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Abstract

For autonomous robots, we propose an approximate model-
based Bayesian reinforcement learning (MB-BRL) approach
that reduces real-world samples within feasible computa-
tional efforts. Firstly, to find an approximate solution of
an original undiscounted infinite horizon MB-BRL problem
with a cost-free termination, we consider a finite horizon (FH)
MB-BRL problem in which terminal costs are given by ro-
bust control policies. The resulting performance is better than
or equal to the performance obtained with a robust method,
while the resulting policy may choose an explorative behav-
ior to get useful information about parametric model uncer-
tainty for reducing real-world samples. Secondly, to obtain a
feasible solution of the FH MB-BRL problem using simula-
tion samples, we propose a combination of robust RL, Monte
Carlo tree search (MCTS), and Bayesian inference. We show
an idea of reusing previous MCTS samples for Bayesian in-
ference at a leaf node. The proposed approach allows an agent
to choose from multiple robust policies at a leaf node. Nu-
merical experiments of a two-dimensional peg-in-hole task
demonstrate the effectiveness of the proposed approach.

1 Introduction

Reinforcement learning (RL) is a promising framework for
an autonomous robot in an uncertain environment (Sutton
and Barto 1998). Since real-world samples in a robotic task
are expensive in terms of time and labor, reducing real-world
sample is often more important than reducing computational
efforts (Kober, Bagnell, and Peters 2013).

Simulation samples obtained with a model can com-
plement real-world samples. Additionally, if a parametric
model is given using prior knowledge, then an agent can
learn using a considerably fewer real-world samples. A nat-
urally assumed parametric model is a differential equation
model (DE-model), e.g. equations of motion. However, if a
control policy is learned using an imprecise model, it may
not work well for the real robot. When an agent cannot ini-
tially identify its sufficiently accurate model, it needs to con-
sider model uncertainty (Kober, Bagnell, and Peters 2013).

As an approach to the issues on real-world samples and
model uncertainty, we consider a model-based Bayesian
RL (MB-BRL) framework (Duff 2002). We assume that an
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agent knows a parametric DE-model, while it does not know
the exact values of some parameters in the model. In princi-
ple, an optimal history-dependent policy for the exploration-
exploitation tradeoff in the future can be planned in advance.
The MB-BRL framework has the potential to make the best
use of both real-world samples and an assumed model struc-
ture, while one major issue is its relatively large amount of
computation.

We consider a stochastic shortest path (SSP) setting, an
undiscounted infinite horizon (IH) problem with a cost-free
termination state. Since a continuous-time decision process
is intractable, the learning process deals with its discrete-
time version, while its control results follow a DE-model.

One important goal in RL is to achieve (near) optimality
after sufficient exploration. In MB-BRL, for model identi-
fication, Bayesian DP (Strens 2000) and BOSS (Asmuth et
al. 2009) drive exploration by random sampling and opti-
mism, respectively. A constrained exploration approach, e.g.
safe exploration (Moldovan and Abbeel 2012), also consid-
ers (near) optimality in the distant future. Although such
an algorithm is appropriate for running a large number of
episodes, it may not be suitable for a current episode alone.

Another perspective in RL is to ensure performance under
uncertainty instead of (near) optimality. For this purpose, a
robust (or risk-aware) method considers a policy valid for a
set of models. Robustness is often opposed to exploration,
e.g. robust DP (Nilim and El Ghaoui 2005) and BOSS. In
a current episode alone, robustness is often reasonable. Al-
though robust replanning (Bertuccelli, Wu, and How 2012)
combines robust DP and online model identification, it still
cannot choose an explorative behavior to get useful informa-
tion about model uncertainty for reducing real-world sam-
ples in a current episode, e.g. the Listen action in the Tiger
problem (Kaelbling, Littman, and Cassandra 1998). The rea-
son is that such exploration is worthless for a stationary pol-
icy which is not changed by online identification. Thus, ro-
bustness without considering exploration is also insufficient.

A finite horizon (FH) approximation in MB-BRL has the
potential for reducing real-world samples, while the ma-
jor issues are its expensive computational efforts and the
need for terminal costs/rewards. Monte Carlo tree search
(MCTS) is a promising sample-based approach for a large-
scale FH or discounted IH problem. BAMCP (Guez, Sil-
ver, and Dayan 2012), an extension of MCTS to MB-BRL,
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gives terminal costs by simulation using one rollout policy.
BAMCP solves a discounted IH MB-BRL, where the value
of the rollout policy starting from a node at a certain depth
can be finally negligible within its corresponding precision
thanks to the discount factor. However, in case of no dis-
count, BAMCP often cannot solve a SSP MB-BRL.

In the proposed approach, we firstly split an original SSP
MB-BRL problem into two simplified problems: the first FH
MB-BRL and the remaining SSP robust RL. The former ob-
tains a history-dependent policy for exploration-exploitation
tradeoff within the finite depth. The latter considers a sta-
tionary policy for performance guarantee. Combining these
two easier problems, we deal with a FH MB-BRL problem
in which terminal costs are given by robust stationary poli-
cies. For any depth, the resulting performance is better than
or equal to the performance obtained with a robust method.
Thus, an agent can employ the resulting policy, even if the
depth is not sufficient for exploration due to computational
resource limits. In addition, the resulting policy may choose
an explorative behavior within the finite depth.

Secondly, to find a feasible solution of the approximate
MB-BRL problem using a DE-model, we propose a com-
bination of three simulation-based approaches: (i) a ro-
bust RL method learning a set of stationary policies em-
ployed for terminal costs, (ii) a MCTS method planning a
history-dependent policy in the FH MB-BRL, and (iii) a
new Bayesian inference method approximating a belief at
a leaf node by reusing previous MCTS samples. As a result,
the proposed combination is a transfer approach through the
MB-BRL framework, in that real-world decisions are made
by simulation samples. The proposed approach allows an
agent to choose from multiple robust policies according to
an approximate belief at a leaf node. Thus, it improves ter-
minal costs in a FH approximation. This is especially impor-
tant for a SSP MB-BRL.

2 Notation and Assumptions

Due to space constraints, for an introduction to a SSP
Markov Decision Process (MDP), please refer to (Bertsekas
and Tsitsiklis 1996). A Bayes-Adaptive MDP (BAMDP) is
an extension of a MDP (Duff 2002). Let S , U , and Θ be
sets of spaces, actions, and parameters, respectively. Let
p(s′|θ, s, u) be a discrete-time transition probability model
(TP-model), which is the probability of next state s′ given
current state s and action u in a MDP with uncertain con-
stant parameter θ. We assume that an agent knows exactly
not p(s′|θ, s, u) but its underlying DE-model parameterized
by the same θ. Let g(s, u, s′) be a known cost function,
which we assume to be independent of θ for simplicity. Let
ht ≡ (b0, s0, u0, · · · , st) be a history at timestep t. Let bt be
a belief given ht. Belief bt follows the Bayes rule,

bt(θ) ∝ b0(θ)
t−1∏
t′=0

p(st
′+1|θ, st′ , ut′).

The J-factor of policy π for st in a MDP with θ is

Jπ
θ (s

t) ≡ E

[ ∞∑
t′=t

g(st
′
, ut′ , st

′+1)

∣∣∣∣ θ, st, π
]
.

The J-factor of π for ht in a BAMDP is

Jπ(ht) ≡ E
[
Jπ
θ (s

t)|bt, st, π] = ∫
bt(θ)Jπ

θ (s
t)dθ.

An optimal policy in a BAMDP depends on ht or corre-
sponding (bt, st). Similarly, we also define the Q-factor.

If Jπ
θ (s) < ∞, ∀s, then π is proper for a MDP with θ (for

short, proper for θ). A proper policy guarantees that an agent
finally reaches a termination state from any other state.

3 Approximate MB-BRL Problem

Remaining SSR robust RL After observing hD at depth
D, the remaining problem starts from hD or corresponding
(bD, sD). If Jπ(b, s) < ∞, ∀s, then π is proper for the sup-
port of b. Such a proper policy is a kind of robust controllers,
in that it guarantees task achievement for a set of MDPs. To
limit the search space, we consider the class of stationary
policies. Let πr

bs be a sub-optimal stationary policy for (b, s)
that minimizes Jπ(b, s). For short, Jr(b, s) ≡ Jπr

bs(b, s). If
(b, s) �= (b′, s′), then πr

bs �= πr
b′s′ . Thus, it is important to

choose appropriately a stationary policy for each (b, s). For
simplicity of notation, we also use πr

h and Jr(h).

First FH MB-BRL Given Jr(h) as a terminal cost, the
J-factor of π in the first FH MB-BRL with depth D is

J
π
D(h

t
) ≡ E

[
J

r
(h

D
) +

D−1∑
t′=t

g(s
t′
, u

t′
, s

t′+1
)

∣∣∣∣ bt, st, π
]

.

This problem considers all behaviors within depth D, in-
cluding both explorative behaviors and robust behaviors. Let
πf
D be a sub-optimal history-dependent policy that mini-

mizes Jπ
D(ht). Similarly, we here define the Q-factor.

Combination of two problems Let πp
D be a sub-optimal

policy that uses πf
D until depth D and subsequently switches

to πr
hD for observed hD. In terms of the J-factors in a

BAMDP, πp
D is better than or equal to a robust method. In

fact, when D = 1,

J
π
p
1

1 (h0) = min
u

E
[
g(s0, u, s′) + Jr(h0, u, s′)|b0, s0, u

]
≤ E

[
g(s0, u, s′) + Jr(h0, u, s′)|b0, s0, πr

h0

]
≤ E

[
g(s0, u, s′) + J

πr

h0 (h0, u, s′)|b0, s0, πr
h0

]
.

The first line is the J-factor of πp
1 , the second the J-factor of

robust replanning of πr
h, and the third the J-factor of πr

h0 . By
induction, the same inequalities hold for D > 1.

4 Sample-based Approximation

For simplicity, we assume that discretizations of continuous
time and U are given. We employ discretization grids over S
and Θ for function approximation, while simulation samples
are basically obtained using a DE-model. We choose the grid
over Θ according to the robustness of a policy, described in
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Algorithm 1 Implementation outline
1: Assume a DE-model and choose D.
2: In simulation, construct M by robust RL.
3: In simulation, learn πf

D(M) by MCTS with Bayesian
inference at leaf nodes.

4: In a real environment, use πp
D(M).

Section 5. The grid over S is based on a standard idea in
continuous RL.

Sample-based robust RL and Bayesian inference require
significantly more samples than one episode of MCTS.
Firstly, since it is unrealistic to learn πr

h for all possible
h, we consider constructing a finite set of stationary poli-
cies, M, before MCTS. An agent chooses the best policy
in M for h. In the first FH MB-BRL, we replace Jr(h)

with minπ∈M Jπ(h). Let πr
h(M), πf

D(M), and πp
D(M) be

the modified sub-optimal policies. Secondly, we propose a
Bayesian inference method reusing previous MCTS samples
to approximate a belief at a leaf node in MCTS simulation.
The implementation outline is presented in Algorithm 1.

Robust RL The minimum requirement for M is to in-
clude at least one policy proper for Θ. This is necessary for
the convergence of the proposed approach. To find a robust
deterministic stationary policy, we use a simple combination
of Q-learning and parameter sampling from a belief, called
robust Q-learning. Although this algorithm has no guarantee
to find a policy proper for Θ, it finds such a policy in some
domains, including the task in Section 5. After constructing
M, we calculate Jπ

θ (s) for π ∈ M and discretized (θ, s).
When robust Q-learning fails to find a policy proper for

Θ, we must consider another algorithm or a larger class of
policies. A policy proper for Θ is a stochastic combination
of policies proper for subsets of parameters such that the
sum of the subsets is equal to Θ. However, the performance
is usually poor. An acceptable policy proper for Θ and effec-
tive construction of M in a general case are future issues.

MCTS We introduce the UCT (Kocsis and Szepesvári
2006) and the parameter sampling from a belief at a root
node, as with BAMCP. For Bayesian inference at leaf nodes,
we add the visit counter of (θ, h, u, s′) based on the grids
over S and Θ, denoted by vθhus′ . Let v be the set of vθhus′ . In-
stead of rollout simulation, we give a terminal cost at a leaf
node by Leaf(h, v,M), described later. This cost function is
also used when MCTS simulation reaches depth D.

Bayesian inference Since the likelihood in the Bayes rule,
p(s′|θ, s, u), is not known exactly, we consider estimating it
using simulation samples. Based on the grids over S and
Θ, we approximate p(s′|θ, s, u) and bt(θ) by multinomial
distributions. Let {s0, s1, · · · , sN} be the set of discrete
states. Let c be a condition to specify a part of a history of
continuous-states. Let pθcuj ≡ p(sj |θ, c, u) be the probabil-
ity of next discrete-state sj given (θ, c, u). In general, a more

detailed condition improves the accuracy of Bayesian infer-
ence, while it becomes more difficult to get samples satisfy-
ing the condition. For example, a history of discrete-states is
a more detailed condition than a current discrete-state alone.
This is because a continuous-state transition is Markovian,
while its discretization is not necessarily Markovian. Note
that the most detailed condition is a current continuous-state,
which is based on the assumed DE-model.

We propose reusing previous MCTS samples. Let vθcusj be
the sum of vθhusj such that h satisfies c. For short, pθcu ≡
[pθcuj ]Nj=0 and vθcu ≡ [vθcusj ]Nj=0. Let e ≡ [ej ]

N
j=0 be a hyper-

parameter. Given Dirichlet prior Dir(pθcu|e) and sample set
vθcu, the posterior distribution of pθcu is Dir(pθcu|e+vθcu).
Then, the posterior mean of pθcu is

Pr(sj |θ, c, u, vθcu) =
ej + vθcusj∑N

j′=0(ej′ + vθcusj′ )
.

As |vθcu| → ∞, the posterior mean converges, if ignoring
the approximation errors by the multinomial distribution.
Using this estimator, we approximate the Bayes rule by

Pr(θ|ht, v) ∝ b0(θ)

t−1∏
t′=0

Pr(st
′+1|θ, ct′ , ut′ , vθc

t′ut′
).

As |vθct′ut′ | → ∞ for all t′ < t, Pr(θ|ht, v) also converges.
Finally, we give the terminal cost function in MCTS by

Leaf(ht, v,M) ≡ min
π∈M

∑
θ

Pr(θ|ht, v)Jπ
θ (s

t).

As |v| → ∞, Leaf(h, v,M) converges to minπ∈M Jπ(h)
for all h, if M incudes at least one policy proper for Θ.
Here, a transition to a leaf node is a non-stationary multi-
armed bandit problem discussed in (Kocsis and Szepesvári
2006). The remaining proof of the convergence of the pro-
posed approach is the same.

Since this terminal cost chooses from multiple policies
according to (b, s) explicitly, it is better than or equal to the
J-factor of a rollout policy that does not consider b explicitly.

5 Numerical Experiment

Definition We demonstrate the effectiveness of πp
D(M)

using the 2-dimensional peg-in-hole task, which captures the
essence of an assembly task by a robot. The goal of the task
is to insert a square peg into a similar sized hole. As a DE-
model, we use the ODE, an open-source simulation library
of rigid body dynamics (Smith 2008). To discuss the pro-
posed approach, we think of numerical experimental behav-
iors of resulting policies as real-world samples.

Due to space constraints, for details about the task defini-
tion, please refer to (Senda and Tani 2014). It is also shown
that the ODE accurately predicts the results of the hardware
experiments. The discrete-time transition is from the time
when the peg starts moving to the time when it becomes sta-
tionary. Then, the state in a MDP is specified by the peg’s
position, attitude, force, and torque. In this paper, we use the
same state grid, while we change the number of each dis-
cretized state variable from [5,5,5,4,3,3] to [10,7,11,3,5,5].
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Figure 1: Behaviors of πn, πr
b0 , and πp

4(M).
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Figure 2: Results for θ ∈ Θ.

A discrete action is to move the peg up, down, left, right,
clockwise, or counterclockwise. Note that this approxima-
tion is used only to simplify the learning process, while the
resulting policies are applied to the ODE. The cost function
is 1 in all states, except for the termination states. To dis-
courage transitions toward the outside of S , additional cost
105 is incurred. In this paper, we assume that the uncertain
parameter in the task, θ, is the horizontal hole position error
alone. We give initial belief b0 by the uniform distribution on
Θ ≡ [−2, 2] [mm]. Note that the value of θ is unknown to
the agent, fixed in each episode, and changed every episode.

Results Each resulting policy is applied to the ODE and
evaluated with 50000 episodes. A success episode is to
achieve the task within 50 steps. A failed episode is to ex-
ceed 50 steps or to transition outside of S . The average steps
are calculated using only success episodes. Each resulting
policy is asymmetric due to the small difference of the Q-
factors obtained with a sample-based method.

Let πn be an optimal policy for a MDP with θ = 0 [mm].
As Figure 1 shows, πn tries to insert the peg without con-
sidering the hole error, where the dotted line indicates the
hole with θ = 0 [mm]. In Figure 2, the success rate of πn

Table 1: Total results over Θ.
Policy Success Outside 50-step over Average
πn 40.5 [%] 8.9 [%] 50.6 [%] 14.4
πr
b0 88.4 3.9 7.7 18.7

πp
2(M) 98.6 0.0 1.4 14.6

πp
3(M) 98.7 0.0 1.3 14.5

πp
4(M) 99.4 0.2 0.4 14.1

πp
4(M) 99.8 0.2 0.0 14.1

implies that nearly ±0.5 [mm] error spoils a policy. Then,
we choose Δθ = 0.5 [mm] as the grid width over Θ.

Let πr
b be a policy learned by robust Q-learning, where

θ is sampled from given b, and s0 is randomly initial-
ized. Although πr

b0 is more robust than πn, it is unaccept-
able for Θ yet. Let b[−2,−1] be a certain distribution over
[−2,−1] [mm]. In Figure 2, the success rate of πr

b[−2,−1]
for

Θ is worse than πr
b0 , while the average steps of πr

b[−2,−1]
for

θ ∈ [−2,−1] [mm] are better. This result shows the impor-
tance of choosing a stationary policy for each (b, s).

Firstly, we discuss the results of πp
D(M1), where M1 in-

cludes πr
b0 and its mirrored policy with respect to the center

line of the hole with θ = 0 [mm]. For Bayesian inference
at leaf nodes, we give condition c by a history of discrete-
states. At t = 0, for all θ, all of the discrete-state transi-
tions are deterministic due to the initial distance between
the peg and hole. Since b1 is not substantially updated, πr

b0

and πp
1(M1) are the same. This result shows that πp

D(M)
with insufficiently deep D has robust performance at worst.
Table 1 shows that the total results of πp

D(M1) are improved
as D increases. These results demonstrate that the proposed
approch is better than or equal to a robust method alone.

Secondly, we compare πp
4(M1) and πp

4(M2), where M2

includes πr
b0 , πr

b[−2,−1]
, and their mirrored policies. As Fig-

ure 1 shows, the peg’s right corner is in contact with the hole
only if θ ∈ [−2,−1] [mm]. Then, b3 and b4 are concentrated
within [−2,−1] [mm], and πp

4(M2) chooses πr
b[−2,−1]

at
(b4, s4). In Figure 2, the success rate for θ ∼ −2 [mm] is im-
proved (compare the red and black lines). This result shows
the effectiveness of Bayesian inference to choose from mul-
tiple policies at a leaf node.

6 Conclusion

To reduce real-world samples within feasible computational
efforts, we have considered the FH MB-BRL in which ter-
minal costs are given by robust stationary policies, and have
proposed the combination of the simulation sample-based
approaches: robust RL, MCTS, and Bayesian inference.

For more complex domains, the three sample-based ap-
proaches need to be implemented using more advanced tech-
niques. Firstly, a robust extension of DQN (Mnih et al. 2015)
seems promising, though we need more discussion. Sec-
ondly, combining MCTS with deep neural networks (Sil-
ver et al. 2016) is useful. Thirdly, Bayesian inference at leaf
nodes reusing MCTS samples needs more extensions, be-
cause it is a novel idea. Some interesting techniques are seen
in ABC methods (Marin et al. 2012).
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