135.25 60 48.5 132 137.42 160 52.57
GRID+ 71 161.25 72 36.75 63 212.66 68 50.04
BLOCK 15 136.1 20 17.6 32 136.75 48 21.33
LOG 43 194.6 44 9.66 19 580.01 22 13.66
ISS 60 40.0 120 6.67 74 68.75 224 56.63

Table 1: Efficiency gain of pruning

FO PO
AR AC TOT AR AC SR TOT

GRID 0.81 0.56 0.81 1.66 0.4 1.02 1.88
GRID+ 0.57 0.28 0.57 4.25 4.25 6.25 6.25
BLOCK 0.5 0 0.5 0.47 0 1.42 1.42
LOG 0 0 0 0 0 0.33 0.33
ISS 0 0 0 0 0 2.92 2.92

Table 2: Comparing modification methods

but only knows when some action is performed. Also, to lift
a box the gripper is adjusted to the width of the box.

In the original setting, the only way to recognize the goal
is by counting the number of actions performed, setting
wcd = 3 as the cost of the optimal path to Goal 1. By plac-
ing a sensor on Block B (indicating when the block is picked
up by the gripper) the wcd is reduced to 1 since an optimal
plan to both goals can start with placing Block D on the ta-
ble. If moving Block B is the next action performed then the
goal is Goal 1 (and Goal 2 otherwise). If, in addition to the
sensor, the robot movement is limited so it can only expand
its gripper, the only way to achieve Goal 1 is by first lifting
Block B. In this case wcd = 0 and the first action reveals
the goal. We cannot disallow moving any of the blocks while
guaranteeing both goals can be achieved, making it neces-
sary to use action conditioning rather than action removal
to minimize the wcd.

Empirical Evaluation

The objective of our empirical evaluation is twofold. First,
we evaluate the efficiency gain brought by pruning by com-
paring the exhaustive-reduce and pruned-reduce methods
for redesign. Our second objective is to evaluate the wcd re-
duction achievable with the various modifications. We first
describe the datasets setup before presenting and discussing
the results.
Datasets: We used four uniform cost plan recognition
domains (Ramirez and Geffner 2009; Keren, Gal, and
Karpas 2016b) namely: GRID-NAVIGATION (GRID), IPC-
GRID+ (GRID+), BLOCK-WORDS (BLOCK), and LOGIS-
TICS (LOG)1 - all based on PDDL domains from the de-
terministic track of the International Planning Competi-
tion. For non-uniform action costs we evaluated the ISS-
CAD (ISS) domain (E-Martı́n, R-Moreno, and Smith 2015),
which describes a space exploration setting where a robot
tries to recognize the goal of an astronaut performing space-
ship maintenance tasks. We considered two system observ-
ability settings (i.e., two system sensor models) : Fully Ob-
servable (FO) and Partially Observable (PO) where actions

1The details of the dataset generation process are detailed in
(Keren, Gal, and Karpas 2018).
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are each mapped to a set of tokens. We evaluated 210 GRID,
168 GRID+, 216 BLOCK, 180 LOG and 354 ISS problems
(we used different problems for FO and PO).
Setup: We implemented three modification methods,
namely action removal (AR), action conditioning (AC), and
single action sensor refinement (SR). Action conditioning
was implemented by enforcing an order between a pair of ac-
tions, while action removal disallows the action altogether.
Each problem is run with both the exhaustive-reduce and
pruned-reduce algorithms, with a design budget of 4 as-
signed once for each modification method and once as an
overall budget. The optimal cost to any of the goals could
not increase. During execution, we kept track of intermedi-
ate results, allowing us to examine the maximal reduction
achieved by each budget level. We used the Fast Down-
ward planning system (Helmert 2006) running A∗ with the
LM-CUT heuristic (Helmert and Domshlak 2009) for all but
the ISS domain for which the IPDB heuristic (Haslum et al.
2007) was used. Experiments were run on Intel(R) Xeon(R)
CPU X5690 machines, with a time limit of 30 minutes and
memory limit of 2 GB.
Results: Table 1 compares the pruning performed by the
exhaustive-reduce and pruned-reduce algorithms. For each
method and setting, the table shows the number of prob-
lems solved to completion within the time bound (Solved)
and for those solved by both methods, the average number
of modification sequences expanded by each method (Ex-
panded). The evaluation shows that for all domains pruned-
reduce solves more problems and expands less nodes then
the exhaustive search, showing the efficiency gain brought
by pruning. This computational gain is emphasized in do-
mains with large branching factors, such as LOG and ISS
where pruned-reduce examines less then 10% of the nodes
examined by the exhaustive approach.

Table 2 shows the wcd reduction achieved by each mod-
ification method separately and a combination of all mod-
ifications (TOT) for problems completed for all design op-
tions. The results indicate the ability to reduce wcd by re-
design, achieving an average wcd reduction of more that 6
in the GRID+ domain. For most of the settings a specific
type of modification achieves best results, except for PO-
GRID where combining modifications yields higher results
then the individual methods. For both GRID and GRID+ the
newly presented action conditioning managed to achieving
the same wcd reduction as action removal for PO GRID+
settings, indicating its benefit to wcd minimization in set-
tings where action removal cannot be applied.

Related Work

GRD, which is a special case of environment design (Zhang,
Chen, and Parkes 2009), was first introduced by Keren et
al. (2014) and later extended (Keren, Gal, and Karpas 2015;
Son et al. 2016; Keren, Gal, and Karpas 2016a; 2016b;
Wayllace et al. 2016) by offering tools to analyze a variety of
GRD settings. Common to all previous work on GRD is the
ad-hoc account of the design process, providing optimality
guarantees to the specific model and the modifications dis-
cussed. We are the first to provide a general framework for

characterizing goal recognition models for which partial or-
der reduction in the form of strong stubborn sets can be used
to improve the design process. Specifically, it allows us to
define new classes of modifications that can be used to en-
hance recognition.

Conclusion

We frame existing pruning methods in the context of strong
stubborn sets, allowing us to enrich the GRD framework
with new modifications while preserving the completeness
of the pruning performed. Our empirical evaluation showed
both the efficiency gains of pruning and the wcd reduction
achieved.

In future work we intend to explore new ways to enhance
the design process by combining different search space re-
duction techniques. Also, while our evaluation used exist-
ing goal recognition benchmarks, we intend to enrich the
GRD dataset with new settings for which design is relevant.
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