
Training Deep Reactive Policies
for Probabilistic Planning Problems

Murugeswari Issakkimuthu, Alan Fern, Prasad Tadepalli
School of Electrical Engineering and Computer Science

Oregon State University
Corvallis, OR 97331, USA

Abstract

State-of-the-art probabilistic planners typically apply look-
ahead search and reasoning at each step to make a decision.
While this approach can enable high-quality decisions, it can
be computationally expensive for problems that require fast
decision making. In this paper, we investigate the potential
for deep learning to replace search by fast reactive policies.
We focus on supervised learning of deep reactive policies for
probabilistic planning problems described in RDDL. A key
challenge is to explore the large design space of network ar-
chitectures and training methods, which was critical to prior
deep learning successes. We investigate a number of choices
in this space and conduct experiments across a set of bench-
mark problems. Our results show that effective deep reactive
policies can be learned for many benchmark problems and
that leveraging the planning problem description to define the
network structure can be beneficial.

Introduction

Many real-world planning problems involve large factored
state spaces with highly stochastic exogenous and endoge-
nous dynamics. The Relational Dynamic Influence Diagram
Language (RDDL) was designed to model such problems
by compactly defining large Dynamic Bayesian Networks
(DBNs) over state and action variables. Current state-of-the-
art planners for RDDL problems are based on online search,
where at each step some combination of search and rea-
soning is used to select an action. For example, there are
planners based on sample-based tree search (Keller and Ey-
erich 2012; Kolobov et al. 2012; Bonet and Geffner 2012),
symbolic variants (Cui et al. 2015; Raghavan et al. 2015;
Anand et al. 2016), and those that construct and solve inte-
ger linear programs at each step (Issakkimuthu et al. 2015).
These planners can require non-trivial computation time per
step, which can make them inapplicable to problems that re-
quire fast decisions.

One approach to support fast decisions is via reactive poli-
cies that can be applied online to quickly select actions.
Offline Symbolic Dynamic Programming (SDP) has re-
cently been explored for producing such policies for RDDL
problems (Raghavan et al. 2012; 2013). SDP (Hoey et al.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1999) uses symbolic operations to produce a symbolic pol-
icy representation that can be efficiently evaluated at any
state. Unfortunately, while there have been significant ad-
vances, scalability is still an issue with SDP. Reactive poli-
cies can also be produced via supervised learning or re-
inforcement learning. Most recently, state-of-the-art results
have been achieved in a variety of domains by learning
deep neural networks (DNNs) to represent reactive poli-
cies. Examples include learning to play Atari games directly
from pixel input (Mnih et al. 2015), robotic control (e.g.
(Levine et al. 2016)), and the game of Go (Silver et al. 2016;
2017). These results motivate the investigation of learning
such Deep Reactive Policies (DRPs) for planning problems
described in RDDL. We note that the impressive successes
of DRPs are not due to the blind application of off-the-shelf
tools and DNN architectures. Rather, the successes were en-
abled by significant expertise and manual exploration of ar-
chitectures and training methods. The objective of this paper
is to present an initial exploration of the DRP design space
for RDDL benchmark problems via an extensive empirical
investigation covering five domains with some theoretical
guarantees about the expressiveness of the architectures.

We describe three classes of architectures that support
problem-specific DRPs by leveraging the RDDL problem
definition. We train our DRPs to imitate the action choices of
more expensive non-reactive planners by supervised learn-
ing. We consider two different choices for generating data
and two different ways to optimize DRPs based on the data.
Our experiments shed light on the following questions. Can
we learn DRPs that are competitive with the planners that
they are learned from? Can the RDDL problem definition
be used to define more effective network architectures? Are
there any consistently superior DRP architecture choices
across RDDL problems? Are some supervised training sig-
nals and loss functions more effective in general than oth-
ers? We note that this study is focused on learning DRPs for
individual planning problems using supervised learning. It
is an interesting future direction to consider learning DRPs
that generalize across problems within an entire planning
domain. However, such a step requires additional architec-
tural considerations, which we believe should be informed
by the study of individual problems. We also note that other
training mechanisms such as reinforcement learning will be
interesting to consider in future work.

Twenty-Eighth International Conference on Automated Planning and Scheduling (ICAPS 2018)

422

Related Work

There is a long history of work on integrating machine learn-
ing and automated planning (Minton 1993; Zimmerman and
Kambhampati 2003; Jiménez et al. 2012). Much work fo-
cuses on learning control knowledge (heuristics and pruning
rules) to speed up a planner and/or improve the plan quality.
While these approaches have shown promise, they are not
guaranteed to reduce planning times and can even result in
net slow down of a planner (Minton et al. 1989). An impor-
tant exception is the prior work on learning reactive policies
in the form of relational rule lists for deterministic STRIPS
domains (Khardon 1999). Extensions to the work include
using richer rule representations (Martin and Geffner 2000;
De La Rosa, Celorrio, and Borrajo 2008), iterative learn-
ing algorithms (Fern, Yoon, and Givan 2006), and applica-
tion to probabilistic STRIPS (Yoon, Fern, and Givan 2002).
While these approaches are promising in many domains, it
has been a challenge to demonstrate their robustness across
a wide range of domains. One difficulty is that the rule lan-
guages, once selected, are inflexible and can not always cap-
ture key concepts. This motivates investigating DNNs for
planning, since, in principle, they can induce deep features
and concepts as needed.

The most closely related prior work is the Factored Policy
Gradient (FPG) planner (Buffet and Aberdeen 2009), which
represents reactive policies using simple neural networks,
most commonly a linear network per action for computing
action probabilities. The network parameters are tuned using
policy-gradient reinforcement learning where each learning
episode begins from the starting state of the problem be-
ing considered. Promising results were demonstrated for a
number of planning domains including probabilistic PDDL
(PPDDL) benchmark problems. Interestingly, for most prob-
lems there was no perceived benefit to using multi-layer net-
works over simple linear networks. Our experiments also
show that for some RDDL benchmarks linear networks are
as good as or better than more complex networks. Most re-
cently, concurrent work (Toyer et al. 2018) is the first to learn
deep networks for relational generalization across problems
of PPDDL planning domains. PPDDL and RDDL are qual-
itatively different languages, however, which makes it diffi-
cult to apply that approach directly to many RDDL domains.

RDDL Planning Problems

We assume familiarity with the basic framework of
Markov Decision Processes (MDPs). A factored MDP de-
scribes the state space by a finite set of binary variables
(x1, x2, . . . , xn) and the action space by a finite set of bi-
nary variables (a1, a2, . . . , am). In this work, we focus on
the case where actions are constrained to have exactly one
of the action variables set at any time and view each ai as a
distinct ground action. Most current RDDL benchmarks al-
ready have this constraint. The reward function R specifies
a mapping from the state and action variables to real-valued
rewards. We assume that the transition function T is com-
pactly described as a DBN which specifies the probability
distribution over each state variable xi in the next time step,
denoted x′i, given the values of a subset of the state and ac-

tion variables parents(x′i) in the current time step, in partic-
ular, T (s, a, s′) =

∏
i Pr(x′i|parents(x′i)). RDDL (Sanner

2010) is a high-level specification language for compactly
representing such DBN domains in a relationally-factored
form using parameterized state and action variables. Indi-
vidual problem instances then specify a set of domain ob-
jects that instantiate the state and action variables. A policy
π is a mapping, possibly stochastic, from the state space to
actions. We focus on optimizing the expected finite-horizon
total reward of a policy.

Architectures for Deep Reactive Policies

A Deep Reactive Policy (DRP) is a policy encoded as a deep
neural network. DRPs are reactive in the sense that they
can be quickly evaluated in a single feed-forward pass. Our
DRP architectures are organized into L+ 1 layers of nodes.
Zl = {zlk} denotes layer l, where zlk is the k’th node in
layer l and its value is denoted by o(zlk). The input layer Z0

contains n nodes, each taking the value of one state vari-
able, i.e., o(z0i) = xi. Layers 1 through L − 1 are hidden
layers each containing C × n nodes, where C parameter-
izes the number of channels which allows for scaling the
DRP size with the number of state variables. The output
layer ZL = {zL0 , zL1 , zL2 , . . . , zLm} contains m + 1 nodes,
where zL1 , . . . , z

L
m correspond to the m RDDL actions and

zL0 corresponds to the NOOP action. In all the architectures
the final hidden layer ZL−1 is fully connected to the output
layer ZL.

For single-channel networks (C = 1) we have Zl =
{zl1, zl2, ..., zln} for all the hidden layers. Each hidden node
zlk is connected to a set of nodes (I lk) in the previous layer
Zl−1 via real-valued weights, where wl

i,k is the weight from
zl−1
i to zlk and blk is the bias parameter to zlk. We use ReLU

activation functions as the non-linearity for hidden nodes so
that the value of zlk is

o(zlk) = ReLU

⎛
⎝∑

p∈Il
k

o(zl−1
p)wl

p,k + blk

⎞
⎠ . (1)

The output layer is a softmax layer computing a probability
distribution over the m+ 1 actions

o(zLk) =
exp(

∑|ZL−1|
p=1 o(zL−1

p)wL
p,k + bLk)∑m

j=0 exp(
∑|ZL−1|

p=1 o(zL−1
p)wL

p,j + bLj)
(2)

For multi-channel networks (C > 1) Zl =
{X l

1, X
l
2, ..., X

l
n} for all the hidden layers. The set of nodes

in Zl is partitioned into n subsets, where subset X l
k corre-

sponds to zlk in a single-channel network with |X l
k| = C. If

the hidden layers of single-channel networks are (column)
vectors of size n then those of multi-channel networks are
matrices with C such (column) vectors. The kth row of the
matrix corresponds to nodes in X l

k. All nodes in X l
k re-

ceive the same set of input connections from the previous
layer though with different weights. If zl−1

p is connected to
node zlk in a single-channel network then the entire subset of
nodes X l−1

p are connected to zlk in a multi-channel network.

423

Figure 1: (Left to Right) A single-channel FC-DRP, single-channel S-DRP, partially illustrated multi-channel S-DRP

Fully-Connected DRPs (FC-DRPs). FC-DRPs are the
traditional fully-connected networks in which each hidden
node at layer l is connected to each hidden node in layer
l− 1, i.e., for all l > 1 and k, I lk = {1, . . . , |Zl−1|}. We use
FC(L,C) to denote a FC-DRP architecture with layer and
channel parameters L and C.

Sparse DRPs (S-DRPs). The large number of FC-DRP
parameters raises the potential for overfitting. CNNs reduce
the number of parameters, while remaining expressive by
attaching spatial semantics to hidden nodes and only al-
lowing connections to spatially close nodes. In analogy, S-
DRPs associate hidden nodes with state variables and only
connect nodes whose variables have probabilistic dependen-
cies. S(L,C) denotes an S-DRP with the associated layer
and channel parameters. The nodes in hidden layer Zl are
partitioned into n sets X l

1, X
l
2, . . . , X

l
n, each having C hid-

den units. We interpret the nodes in X l
i as being associated

with state variable xi. A hidden node zlk ∈ X l
i is connected

only to nodes in Zl−1 that are associated with state variables
that xi depends on in the transition function. In particular,
I lk =

⋃
j∈parents(x′

i
) X

l−1
j , where parents(x′i) is the set

of state variables in the current time step that can influence
the transition probability of xi. Thus, the S-DRP connectiv-
ity mirrors the DBN local dependency structure across time
steps. Figure 1 illustrates an FC-DRP and S-DRP with single
and multiple channels.

Representation Capacity of S-DRPs. The potential ad-
vantage of sparsity is better generalization, while the po-
tential disadvantage is representation capacity. Consider an
MDP with two binary state variables x1 and x2 with in-
dependent transition dynamics. Let policy π(x1, x2) =
XOR(x1, x2), which is not linearly representable. The hid-
den layers for any S-DRP will not be able to compute fea-
tures that combine x1 and x2 and hence the final linear soft-
max layer will not be able to represent π. In general, when
policies involve complex dependencies among state vari-
ables that have independent transition dynamics, S-DRPs
may be inadequate. We provide an initial result that char-
acterizes a class of policies that is S-DRP representable sub-
ject to MDP restrictions and also describe a small S-DRP
modification that supports any policy.

The Q-function Qπ(s, a) of π gives the value of execut-
ing action a from state s and then following policy π. We say
that a policy π is Q-representable if there is a policy π′ such
that π(s) = argmaxa Q

π′(s, a) and that for each state the

maximizing Q-value is unique. Examples of Q-representable
policies include optimal policies that have unique optimal
actions in each state, policies computed by the Rollout algo-
rithm for any base rollout policy π′, or any policy from the
standard policy iteration sequence. A reward function R is
said to be independently additive if R(s) =

∑
i Ri(xi). A

transition function is DBN-representable if it has the form
T (s, a, s′) =

∏
i Pr(x′i|parents(x′i)).

Theorem 1. For any MDP with independently additive re-
wards and DBN-representable transition function, if π is Q-
representable, then π can be represented as a finite S-DRP.

Proof. The proof uses the concept of Krylov basis for MDPs
(Petrik 2007). Let P be the transition probability matrix over
ground MDP states for π and R be the reward vector over
ground states. The Krylov basis function of order t is given
by bt = P tR. The component of vector bt for state s gives
the expected reward at step t if π is followed from s. For a
finite K the value function V π of π can be represented as a
linear combination of the basis functions b0, . . . , bK (Ipsen
and Meyer 1998). It follows that for any policy π′ the ba-
sis can also linearly represent Qπ′(s, a) for any fixed ac-
tion a as a function of s, in particular the π′ that shows π is
Q-representable. For any given s, the maximum over these
functions yields π(s).

To relate the Krylov basis to S-DRPs, it is possible to
show that for DBN-representable transition functions and
independently additive rewards, each Krylov basis function
has the form bt(s) =

∑
i Ri(xi)P (xt

i|parentsti), where xt
i

is the value of state variable xi after t steps from the initial
state being conditioned on parentsti, the set of state vari-
ables at the initial time step that influence xt

i, i.e. the t-step
influencers of xi. Thus, the Krylov basis decomposes lin-
early into a set of functions that depend on the t-step influ-
encers of each xi. Now consider any S-DRP hidden node
z ∈ XL−1

i in the last layer that is associated with xi. It
is easy to see that the output o(z) is a function of only the
input state variables that are L-step influencers of xi under
any policy. Thus, each such z can be viewed as computing
a potentially complex non-linear feature of the L-step influ-
encers of xi. For large enough L and C this allows for the
S-DRP to represent the above decomposition of the Krylov
basis and applying a softmax layer will then return the ac-
tions of π.

By changing the activation function of the output layer we

424

can represent any policy under mild conditions. In particular,
an RBF S-DRP is a DRP where the softmax output layer is
replaced by having a radial basis activation function (RBF)
for each output node. The only constraint on the RBF is that
it is maximized when the affine transformation of its input
is zero (e.g. a Gaussian). An RBF S-DRP selects the action
in the output layer with the highest node activation. In the
following a policy π is said to be Q-distinct if for any state s
and any a �= π(s), Qπ(s, π(s)) �= Qπ(s, a).

Theorem 2. For any MDP with independently additive re-
wards and DBN-representable transition function, if π is Q-
distinct then π can be represented via a finite RBF S-DRP.

Proof. (Sketch) The proof is similar to the previous theo-
rem. Since V π and Qπ(s, a) for any fixed a are linearly rep-
resentable via Krylov basis functions, so is V π − Qπ(s, a)
for any a. Since π is Q-distinct, this expression is zero iff
π(s) = a. This means that applying an RBF to the above
difference for each a will identify π(s). The rest of the proof
follows along the same lines as above.

When the reward function is not independently additive,
it may decompose into factors over groups of state variables.
In such cases, we can get a similar result by extending the S-
DRPs to include one or more fully connected layers between
the last sparse hidden layer and the output layer.

Relational Weight Sharing DRPs (R-DRPs). An R-
DRP is constructed by constraining all weights in the S-
DRP that are relational matchings to have the same value.
Intuitively, (s, t) and (u, v) are relational matchings when
the probabilistic dependency between s and t is structurally
similar to that from u to v. Sharing is limited to weights
between state-fluent nodes in adjacent layers. The bias pa-
rameters and the weights of the fully-connected layer at the
end are not shared. Two connections are similar if the (start-
node, end-node) pairs of the connections are similar. For
example, in the blocksworld domain, the pairs (clear(A),
on(A, B)) and (clear(C), on(C, D)) are semantically similar.
Since nodes in the input and hidden layers of R-DRPs repre-
sent state fluents the (start-node, end-node) pairs (zl−1

u , zlv)
are instantiated first-order predicates. Consider weights wl

j,k

and wl
u,v between (zl−1

j , zlk) and (zl−1
u , zlv) respectively,

where (zl−1
j , zlk) = (qj(j1, j2, ...jnj

), qk(k1, k2, ...knk
)),

and (zl−1
u , zlv) = (qu(u1, u2, ...unu

), qv(v1, v2, ...vnv
)).

Let J = (j1, j2, ...jnj
),K = (k1, k2, ...knk

), U =

(u1, u2, ...unu), and V = (v1, v2, ...vnv). Weights wl
j,k and

wl
u,v are constrained to be the same if (1) qj = qu and

qk = qv and (2) J × K = U × V . |J × K| = njnk

and J × K is defined as the cross-product of ordered tu-
ples J and K giving an ordered tuple of binary values. The
1st nk entries of J × K are computed by comparing j1
with each element of (k1, k2, ..., knk

). The 2nd nk entries of
J ×K are computed by comparing j2 with each element of
(k1, k2, ..., knk

). The last nk entries of J ×K are computed
by comparing jnj

with each element of (k1, k2, ..., knk
). The

components of both J and K are strings representing objects
in the problem and when j1 is compared to k1 the result
is 1 if the strings match and 0 otherwise. For example, if

zl−1
j = clear(A) and zlk = on(A,B) then J ×K = (1, 0)

because A �= B and the second component is 0.

Supervised Training of DRPs

We use supervised learning to train DRPs for individual
RDDL problems. This involves generating training data and
optimizing the parameters of a chosen DRP architecture.

Training Data Generation. Following prior work (e.g.
(Khardon 1999; Martin and Geffner 2000; Yoon, Fern, and
Givan 2002)) we generate training data using imitation
learning, which aims to learn a policy that imitates the ac-
tions of an expert. In our case, the expert is a non-reactive
online planner that can select an action at any state. More
precisely, given a planning problem with initial state s0 and
horizon H , we use the planner to generate multiple tra-
jectories, each one starting in s0 and then following a se-
quence of actions selected by the planner until the horizon.
Each of the stochastic trajectories gives a sequence of state-
action pairs (s0, a0), (s1, a1), . . . , (sH−1, aH−1), which can
be combined to create a standard supervised training set. A
disadvantage of learning from just state-action pairs is that
the learning algorithm is unable to make informed trade-offs
when perfect accuracy is not possible. To address this, we
can augment the training examples with Q-value estimates
for each action when available from the planner. Here the
Q-value of a state action pair Q(s, a) is the expected finite
horizon reward of starting in state s, taking action a, and
then acting optimally thereafter. This idea of leveraging Q-
values for supervised policy learning has been shown to be
effective in prior work, e.g. (Fern, Yoon, and Givan 2006).

Expert Planners. We consider imitation learning from
two RDDL planners. The first is the state-of-the-art plan-
ner, Prost (Keller and Eyerich 2012) (IPPC-2011), which is
based on Monte-Carlo Tree Search with various heuristics
and pruning mechanisms. Prost does not generate Q-value
estimates for all actions in a state due to pruning mecha-
nisms. Thus, when using Prost, the training data only con-
tains state-action pairs. The second planner is Rollout, which
performs policy rollout (Tesauro and Galperin 1997) using a
random base policy. Given a state s, Rollout produces a very
rough estimate of Q(s, a) for each action a as follows. Sim-
ulate N trajectories that each start at s, then select action a
followed by random actions until a fixed horizon. Q(s, a) is
estimated to be the average cumulative reward across the tra-
jectories and the Rollout planner returns the action that max-
imizes Q(s, a). Since Rollout produces Q-value estimates
for all actions, we include those values in the training data.
Rollout can be viewed as computing a policy that is equiva-
lent to performing one step of policy iteration starting from
a random policy. In practice, Rollout is often surprisingly
effective and it is often competitive or better than Prost, es-
pecially for larger planning problems.

Parameter Optimization. For each problem we use both
Prost and Rollout to generate a training data set of size
10,000 state-action pairs for three domains and up to 32,000
for the other two domains (Sysadmin and Game-of-life) de-
pending on the problem size. The data was generated by pro-
ducing trajectories with horizon H = 40. Given one such

425

Table 1: Sysadmin, Game of Life and Skill Teaching Results
Sysadmin

Planners TRN(Rollout, 0/1) TRN(Rollout, Q) TRN(Prost, 0/1)
Problem # Prost Rollout πlin π∗ πL πA πlin π∗ πL πA πlin π∗ πL πA

1 339 332 342 346 344 344 341 346 341 341 342 347 344 341
R310 F110 F110 R110 F310 Linear S310 F310 F15

2 301 290 302 315 309 313 313 319 311 313 311 321 321 316
S510 S110 S15 S110 S310 R110 S310 S310 F110

3 553 523 562 575 559 559 559 576 557 562 570 570 561 554
F110 S110 S15 S110 S310 S55 Linear F110 S35

4 489 463 502 504 492 504 495 510 501 501 496 513 490 486
F110 S110 F110 F110 S310 S35 F11 S110 F15

5 573 588 625 645 631 618 625 649 628 634 620 650 637 638
S15 S110 R110 R310 S310 S110 S15 S110 F110

6 527 532 583 598 590 598 583 597 597 595 576 601 578 573
S15 S110 S15 S310 S310 R110 S310 S110 F15

7 618 658 724 734 733 714 727 737 730 737 709 730 723 711
S310 S15 R35 S310 S110 S310 R35 S15 S35

8 498 522 589 591 589 569 596 600 584 579 583 591 591 583
S15 Linear R11 F11 S110 S15 S15 S15 Linear

9 728 811 872 889 875 872 884 893 883 877 832 849 833 849
R35 S15 Linear R310 S110 R35 F11 S15 F11

10 546 580 643 645 641 643 639 655 643 624 608 624 608 624
F11 S15 Linear F11 S110 R15 S11 Linear S11

%Δ Prost 0 1.62 9.82 11.72 10.21 9.81 10.22 12.55 10.43 10.21 8.32 11.18 9.23 8.82
%Δ Rollout -1.32 0 8.00 9.88 8.37 8.03 8.38 10.69 8.59 8.40 6.63 9.44 7.50 7.06

Game of Life

1 210 188 77 196 196 196 70 202 197 199 49 191 191 188
F310 F310 F310 F510 S510 S310 S310 S310 F310

2 130 122 96 125 125 125 98 135 135 121 85 129 126 129
F510 F510 F510 F510 F510 F55 F510 F310 F510

3 150 134 128 146 146 141 121 148 148 148 119 149 148 149
F510 S510 F310 R510 S510 S510 F510 S310 F510

4 347 347 225 331 331 331 227 339 338 338 206 321 304 321
S310 S310 S310 S55 S510 S510 S310 S35 S310

5 309 295 240 285 285 280 234 304 304 304 229 299 287 299
S35 S35 S510 S510 S510 S510 S510 S310 S510

6 283 266 253 268 267 263 252 277 276 274 245 277 275 277
S510 S310 S55 F35 S35 S510 S310 S35 S310

7 486 500 330 455 449 447 308 481 481 481 280 435 421 435
S510 S35 S310 S510 S510 S510 S510 S35 S510

8 435 450 330 431 431 431 337 449 446 446 313 408 408 406
S55 S55 S55 S55 S510 S510 S35 S35 S510

9 410 412 340 416 414 416 344 429 419 419 335 402 399 402
S310 S35 S55 S510 S55 S55 S55 S35 S55

10 575 602 263 488 486 488 252 531 531 531 280 513 483 476
S510 S310 S510 S510 S510 S510 S510 S35 S310

%Δ Prost 0 -2.58 -29.91 -5.06 -5.33 -5.93 -31.18 -0.72 -1.36 -2.37 -35.31 -5.20 -7.43 -6.02
%Δ Rollout 2.98 0 -27.74 -2.20 -2.45 -3.12 -29.09 2.23 1.56 0.49 -33.43 -2.27 -4.51 -3.07

Skill Teaching

1 67 65 66 67 67 66 64 67 66 64 67 68 65 65
F11 S510 F31 F15 S53 S55 R110 F55 F55

2 80 76 76 78 76 78 76 78 75 77 78 80 77 77
R35 R510 R35 F110 S53 S31 F31 F310 F310

3 74 85 83 94 85 82 80 98 92 78 87 106 89 89
S15 R55 F31 R31 S55 F11 F15 S510 S510

4 101 84 62 104 101 82 56 110 91 89 114 114 93 91
R51 R55 R15 R31 R510 S35 F110 F55 R35

5 10 -10 -28 -4 -23 -39 -14 -4 -42 -19 17 36 -1 -1
R51 R53 S310 R55 R310 R53 R31 F35 F35

6 -11 -11 31 33 -1 -6 17 24 -25 9 5 21 -4 -4
S51 R310 F110 F51 R510 S110 F310 F35 F35

7 -48 -83 -68 -46 -89 -49 -59 -40 -60 -51 -44 -23 -62 -62
R53 R55 S310 R53 R510 S510 F31 R310 R310

8 -141 -210 -191 -142 -163 -212 -155 -139 -156 -156 -154 -109 -144 -134
F310 R55 F110 F110 R55 R55 F510 S310 S55

9 -145 -155 -160 -138 -161 -162 -146 -122 -155 -155 -167 -122 -156 -172
F510 R35 R55 S35 R35 R35 S15 F15 F510

10 -214 -212 -216 -194 -226 -240 -247 -188 -268 -279 -228 -178 -214 -194
F310 R53 R31 F11 R510 F15 R15 F110 F53

%Δ Prost 0 -34.46 -13.40 28.75 -35.04 -54.41 -9.29 24.70 -72.14 -18.76 21.96 71.06 -8.41 -8.12
%Δ Rollout 29.01 0 19.23 57.26 -0.21 -20.93 20.93 52.84 -38.46 12.03 50.17 94.30 22.03 22.11

dataset we optimize the parameters of a DRP by defining
a loss function over the training data and applying stochas-
tic gradient descent. In this work, for all problems and net-

works we use the Adam optimizer built into the Tensorflow
framework with a batch size of 40 and initial learning rate
of 10−5. We train for 2000 iterations and compute the ac-

426

Table 2: Tamarisk Results
Planners TRN(Rollout, 0/1) TRN(Rollout, Q) TRN(Prost, 0/1)

Problem # Prost Rollout πlin π∗ πL πA πlin π∗ πL πA πlin π∗ πL πA

1 -137 -160 -177 -124 -142 -142 -173 -127 -145 -145 -162 -123 -142 -142
F35 S310 S310 S55 S35 S35 F15 S310 S310

2 -469 -524 -587 -469 -485 -475 -571 -473 -502 -484 -532 -427 -486 -472
R15 S35 R35 R15 S35 S310 F31 S510 S310

3 -210 -243 -244 -198 -211 -211 -274 -207 -207 -207 -256 -186 -209 -200
S15 S310 S310 S310 S310 S310 R15 S310 S35

4 -744 -783 -786 -650 -705 -705 -805 -669 -719 -719 -782 -694 -701 -694
R110 S35 S35 S15 R310 R310 R310 S35 R310

5 -568 -646 -671 -560 -615 -560 -640 -547 -588 -588 -645 -526 -558 -579
S35 S310 S35 S510 R310 R310 R510 S310 S35

6 -1005 -977 -940 -834 -883 -886 -969 -866 -882 -891 -1100 -893 -938 -938
S110 S310 R310 S55 S310 R310 S55 S35 S35

7 -862 -829 -834 -662 -669 -669 -809 -677 -687 -677 -875 -679 -709 -709
S510 S310 S310 S53 S310 S53 S110 S310 S310

8 -1380 -1229 -1210 -1087 -1139 -1165 -1203 -1104 -1131 -1144 -1361 -1228 -1243 -1243
R510 S35 S310 R110 S55 S35 F51 S35 S35

9 -1010 -827 -803 -686 -797 -736 -867 -681 -735 -681 -961 -752 -818 -821
F11 S310 S510 R510 S510 R510 R310 S310 S53

10 -1548 -1228 -1259 -1064 -1124 -1095 -1254 -1057 -1201 -1201 -1528 -1375 -1394 -1595
S110 S35 S310 F11 F510 F510 S53 S35 F510

%Δ Prost 0 -0.72 -3.27 15.39 8.99 10.73 -4.39 14.14 8.87 9.71 -7.56 12.48 6.38 5.52
%Δ Rollout -1.16 0 -2.15 15.87 9.52 11.28 -3.33 14.69 9.40 10.30 -7.70 11.91 6.15 4.90

curacy on a validation set every 500 iterations and stop if
there is no improvement in two successive stages. Training
times vary significantly for different problems and architec-
tures, which can be improved with additional hardware and
further optimizations.

Training with 0/1 Loss. Our first loss is defined over just
state-action pairs. Given a state s a DRP produces a proba-
bility distribution over actions, which we will denote by the
vector P̂ (s). Given a training state-action pair (s, a), let t(s)
denote the 0/1 target probability distribution over actions
that assigns probability 1 to action a. We measure the 0/1
cross entropy loss of a prediction P̂ (s) as the cross-entropy
H(P̂ (s), t(s)) between P̂ (s) and t(s), where for probability
vectors P and Q, H(P,Q) = −∑

i Pi log(Qi). H(P,Q) is
minimized when P = Q and hence the 0/1 loss encourages
P̂ (s) to increase the probability of the action.

Training with Q-Loss. When Q-values are available in the
training data, we incorporate them by defining a Q-Loss
function that prefers predictions P̂ (s) that assign higher
probabilities to actions with higher Q-values. In particular,
we use the Q-values for a state s to define a Boltzmann prob-
ability distribution over actions P (a | s) = exp(Q(s,a))∑

a′ exp(Q(s,a′))

with temperature equal to one. Here P assigns higher prob-
ability to actions with higher Q-values. Our Q-loss func-
tion for a training example is then simply H

(
P̂ (s), P (·|s)

)
,

which is minimized when the predicted probabilities match
the Boltzmann probabilities.

Doing Better than the Expert. In our experiments, we
will sometimes see the learned DRPs outperforming the ex-
pert planners. The exact reasons for this is not fully clear,
however, results from imitation-learning theory offer a po-
tential explanation. First, it is important to note that Prost
and Rollout are both stochastic planners due to running
Monte-Carlo simulations. One way to model the stochastic-

ity is by starting with a deterministic policy π∗, which cap-
tures the typical action choices of the planner and then creat-
ing a stochastic policy π̂ that follows π∗ with 1− ε probabil-
ity and uses a randomized action choice with ε probability.
It has been shown (Ross and Bagnell 2010) that the finite-
horizon reward of π̂ can be worse than π∗ by as much as
εH2, where H is the horizon. Thus, even if Prost and Roll-
out typically select actions according to a high-quality π∗,
their actual performance can be substantially worse. We can
now think of the training data as being generated by π∗, but
corrupted with some amount of noise. If our learning proce-
dure is robust to the noise, then it is possible for the learned
DRP to provide a better approximation of π∗ than the plan-
ners. In particular, if the learned approximation has an error
rate of ε′ < ε, then the learned policy has the potential to
achieve a performance closer to π∗ than the planner.

Experiments

Benchmark Problems and Architectures. We selected five
RDDL benchmark domains: Sysadmin, Game-of-Life, Skill
Teaching, Tamarisk, and Wildfire. Each domain comes with
a standard set of ten problems ranging from quite small to
quite large. While computational constraints prevented in-
cluding additional domains, there are some benchmark do-
mains that are not a good match for DRPs. For example, the
Navigation domain contains state variables that only provide
the robot location. To be successful a planner needs to rea-
son about the probabilistic navigation grid to eventually find
a deterministic optimal path. In such domains, there is no
room to benefit from the generalization ability of a DNNs.
All the selected domains appear to offer non-trivial opportu-
nities to learn policies that generalize across states.

We trained FC-DRPs, S-DRPs, and R-DRPs for all com-
binations of L = 1, 3, 5 and C = 1, 5, 10 along with a lin-
ear policy (no hidden layers). Each architecture was trained
using three strategies: Rollout as the planner with 0/1 loss,

427

Table 3: Wildfire Results
Planners TRN(Rollout, 0/1) TRN(Rollout, Q) TRN(Prost, 0/1)

Problem # Prost Rollout πlin π∗ πL πA πlin π∗ πL πA πlin π∗ πL πA

1 -275 -439 -481 -256 -603 -603 -522 -368 -368 -368 -950 -159 -238 -208
S110 S35 S35 R510 F15 F15 F35 R15 S510

2 -8856 -8913 -9466 -8621 -8900 -8783 -8989 -8674 -9078 -9078 -8807 -8428 -9034 -9034
S55 F15 S15 R110 S15 S15 F11 F15 F15

3 -1899 -1547 -1354 -1131 -1131 -1373 -2037 -976 -1285 -1517 -1355 -802 -1747 -1490
R510 R510 F11 S15 F11 R310 F15 S35 R310

4 -8756 -8986 -8572 -7808 -8136 -8459 -8840 -7757 -8040 -8040 -8888 -7693 -7693 -9121
R110 R510 S55 R310 S35 S35 S35 S35 F31

5 -3220 -585 -1331 -467 -716 -1100 -800 -497 -497 -723 -1552 -1552 -2959 -2517
R15 S11 R510 F11 F11 S35 Linear S110 F510

6 -15878 -7079 -7370 -6548 -7465 -6820 -7132 -6480 -7221 -7221 -15313 -10948 -14056 -11975
F15 F11 S35 R15 R55 R55 F15 S110 F510

7 -7731 -6169 -5483 -4885 -5169 -6479 -5452 -5178 -5648 -5882 -7327 -6270 -9259 -9259
S15 S11 F510 S310 S15 F510 R31 F510 F510

8 -13673 -10192 -9975 -9389 -9389 -10840 -9411 -9305 -9529 -9828 -13053 -11235 -16661 -16661
S11 S11 S53 S110 F11 S15 R11 F510 F510

9 -16129 -5551 -4941 -4152 -6662 -6662 -4317 -4310 -5911 -5911 -17962 -17036 -17556 -17556
R310 F510 F510 R51 F510 F510 F35 F510 F510

10 -25459 -12049 -11238 -9763 -12030 -12030 -10586 -9683 -11113 -11113 -31343 -29047 -30061 -30061
R35 F510 F510 F11 F510 F510 F53 F510 F510

%Δ Prost 0 25.68 24.26 40.90 23.44 18.39 22.30 37.24 32.04 29.59 -18.67 21.66 -1.74 1.74
%Δ Rollout -91.75 0 -9.91 18.54 -2.45 -13.43 -3.35 15.99 7.12 1.09 -81.34 -44.79 -93.72 -82.48

Rollout with Q-loss, and Prost with 0/1 loss. The strate-
gies are denoted by TRN(Rollout,0/1), TRN(Rollout, Q), and
TRN(Prost, 0/1) respectively. In total this resulted in training
27× 3 networks for each of the 50 problems.

Description of Results Tables. Tables 1-3 contain our
main set of experimental results for each domain. Through-
out our experiments, the expected total reward of a pol-
icy or planner is estimated using a horizon of 40 averaged
over 100 simulations. In each table the top 10 rows give re-
sults for individual problems, where larger problem num-
bers tend to correspond to larger problems. The second and
third columns give the average reward of Prost and Rollout.
The next three blocks of columns correspond to one of the
three training methods. For each training method the first
column gives the average reward for the trained linear pol-
icy πlin. The next column, labeled π∗, gives the maximum
reward achieved over all architectures trained for the prob-
lem (all combinations of F(L,C), S(L,C), and R(L,C)). Be-
low this maximum reward is the name of the architecture
that achieved the maximum reward, e.g. S110 is an S-DRP
with L = 1 and C = 10. This maximum reward is what
we would achieve in practice if we performed DRP model
selection via simulation of the learned policies, which will
be practical in some settings.

The final two columns in each block are included to as-
sess our ability to perform model selection using validation
data, rather than simulations as for π∗. In particular, for each
problem in addition to the training set we generated a set of
validation data containing 2000 state-action pairs from the
appropriate planner. Given a learned DRP we can evaluate
the loss it achieves on the validation data (either 0/1 or Q
loss as appropriate) and the accuracy of selecting the actions
in the validation set. For each problem, the column πL (πA)
gives the average reward and name of the architecture that
minimized (maximized) the validation loss (accuracy). For
large RDDL benchmarks and moderate number of DRP ar-

chitectures it will often be much cheaper to select models us-
ing the validation set measures compared to using simulation
to estimate expected reward. Thus, the πL and πA columns
are included to help evaluate how effective this cheaper form
of model selection might be.

Finally, the last two rows of each table aggregate results
across problems. The row labeled %ΔProst (%ΔRollout)
gives the average percentage improvement over Prost (Roll-
out) across problems for each column. For example, in
Sysadmin, the Rollout planner achieves a negligible average
improvement over Prost of 1.62%. Negative values indicate
an average decrease in performance.

Comparison to Expert Planners. First we consider the
performance of the simple linear policy. We note that for
Sysadmin and Wildfire that on averge πlin is able to achieve
a non-trivial average performance improvement over both
Prost and Rollout for all of the training regimes, with the ex-
ception of TRN(Prost, 0/1) for Wildfire. This indicates that it
is possible to represent good policies in these two domains
using simple functions. This is also an example of where
a learned policy outperforms the expert that it was learned
from, for which, we presented a potential explanation. For
other domains, πlin performs worse than the experts, which
indicates that good policies in these domains require more
complex representations or that a good linear policy was
not learnable using this training data. Now consider the per-
formance of π∗, which is the best we would hope to do
when using simulation for model selection. For all domains,
with the exception of Game-of-Life, π∗ had better average
performance than both expert planners in all three training
regimes. One exception was a decrease in performance rel-
ative to Rollout in Wildfire for TRN(Prost, 0/1). This de-
crease is understandable since the performance of Prost in
this domain is quite poor compared to Rollout (average per-
formance reduction of -91.75%), which means learning from
Prost is unlikely to yield good performance. In Game-of-

428

Table 4: FC-DRP vs S-DRP vs R-DRP Results
TRN(Rollout, 0/1) TRN(Rollout, Q) TRN(Prost, 0/1)

Domain %Δ π∗ πF πS πR π∗ πF πS πR π∗ πF πS πR

Sysadmin Prost 11.72 10.85 11.11 10.56 12.55 11.74 11.96 11.83 11.18 10.30 10.80 9.91
Rollout 9.88 9.04 9.27 8.73 10.69 9.89 10.13 9.96 9.44 8.59 9.07 8.18

Game of Life Prost -5.06 -8.01 -5.49 -12.32 -0.72 -4.48 -1.64 -6.79 -5.20 -10.01 -5.45 -13.17
Rollout -2.20 -5.07 -2.66 -9.68 2.23 -1.44 1.25 -3.90 -2.27 -6.96 -2.53 -10.42

Skill Teaching Prost 28.75 -10.93 18.95 6.87 24.70 17.90 -1.89 18.55 71.06 62.72 61.09 53.67
Rollout 57.26 19.89 48.39 36.19 52.84 46.27 28.15 47.23 94.30 86.50 85.68 79.50

Tamarisk Prost 15.39 12.19 13.95 13.06 14.14 11.98 13.56 13.26 12.48 10.88 10.42 11.90
Rollout 15.87 12.74 14.38 13.67 14.69 12.69 14.00 13.86 11.91 10.28 10.05 11.33

Wildfire Prost 40.90 36.26 39.41 39.76 37.24 35.08 35.42 35.63 21.66 17.63 11.98 12.12
Rollout 18.54 11.82 15.79 17.15 15.99 12.97 11.44 13.16 -44.79 -60.91 -75.68 -69.14

Life π∗ is on average worse than both expert planners by a
small percentage in all three training regimes. We note that
the relatively small drop in performance compared to the
planners, comes with a dramatic improvement in decision
making time. Finally, we note that for all benchmarks and
all training regimes, π∗ is able to significantly outperform
the linear policy on average, except in Sysadmin, where π∗
is better by only a small margin. This shows that there is in-
deed benefit to considering deeper non-linear architectures
for these RDDL benchmarks.

Comparison of Model Selection Strategies. Here we
consider the impact of using the validation set loss πL and
validation accuracy πA for model selection instead of using
simulations as done for π∗. We first observe that for Sysad-
min, Game-of-Life, and Tamarisk, the drop in performance
of πL and πA compared to π∗ for all training regimes is
relatively small in terms of average percent improvement
over the planners. For Wildfire the performance drop is more
significant when learning based on 0/1 loss, especially for
TRN(Prost, 0/1), which may again be due to the low qual-
ity of Prost’s data in this domain. In Skill Teaching the drop
in average performance of both πL and πA is substantial in
all training regimes. This indicates a poor match between
the validation loss and actual reward accumulated during
planning. The reasons for this are currently unclear. We also
observe that except for Skill Teaching, in all cases where
π∗ showed an average positive improvement over an expert
planner, πL and πA were also able to achieve an improve-
ment. Thus, in most cases if we were satisfied with the per-
formance of the expert planner, we would also be satisfied
with the much faster DRPs selected by πL and πA. Finally,
there does not appear to be a clear winner between πL and
πA, nor does there appear to be a training regime where
model selection based on validation data performs best.

Comparison of Training Methods. For Sysadmin,
Game-of-Life, and Tamarisk we see that Prost and Roll-
out achieve similar average performance across problems.
In these cases, we see that the performance of π∗ is also
similar across the three training regimes. In Skill Teach-
ing, Rollout is significantly worse on average than Prost
(by -34.46%) and we see that π∗ trained with TRN(Rollout,
0/1) and TRN(Rollout, Q) is significantly worse on average
than with TRN(Prost, 0/1). This agrees with the intuition
that learning from a lower quality planner should result in
a worse learned policy. For Wildfire the situation is reversed
and we see that training from Prost data is significantly

worse than training from rollout with TRN(Rollout, 0/1) and
TRN(rollout, Q) performance similarly on average. Overall
these results indicate that for these experiments the quality
of the planner used to generate data is the dominating fac-
tor in training, compared to using 0/1 or Q-based loss. This
is in contrast to prior studies (Fern, Yoon, and Givan 2006;
Anthony, Tian, and Barber 2017), where Q-based loss im-
proved performance. This suggests investigating improved
ways to incorporate Q-values into loss functions.

Comparison of Architectures. From the tables we can
observe for each problem and training regime, which archi-
tecture was selected by π∗. Overall, from this data we do
not see a consistent trend that would favor particular archi-
tectural properties. In particular, we see FC-DRPs, S-DRPs,
and R-DRPs all appearing with reasonable frequencies. We
do see that in Game-of-Life, which is perhaps the most com-
plex policy to learn based on the difficulty of competing with
the planners, we see that for large problems S-DRPs with
larger values of L and C tend to be chosen. It is also diffi-
cult to spot an overall trend in terms of L or C. We did find
that sparse architectures suffer much more than FC-DRPs
when C = 1, which requires further investigation. We note
that these results are at best suggestive, since the tables do
not indicate how close other architectures were to the per-
formance of π∗.

Table 4 summarizes the performances of the best FC-
DRP, S-DRP, and R-DRP across the domains. Each row
gives the averaged % improvement over Prost or Rollout
for each domain. The first column in each training regime,
copies results for π∗ from the previous table and represents
the best performance over all architectures. The next three
columns record the average improvement of the best archi-
tecture restricted to FC-DRPs (πF), S-DRPs (πS), and R-
DRPs (πR). Again we see that there is not a consistently
best single top performing class. We do see that at least one
of the sparsely connected DRPs, πS and πR, always out-
perform the fully connected architectures (πF), with the ex-
ception of Wildfire and Tamarisk for TRN(Prost, 0/1). This
is suggestive that the sparse architectures can leverage the
RDDL definition to realize a benefit. We have also seen that
frequently the sparse architectures are able to achieve similar
results to FC-DRPs using many fewer parameters. It is also
encouraging to see that the weight sharing approach of πR is
usually competitive on average even though it uses dramati-
cally fewer parameters. This suggests the potential effective-
ness of relational generalization across planning problems

429

in a domain. Finally, we see that π∗ sometimes significantly
outperforms the others. This indicates that within a single
problem domain the best architecture class differs across the
problems.

Acknowledgements

This work was supported by NSF grant IIS-1619433 and
DARPA contract N66001-17-2-4030. We thank Intel for as-
sisting with compute support for this work.

References

Anand, A.; Noothigattu, R.; Singla, P.; et al. 2016. Oga-uct:
on-the-go abstractions in uct. In Twenty-Sixth International
Conference on Automated Planning and Scheduling.
Anthony, T.; Tian, Z.; and Barber, D. 2017. Thinking fast
and slow with deep learning and tree search. In Advances in
Neural Information Processing Systems 30, 5364–5374.
Bonet, B., and Geffner, H. 2012. Action selection for MDPs:
Anytime AO* versus UCT. In Proceedings of the AAAI Con-
ference on Artificial Intelligence.
Buffet, O., and Aberdeen, D. 2009. The factored policy-
gradient planner. Artificial Intelligence 173(5):722–747.
Cui, H.; Khardon, R.; Fern, A.; and Tadepalli, P. 2015. Fac-
tored mcts for large scale stochastic planning. In AAAI, 3261–
3267.
De La Rosa, T.; Celorrio, S. J.; and Borrajo, D. 2008.
Learning relational decision trees for guiding heuristic plan-
ning. In International Conference on Automated Planning
and Scheduling, 60–67.
Fern, A.; Yoon, S. W.; and Givan, R. 2006. Approximate pol-
icy iteration with a policy language bias: Solving relational
markov decision processes. Journal of AI Research (JAIR)
25:75–118.
Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. 1999.
SPUDD: Stochastic planning using decision diagrams. In
Proceedings of the Conference on Uncertainty in Artificial
Intelligence.
Ipsen, I. C., and Meyer, C. D. 1998. The idea behind krylov
methods. American Mathematical Monthly 889–899.
Issakkimuthu, M.; Fern, A.; Khardon, R.; Tadepalli, P.; and
Xue, S. 2015. Hindsight optimization for probabilistic plan-
ning with factored actions. In International Conference on
Automated Planning and Scheduling, 120–128.
Jiménez, S.; De la Rosa, T.; Fernández, S.; Fernández, F.;
and Borrajo, D. 2012. A review of machine learning for
automated planning. The Knowledge Engineering Review
27(4):433–467.
Keller, T., and Eyerich, P. 2012. PROST: Probabilistic Plan-
ning Based on UCT. In Proceedings of the International Con-
ference on Automated Planning and Scheduling.
Khardon, R. 1999. Learning action strategies for planning
domains. AIJ 113(1-2):125–148.
Kolobov, A.; Dai, P.; Mausam; and Weld, D. 2012. Reverse
iterative deepening for finite-horizon mdps with large branch-
ing factors. In Proceedings of the International Conference
on Automated Planning and Scheduling.

Levine, S.; Pastor, P.; Krizhevsky, A.; Ibarz, J.; and Quillen,
D. 2016. Learning hand-eye coordination for robotic grasping
with deep learning and large-scale data collection. The Inter-
national Journal of Robotics Research 0278364917710318.
Martin, M., and Geffner, H. 2000. Learning generalized poli-
cies in planning domains using concept languages. In KRR.
Minton, S.; Carbonell, J.; Knoblock, C. A.; Kuokka, D. R.;
Etzioni, O.; and Gil, Y. 1989. Explanation-based learning: A
problem solving perspective. AIJ 40:63–118.
Minton, S., ed. 1993. Machine Learning Methods for Plan-
ning. Morgan Kaufmann.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland,
A. K.; Ostrovski, G.; et al. 2015. Human-level control
through deep reinforcement learning. Nature 518(7540):529–
533.
Petrik, M. 2007. An analysis of laplacian methods for value
function approximation in mdps. In IJCAI, 2574–2579.
Raghavan, A.; Joshi, S.; Fern, A.; Tadepalli, P.; and Khardon,
R. 2012. Planning in factored action spaces with symbolic
dynamic programming. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence.
Raghavan, A.; Khardon, R.; Fern, A.; and Tadepalli, P. 2013.
Symbolic opportunistic policy iteration for factored-action
MDPs. In Advances in Neural Information Processing Sys-
tems.
Raghavan, A.; Khardon, R.; Tadepalli, P.; and Fern, A.
2015. Memory-effcient symbolic online planning for factored
mdps. In UAI, 732–741.
Ross, S., and Bagnell, D. 2010. Efficient reductions for imi-
tation learning. In International Conference on Artificial In-
telligence and Statistics, 661–668.
Sanner, S. 2010. Relational dynamic influence diagram lan-
guage (rddl): Language description.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Pan-
neershelvam, V.; Lanctot, M.; et al. 2016. Mastering the
game of go with deep neural networks and tree search. Nature
529(7587):484–489.
Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; et al. 2017. Mastering the game of go without human
knowledge. Nature 550(7676):354–359.
Tesauro, G., and Galperin, G. R. 1997. On-line policy im-
provement using monte-carlo search. In Advances in Neural
Information Processing Systems, 1068–1074.
Toyer, S.; Trevizan, F.; Thiébaux, S.; and Xie, L. 2018. Action
schema networks: Generalised policies with deep learning. In
AAAI Conference on Artificial Intelligence (AAAI).
Yoon, S.; Fern, A.; and Givan, R. 2002. Inductive policy
selection for first-order MDPs. In Conference on Uncertainty
in Artificial Intelligence.
Zimmerman, T., and Kambhampati, S. 2003. Learning-
assisted automated planning: Looking back, taking stock, go-
ing forward. AI Magazine 24(2)(2):73–96.

430

