Proceedings of the Twenty-Seventh International Conference on Automated Planning and Scheduling (ICAPS 2017)

Short-Term Human-Robot Interaction
through Conditional Planning and Execution

Valerio Sanelli,! Michael Cashmore,? Daniele Magazzeni,? Luca Iocchi!
! Department of Computer, Control, and Management Engineering
Sapienza University of Rome, Italy
2 Department of Informatics, King’s College London, UK

Abstract

The deployment of robots in public environments is gaining
more and more attention and interest both for the research
opportunities and for the possibility of developing commer-
cial applications over it. In these scenarios, proper definitions
and implementations of human-robot interactions are crucial
and the specific characteristics of the environment (in partic-
ular, the presence of untrained users) makes the task of defin-
ing and implementing effective interactions particularly chal-
lenging.

In this paper, we describe a method and a fully implemented
robotic system using conditional planning for generating and
executing short-term interactions by a robot deployed in a
public environment. To this end, the proposed method inte-
grates and extends two components already successfully used
for planning in robotics: ROSPlan and Petri Net Plans.

The contributions of this paper are the problem definition of
generating short-term interactions as a conditional planning
problem and the description of a solution fully implemented
on a real robot. The proposed method is based on the integra-
tion between a contingent planner in ROSPlan and the Petri
Net Plans execution framework, and it has been tested in dif-
ferent scenarios where the robot interacted with hundreds of
untrained users.

1 Introduction

Short-term human-robot interactions (HRIs) are useful in
many application scenarios where a robot is placed in a pub-
lic space interacting with non-expert untrained users.

Short-term HRI is characterized by the following aspects:
(1) users are not trained and are not aware about the capabil-
ities of the robot, (ii) each interaction is assumed to be per-
formed with a different non-experienced user (i.e., s’he did
not participate in previous interactions of the same kind),
(iii) interactions are short in time. Under these conditions,
the robot does not need to memorize past interactions or
to adapt the current interaction based on those in the past.
Moreover, user profiling is also not needed.

Although the interactions are short, it is typically neces-
sary or convenient to generate many of them in order to re-
alize an effective application. Thus, the problem of generat-
ing many interactions is important and the use of automated

Copyright (© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

540

planning procedures, instead of manual definition, brings
several advantages in correctness of the solution, compact-
ness of the representation, less effort for the designer of the
system, and in the general success of the overall application.

Since the interactions with non-expert untrained users
cannot be predicted a priori and evaluating the complete cur-
rent state is not easy for the robot, classical planning is not
adequate for this process. Replanning is not sufficient for
this case, as without offline reasoning about different contin-
gencies, it is possible for the new plan to result in a dead-end
state or repeated interaction (Little and Thiebaux 2007).

In contrast, conditional planning has the advantage that
it does not require knowledge about a complete initial state
and on-line knowledge acquisition can be performed (Hoff-
mann and Brafman 2005a) without requiring the computa-
tion of a complete state (Bonet and Geffner 2000).

Consequently, conditional planning is a useful technique
for automatic generation of multiple short-term interactions
performed by robots deployed in public spaces.

In this paper, we present a complete system where condi-
tional planning and human-robot interaction techniques are
integrated in a fully working robotic platform that has been
deployed in many public environments.

The contributions of this paper can be summarized as fol-
lows: 1) a definition of the problem of generating short-term
interactions as a conditional planning problem, 2) a solu-
tion of the conditional planning problem though the integra-
tion with the conditional planner Contingent-FF (Hoffmann
and Brafman 2005b) in ROSPlan (Cashmore et al. 2015),
3) the integration between ROSPlan and the Petri Net Plans
(PNP) execution framework, 4) implementation and testing
on areal robot in several different scenarios and open-source
release of the code.

The paper is structured as follows: we start with a discus-
sion of related work in Section 2, followed by an overview
of the system, in which the contributions are described. We
then present the integration with the real robot and experi-
ments in Section 4. Section 5 concludes the paper.

2 Related Work

Planning and Robotics is an area of growing interest, in
which various planning techniques are being applied to
new robotic domains. In particular, planning techniques

have beeen used in the control of Autonomous Underwa-
ter Vehicles and Unmanned Aerial Vehicles; and also in the
domains of disaster management and manufacturing (Al-
terovitz, Koenig, and Likhachev 2016; Karpas et al. 2015;
Mudrov4, Lacerda, and Hawes 2016; Wilson et al. 2016).

The introduction of tools to facilitate the integration of
planning and robotics is an important step toward furthering
the use of Al systems. In this paper we use ROSPlan to in-
tegrate the use of conditional planning with our robotic plat-
form. ROSPlan has been used in various robotic domains for
this purpose (Cashmore et al. 2014; Palomeras et al. 2016;
Brafman, Bar-Sinai, and Ashkenazi 2016; Cashmore et al.
2017). Moreover, the framework has been used to integrate
a planner into robotic domains in which humans are present.
However, planning techniques were not specifically used for
human-robot interaction. (Bajones 2016)

Planning techniques have also been used in robotic appli-
cations characterized by some form of human-robot interac-
tion.

A first group of works focuses on interactions between
humans and robots and on an explicit representation of hu-
man activities in the planning formalism. For example, An-
swer Set programming (ASP) has been used to model an effi-
cient planner for collaborative house keeping robots (Erdem,
Aker, and Patoglu 2012). This system automatically extracts
common sense information from the ConceptNet dataset and
exploits it to better perform the given task. Social norms
have also been considered in the planning process. For ex-
ample, Human Aware Planning (Tomic, Pecora, and Saffiotti
2014) is a system based on Constraint Based Planning (CBP)
that allows modeling and planning with social norms, repre-
sented as constraints of the problem. Social norms integrated
into a planning system are also discussed in (Nardi and Ioc-
chi 2014), where the output of a planner is modified in order
to take into account such norms expressed as rules. Although
in these works human actions and interactions are explicitly
modeled, the planning process focuses on generating inter-
actions as interleaved actions between human and robots and
no actions to acquire information at execution time affecting
the flow of execution of the plans are present.

A second group of works refers to human-robot collabo-
ration and focuses on tasks in which human and robots per-
form joint actions in the environment. Planning techniques
for human-robot collaboration have been implemented in
the Hierarchical Agent-based Task Planner (HATP) sys-
tem (Lallement, De Silva, and Alami 2014) that enables
the definition of collaborative tasks. Recent developments of
this system (Fiore, Clodic, and Alami 2016) also allows the
user to interact with the robot to define the plan before its ex-
ecution and the robot to infer the users’ intentions. Another
approach for generating plans for human-robot collaboration
is described in (Milliez et al. 2015). In this work, users are
characterized by the level of knowledge they have about the
task and the robot acts according to it, by providing more or
less information during plan execution. All these methods
do not consider the possibility of having agreements about
the collaborative actions at execution time. Therefore, once
the plan is started, it is not possible to change its execution
flow (unless with a replanning procedure).

541

In general, no conditional plans are used in the above
mentioned papers. We choose to explore conditional plan-
ning in this context, as it is a natural way to model on-line
acquisition of information during human-robot interactions
explicitly as a planning problem.

Approaches based on probabilistic models (such as
Markov Decision Processes (MDP) or Partially Observable
Markov Decision Processes (POMDP)) can represent uncer-
tainty in the domain and compute a policy that takes into
account such uncertainty. However, in some cases, the ex-
ecution mechanism still requires a complete evaluation of
the current state and the system is not robust to errors in
this computation. In order to overcome this difficulty, some
recent approaches proposed the use of different levels of
planning. For example, integration of classical planning with
Partially Observable Markov Decision Processes (POMDP)
is described in (Hanheide and others 2015). However, con-
tinuous switching planning methods can be impractical in a
dynamic world with frequent human-robot interactions. In
(TIocchi et al. 2016) a particular translation of the policies
generated by an MDP solver have been integrated with a
Petri Net Plan executor to reduce the need of evaluating a
complete state.

However, the main problem with methods based on proba-
bilistic models is that the solutions are sensitive to the many
values of probabilities in the model that are often difficult
and time-consuming to determine a priori or with learning
approaches.

Conditional Planning techniques have been explored in
HRI in the domain of a robotic bartender JAMES (Petrick
and Foster 2013). In this application the HRI is modeled as
a variant of the PDDL language (Mcdermott et al. 1998) in-
cluding sensing actions. Plans for the interaction are gen-
erated using PKS (Planning with Knowledge and Sensing)
(Petrick and Bacchus 2004). More recently, the planning ap-
proach for JAMES has been extended to focus on common
interaction patterns, such as clarification questions (Petrick
and Foster 2016).

We build on these techniques, aiming to provide models
that are domain independent. That is, a more general model
that can be used to represent any short-term HRI, indepen-
dent from the context. In this way, the model can be pop-
ulated with interaction content without any specific knowl-
edge of planning.

The main contribution of this paper is the integration of
such conditional plans for HRI with tools that make the
plans more robust. Specifically, taking the ideas explored in
JAMES and adding recovery procedures for circumstances
that are not contained in the model.

3 System Overview

The main objective of this work is to provide a framework
for the generation of robust conditional plans that can deal
with uncertainty in the initial state. To achieve that, we pro-
pose a multi-layered architecture that includes a Planning
System, a Plan Translator and a Plan Executor. The over-
all architecture is shown in Figure 1. The Planning System
(Section 3.1) contains the formulation of the short-term HRI

ROSPlan

Cond. Plan to PNP Translator

PNPros

Planning
System

Problem Generation

i @ :
Planner

KB

PNP
Gen

Plan | | Trans.

| Module

H

™

Dispatcher

)

Robustify
PNP | g
service

PNP

Robot
lib

PNP
Action
Server

(Robust PNP) <

Figure 1: An overview of the system.

as a conditional planning problem and generates a condi-
tional plan using a conditional planner. In our implemen-
tation we use the Contingent-FF planner. The plan is then
translated into a Petri-Net Plan (Seciton 3.2) and finally it is
executed by the PNP executor module. The following sub-
sections describe the two novel components developed in
this work: the conditional planning system and the transla-
tor to PNP. The third component is described in (Ziparo et
al. 2011) and available in http://wiki.ros.org/pnp _ros.

3.1 Planning System

The Planning System is built upon ROSPlan (Cashmore et
al. 2015). ROSPIlan is a framework for embedding a PDDL
planner into a ROS system. ROSPlan automatically gen-
erates a PDDL planning problem, passes this to an exter-
nal planner, and dispatches the plan. ROSPlan consists of
two main components, the Knowledge Base and the Plan-
ning System (see figure 2). The Knowledge Base stores the
PDDL model. It stores both a domain model and the current
state. It is continuously updated throughout execution, and
queried by the Planning System. The Planning System in-
tegrates with the planner. We have extended the framework
to generate conditional planning problems and to make use
of a contingent planner. In particular, we extended ROSPlan
to use the planner Contingent-FF (Hoffmann and Brafman
2005b), although other planners can be used. The plan dis-
patch module of the Planning System is also replaced, to
instead pass the contingent plan entirely to the PNP transla-
tor.

We use the formalisation of contingent planning from
Hoffmann and Brafman (2005b), where observations and
uncertainty are added to (sequential) STRIPS with condi-
tional effects.

A planning problem comprises of a domain D describ-
ing the actions and problem instance P describing the initial
state and goal condition. This is extended with uncertainty
about the initial state, non-deterministic action effects, and
observations. The initial state is a belief state represented by
a propositional CNF formula I. The possible initial world
states are those that satisfy that formula. Observations are
encoded as special observation actions. Such actions observe
the value of a single proposition in the world state, thereby
splitting the current belief state at hand and introducing two
branches into the plan. Further details can be found in (Hoff-
mann and Brafman 2005b).

In our approach, the domain D is used for modelling the

542

PDDL Domain File

1

Knowledge Base

Planning System

Problem Generation

PDDL PROBLEM INSTANCE

I

PLAN

ROS

PDDL

MONGODB MODEL

STATE ESTIMATION Plan Parser

PLAN REPRESENTATION

Plan Dispatch

Platform

Figure 2: The Knowledge Base and Planning System com-
ponents of the ROSPlan framework.

structure of any short-term interaction, independent from its
specific context. The problem P characterizes the semantics
of a specific interaction in a given context.

Figure 3.1 shows the conditional PDDL domain model for
short-term HRI. As an example, the action display_text
is used to display a text token to the user. This action is
independent of the content of the text message. Actions
ask_question and check_user_response are used
to model a question and answer between the robot and the
user, in which the user response is a proposition that can be
observed.

Figure 4 shows a fragment of the PDDL problem for the
TV Show scenario described in Section 4. The tokens (e.g.,
t_newsl, t _news?2) are entered by the domain expert, and
correspond to messages specific to the context of the interac-
tion. These are used by ROSPlan to automatically generate
the PDDL problem. It is initially unknown which of the news
tokens can be given to the user; this is represented using the
standard syntax for uncertainty in the initial state.

Note that, while the planning process considers both the
domain model and problem for generating the plan, this divi-
sion is useful from the user perspective. The structural repre-
sentation D requires knowledge about PDDL and planning

(define (domain hri_contingent)

(:requirements :strips :typing)
(:types
token
statement question - token)
(:predicates
(available ?t - token)
(responded ?t - token)
(follows ?u ?t - token)

;7 the token might be available
(available_to_check_s ?t - token)

;7 the token initiates a wait
(pauses ?t - token)

;7 ready to give statements
(r_HRIreceived)
(r_HRInotreceived)

)

;; Display text
(:action display_text
:parameters (?t - statement)
:precondition (and
(r_HRIreceived)
(available ?t))

reffect (and
(not (available ?t))
(when (pauses ?t) (not (r_HRIreceived)))
(when (pauses ?t) (r_HRInotreceived))
(forall (?u - token)
(when (follows ?u ?t)

(available 2u))))

;7 Ask for something
(raction ask_question
:parameters (?g - question)
:precondition (and
(r_HRIreceived)
(available 2q))
reffect (and
(not (available_g ?q9))
(forall (?u - token)
(when (follows ?u ?q)
(available_to_check ?u))))

;7 Check user response

(:action check_user_response
:parameters (?t - token)
:precondition (available_to_check ?q)
:observe (responded ?t)

)

;; Wait for screen touched
(:action wait_for_hri
:parameters ()
:precondition
reffect (and
(r_HRIreceived)
(not (r_HRInotreceived))))

(r_HRInotreceived)

Figure 3: Conditional domain model for human robot interaction.

formalization, while P can be defined by experts of the ap-
plication domain. Although not described in this paper, it is
possible to allow domain experts to model the content of the
interactions without any knowledge of PDDL, by providing
the information in a data format that is then translated in the
corresponding PDDL problem P. In other words, our for-
malism integrates the work of a planning expert who defines
the structure of the interaction and of a domain expert who
defines the content of the interactions. Various goals can be
given to deliver or discover certain information, amounts of
information, or observe other metrics in the interaction. The
planner is then able to generate a plan according to the struc-
ture and the content specified in the model.

The planner Contingent-FF has been embedded in ROS-
Plan and used to generate a contingent plan for the interac-
tion. The plan is parsed as a Directed Acyclic Graph (DAG)
and published in its entirety as a single ROS message.

3.2 Plan Translator

This module parses the dispatched plan and translates it into
a conditional plan. We also ensure that the obtained plan is
robust, i.e. less prone to replanning/failures due to uncer-
tainty, through a process called robustification. This is re-
alised by specifying syntactic rules, called Execution Rules
(ER), that describe possible actions and recovery procedures

543

to perform in the plan. The overall effectiveness and robust-
ness of the plan is increased by these routines in situations
not modelled in the planning domain and possibly detected
by the plan designer after its execution. The approach of im-
proving a plan with Execution Rules has been introduced in
(Iocchi et al. 2016).

In order to deal with different representations of the out-
put plans provided by different planners, we have defined
the following format to describe conditional plans:

A =:t1;.“;tn
t; = a\ <ty CQ?tQ; .‘.;Ck?tk >

In this representation A is a plan and is composed of a
sequence of terms ¢;. Each term could be either an atomic
action a or a multiple branch over k sensed properties
c1,...,Ck. We assume all the conditions ¢; to be mutu-
ally exclusive with each other and that each c¢; is associ-
ated to a term ¢; that will be executed when ¢; is true. These
branches are enclosed between angular brackets (< >) and
colons (:) separate the different branches. In case conditions
are not mutually exclusive and more conditions c; are true
at the time they are evaluated by the PNP engine, a non-
deterministic transition towards one of the true branches will
occur.

Our infrastructure includes a Translator module which is

(define (problem tvshow)

(:domain hri_contingent)

(:objects
t_init t_name t_welcome t_intro
t_news t_newsl t_news2 t_news3
img_newsl img_news2 img_news3 t_joke
t_goodbye img_coaches img_activity

— statement

g_activity g_news - question)

(:init
(r_HRInotreceived)
(available_s t_init)
(follows_s_s t_name t_init)
(follows_s_s t_intro t_name)
(pauses t_intro)
(
(
(

unknown (available_s t_news))
unknown (available_s t_joke))
oneof

(available_s t_news)
(available_s t_joke)

)

(unknown (available_s t_newsl))
(unknown (available_s t_news2))
(unknown (available_s t_news3))
(oneof

(available_s t_newsl)
(available_s t_news2)
(available_s t_news3)
)
(pauses img_newsl)
(pauses img_news2)
(pauses img_news3)

)

(:goal (and
(given t_goodbye)
)))

Figure 4: A fragment of a problem generated for human
robot interaction. The problem instance was used in the TV
show scenario.

responsible for translating from standard planner output to
the described representation. In particular, the planner con-
sidered in this work is Contingent-FF, as described in the
previous section. This component, however, is easily exten-
sible to consider also other planners and different output for-
malisms.

The algorithm that realizes the translation is described
in Algorithm 1. first() is a function that returns the first
part of the current plan, which could be either an atomic
action or a branching term. In case of atomic actions,
CondPlan_addAction() creates a conditional plan state
and links it to one created earlier. In case of branches, we
split them and recursively construct the sub-trees. The + op-
erator represents a concatenation operator.

The module responsible for the actual generation of the
PNP is called Generator. The algorithm that, from the con-
ditional plan representation, generates the actual PNP is Al-
gorithm 2. This algorithm realizes a graph visit on the struc-
ture described by the conditional plan. It keeps track of the
visited states and, at each iteration, it checks the possible
outcomes of the states. If the current state has no action as-

544

Algorithm 1: Conditional Plan translation from a plan

Input : 7: the plan
Output: \: the Conditional Plan corresponding to 7

1 Function transiCondPlan(r) : A

2 o = first(n);

3 7’ =rest(w);

4 if 7 = 0 then

5 | return {};

6 else

7 if 0 = a; then

8 | XN =CondPlan_addAction(a;);

9 else

10 ifo=¢7m ... ¢,77, then

1 ® = CondPlan_split Branch(o);
12 foreach ¢; € {¢1, ..., ¢, } do

13 | Ai =translCondPlan(r;);
14 X = CondPlan_merge(®, A1, .., \n);
15 return \ + translCondPlan(w');

sociated with it and is not final, it keeps going with recur-
sion. Otherwise, there are two possible cases depending on
whether the current state has successors. If there are no suc-
cessors, we add a final state to the PNP. If there are succes-
sors, the algorithms processes each of them. For each suc-
cessor state that has not been visited yet, the algorithm adds
a branch to the PNP and marks it as visited. Otherwise, if
one successor state has been already visited, the algorithm
adds an edge going back from that state to the current one.

The complexity of the presented algorithms is linear in the
number of plan states. For the translation algorithm, we gen-
erate a conditional plan state for each action in the computed
plan. For the generation algorithm, we explore these states
and generate the correspondent PNP. The functions used for
the generation of the conditional plan and the PNP have a
constant cost since they perform only local operations with-
out looking at the whole plan.

4 Integration and Demonstrations

The presented system has been fully implemented and tested
on mobile robots in several different demonstrations in pub-
lic environments. The developed software! is based on two
existing software libraries: ROSPlan? and PNP?. Also the
software described in this paper has been developed under
the ROS* middleware and it is thus suitable for integration
with other robotic components.

More specifically, the developed ROS node® for the trans-
lation component waits for a plan on the ROS topic pub-
lished by the planning system, processes this plan as de-
scribed in the previous sections producing a PNP and dis-

https://sites. google.com/fview/robusthri
2http://kcl-planning. github.io/ROSPlan/
3pnp.dis.uniromal.it

*www.ros.org

3 https://sites.google.com/site/rosplantopnp/

Algorithm 2: PNPgen from Conditional Plan

Input : m: a Conditional Plan,
SS: a stack containing the places to explore
Output: 7.: PNP generated from a Conditional Plan

1 Function genCondPlan(r) : 7.

2 s = first(m);

3 7’ =rest(n);

4 SS + s;

5 while (SS £ 0) do

6 s=top(S9S);

7 a = action(s);

8 if(a=0 & s# s;)then
9 L genCondPlan(r’);

10 O = outcomes(s);

1 if O = 0 then

12 . = PNP_addFinal(s);
13 genCondPlan(r');

14 foreach element o of O

15 do

16 s’ = next(o);

17 ¢ = obs(0);

18 if s ¢ SS then

19 PNP_addBranch(m., ¢);
20 SS.push(s');
21 else
2 | PNP_GoBack(r.);

patches the PNP to the pnp_ros module for execution. This
process can be executed both off-line or on-line during the
execution of a robot task. In the on-line case, the pnp_ros
module replaces the current plan with any new-coming plan.
The planning process for the use cases discussed below is
very fast: for these problems, less than a second is required.
Moreover, in comparison, the translation from plan to PNP
takes negligible time.

4.1 Use cases

The proposed system has been tested in different environ-
ments characterized by short-term human robot interactions
with non-expert users. The plans defined and generated with
the proposed system have thus been exposed to execution in
a real environment. Almost all interactions have been cor-
rectly handled, regardless the lack of experience of the users
interacting with the robot, thus showing the effectiveness of
the proposed method.

Videos

showing the interactions that oc-
curred in these demonstrations are available at
https://sites.google.com/view/robusthri/video. In all the

examples shown, the robot executes short-term interaction
plans generated with the system described in this paper.
While the navigation of the robot in the environment was
manually driven, mainly for safety reasons, all interactions
that required input from the users (through speech or using
the GUI on the tablet of the robot) have been modeled

545

Figure 5: A group of users interacting with the robot at
Maker Faire 2016.

Figure 6: A user interacting with the robot during the Eras-
mus welcome day.

and implemented as sensing actions. Similarly, the flow of
execution of the plan is chosen at execution time according
to the outcome of such interaction (i.e., sensing actions).

1. TV Show. The first demonstration described in this pa-
per was performed during a live TV show in which the robot
was interviewed alongside a human. Before going to the TV
studio, a sketch of the demo was prepared and it was pre-
sented to the TV show director one hour before the show.
The director made some comments about the interactions
and asked to modify something and to be flexible with re-
spect to timing of the show. Before the live show, the plan
was modified and during the show the conditional plan pos-
sessed the requested flexibility.

A Conditional Plan is generated by Contingent-FF for this
problem and converted into a DOT graph, as shown in Fig-
ure 10. This plan is then translated into the intermediate
format shown in Figure 7. Note that the extended PDDL
used by Contingent-FF can only produce binary branches
upon sensing actions, such as in check_user_response.
These actions do not represent any action taken by the robot,
but instead signify a branch point in the plan. As a result they
do not appear in the translated plan.

display_init;
waitfor_start;
display_image_coaches;
display_text_name;
display_text_intro;
waitfor_screentouched;
display_image_activity;
ask_whichactivity;
waitfor_HRIreceived;
< news ?
display_text_news;
ask_whonews;
waitfor_answer_QQ;
display_image_answer_QQ;
display_text_answer_QQ:
joke ?
display_text_joke
>;
waitfor_screentouched;
display_image_coaches;
display_text_goodbye;
restart

Figure 7: A conditional plan for the TV Show.

2. Maker Faire. In this demonstration, the robot was de-
ployed during a Maker Faire for three days to interact with
people; children in particular. The interaction contained dif-
ferent choices: information about the robot, quizzes, and
jokes. Also in this example, the robustification phase added
some recovery procedures to take into account some unex-
pected behaviors of the users.

During the three days of the event, we needed to change
the content several times. For example, (i) we realized that
some interactions were too long and we wanted to simplify
them, (ii) we wanted to change some of the content of the
interactions for the day in which schools were present, and
(iii) we wanted to test different interaction modalities.

To this end, the use of a planning system was fundamental
in order to generate new plans on the fly when needed, by
just changing the specification of the problem.

During these demonstrations, the robot interacted with
about 300 people. Most of the executions were successful,
while a very few executions failed and required a manual
restart of the system. These situations were due to unex-
pected interactions, such as, for example, users closing the
window running the interaction program or restarting the op-
erating system on the tablet.

An example of conditional plan used in this example is
shown in Figure 8, in the format generated by the Plan
Translator module.

3. Erasmus welcome day. Finally, the system was tested
during a Faculty meeting for Erasmus students. Short-term
interactions were designed to welcome the students, to ask
the students from which country they come and to show
some information about the countries. Since the list of stu-
dents and thus of countries was known in advance, it was
possible to pre-define all the possible countries and to gen-
erate appropriate questions and answers for each country.

546

display_init;
waitfor_answera;
askimg_whichinfoABCD;
waitfor_ HRIreceived;
<
answera °?
display_image_info_alfred;
display_text_info_alfred:
answerb ?
display_image_info_r20;
display_text_info_r20:
answerc ?
choose_joke;
waitfor_joke_@J;
display_text_joke_QJ:
answerd ?
display_image_info_roberto;
display_text_info_roberto
>;
display_text_goodbye;
restart

Figure 8: A conditional plan for the Maker Faire.

display_init;
waitfor_personhere;
display_text_welcome;
ask_whichcontinent;
waitfor_continent_QC;
ask_whichcountry_QC;
waitfor_country_QN;
display_text_@N;
display_image_Q@N;
ask_wantphoto;
waitfor_no;
display_text_greet;
display_text_goodbye;
display_init

Figure 9: The plan for the Erasmus Welcome day.

This process was done by a semi-automatic tool for the gen-
eration of interactions and is not described in this paper.

The robustification phase in this example has been imple-
mented with recovery procedures acting when users do not
answer a question after a timeout and restarting the interac-
tions in these cases.

About 40 students were present in the event and at least
half of them interacted with the robot. Since user studies
were not an experimental focus, we have not collected spe-
cific data about such interactions, but just observed that all
the executions of plans were correctly completed (in some
cases, thanks to the recovery procedure).

The plan used in this demonstration is shown in figure 9.
This format is generated from the DAG by the Translation
Module, and then encoded into a PNP, as described in Sec-
tion 3.2.

5 Conclusions

In this paper, we described a method and a fully imple-
mented robotic system using conditional planning for gen-

display_text t_name;

display_text t_intro

display_image i_activity

ask_question q_whichactivity

check_user_response t_news

display_image i_coaches;
display_text t_goodbye

Figure 10: The conditional plan generated by Contingent-FF
in DOT form.

erating and executing short-term interactions by a robot de-
ployed in a public environment.

While conditional planning has previously been used in
short-term HRI, our focus is on 1) the separation of the struc-
ture of the planning model and the context of the interaction,
2) the integration into an execution environment through the
ROSPIan and Petri Net Planning frameworks. The system
has been fully implemented and tested on a real robot in sev-

547

eral different scenarios and open-source release of the code.

Our extension integrates conditional planning into ROS-
Plan. This will allow the generation and execution of condi-
tional plans on board a robot, through the ROSPlan frame-
work. Moreover, it is now possible to use a contingent plan-
ner to generate the conditional plans used as input to PNP.
The result is a powerful and flexible tool for conditional
planning on board robotics systems, with potential beyond
short-term HRI.

In future work we intend to formalize the conditional
planning domain used for our examples, providing links
between the common interaction patterns and the general
structures in our domain.

Acknowledgements

This work has been partially developed within the
COACHES project. COACHES is funded within the CHIST-
ERA 4 Call for Research projects, 2013, Adaptive
Machines in Complex Environments (AMCE) Section.
Sapienza University is funded by MIUR (Italy). This work
has been partially funded by European Commision as a part
of SQUIRREL project that involves King’s College London,
under grant agreement No FP7-610532.

References

Alterovitz, R.; Koenig, S.; and Likhachev, M. 2016. Robot
planning in the real world: research challenges and opportu-
nities. Al Magazine 37(2):76-84.

Bajones, M. 2016. Enabling long-term human-robot in-
teraction through adaptive behavior coordination. In The
Eleventh ACM/IEEE International Conference on Human
Robot Interaction, 597-598. 1EEE Press.

Bonet, B., and Geffner, H. 2000. Planning with incom-
plete information as heuristic search in belief space. In Proc.
of the Conference on Al Planning and Scheduling, 52-61.
AAAI Press.

Brafman, R. I.; Bar-Sinai, M.; and Ashkenazi, M. 2016. Per-
formance level profiles: A formal language for describing
the expected performance of functional modules. In 2016
IEEE/RSJ International Conference on Intelligent Robots
and Systems, IROS 2016, Daejeon, South Korea, October
9-14, 2016, 1751-1756.

Cashmore, M.; Fox, M.; Larkworthy, T.; Long, D.; and Mag-
azzeni, D. 2014. AUV mission control via temporal plan-
ning. In Robotics and Automation (ICRA), 2014 IEEE Inter-
national Conference on, 6535-6541. 1EEE.

Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; Ridder,
B.; Carrera, A.; Palomeras, N.; Hurtos, N.; and Carreras, M.
2015. ROSPIan: Planning in the robot operating system. In
Proceedings of the 25th International Conference on Auto-
mated Planning and Scheduling (ICAPS’15), 333-341.

Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; and Rid-
der, B. 2017. Opportunistic planning in autonomous under-
water missions. IEEE Transactions on Automation Science
and Engineering.

Erdem, E.; Aker, E.; and Patoglu, V. 2012. Answer set
programming for collaborative housekeeping robotics: rep-
resentation, reasoning, and execution. Intel Serv Robotics.
Fiore, M.; Clodic, A.; and Alami, R. 2016. On planning and
task achievement modalities for human-robot collaboration.
In Experimental Robotics, 293-306. Springer International
Publishing.

Hanheide, M., et al. 2015. Robot task planning and expla-
nation in open and uncertain worlds. Artificial Intelligence.

Hoffmann, J., and Brafman, R. 2005a. Contingent planning
via heuristic forward search with implicit belief states. In
Proceedings of the 15th International Conference on Auto-
mated Planning and Scheduling (ICAPS-05), 71-80.

Hoffmann, J., and Brafman, R. 2005b. Contingent planning
via heuristic forward search with implicit belief states. In
Proceedings of the 15th International Conference on Auto-
mated Planning and Scheduling (ICAPS-05), 71-80.

Iocchi, L.; Jeanpierre, L.; Lazaro, M. T.; and Mouaddib,
A.-I. 2016. A practical framework for robust decision-
theoretic planning and execution for service robots. In Inter-

national Conference on Automated Planning and Schedul-
ing (ICAPS), 486—494.

Karpas, E.; Levine, S. J.; Yu, P.; and Williams, B. C. 2015.
Robust execution of plans for human-robot teams. In ICAPS,
342-346.

Lallement, R.; De Silva, L.; and Alami, R. 2014. HATP:
An HTN planner for robotics. In 2nd ICAPS Workshop on
Planning and Robotics, 20-27.

Little, I., and Thiebaux, S. 2007. Probabilistic planning vs.
replanning. In In ICAPS Workshop on IPC: Past, Present
and Future.

Mcdermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. Pddl - the
planning domain definition language. Technical Report TR-
98-003, Yale Center for Computational Vision and Control,.

Milliez, G.; Lallement, R.; Fiore, M.; and Alami, R. 2015.
Using Human Knowledge Awareness to Adapt Collabora-
tive Plan Generation, Explanation and Monitoring. In Inter-
national Conference on Human-Robot Interaction.

Mudrova, L.; Lacerda, B.; and Hawes, N. 2016. Partial order
temporal plan merging for mobile robot tasks. In Proc. of the
22nd European Conf. on Artificial Intelligence (ECAI).

Nardi, L., and Iocchi, L. 2014. Representation and execution
of social plans through human-robot collaboration. In Fifth
International Conference on Social Robotics (ICSR 2014),
266-275.

Palomeras, N.; Carrera, A.; Hurtds, N.; Karras, G. C.; Bech-
lioulis, C. P.; Cashmore, M.; Magazzeni, D.; Long, D.; Fox,
M.; Kyriakopoulos, K. J.; et al. 2016. Toward persistent
autonomous intervention in a subsea panel. Autonomous
Robots 40(7):1279-1306.

Petrick, R. P. A., and Bacchus, F. 2004. PKS: Knowledge-
based planning with incomplete information and sensing. In
Proceedings of the System Demonstration session at ICAPS.
Petrick, R. P. A., and Foster, M. E. 2013. Planning for so-
cial interaction in a robot bartender domain. In Proceedings

548

of the Twenty-Third International Conference on Automated
Planning and Scheduling, ICAPS.

Petrick, R. P. A., and Foster, M. E. 2016. Using general-
purpose planning for action selection in human-robot inter-
action. In Proceedings of the AAAI Fall Symposium on Arti-
ficial Intelligence for Human-Robot Interaction (AI-HRI).

Tomic, S.; Pecora, F.; and Saffiotti, A. 2014. Too cool
for school - adding social constraints in human aware plan-
ning. In Proc. of 9th International Workshop on Cognitive
Robotics.

Wilson, M. A.; McMahon, J.; Wolek, A.; Aha, D. W.; and
Houston, B. H. 2016. Toward goal reasoning for au-
tonomous underwater vehicles: Responding to unexpected
agents.

Ziparo, V.; locchi, L.; Lima, P.; Nardi, D.; and Palamara, P.
2011. Petri Net Plans - A framework for collaboration and

coordination in multi-robot systems. Autonomous Agents
and Multi-Agent Systems 23(3):344-383.

