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Abstract

Symbolic planning methods have proved to be challenging in
robotics due to partial observability and noise as well as un-
avoidable exceptions to rules that symbol semantics depend
on. Often the symbols that a robot considers to support for
planning are brittle, making them unsuited for even relatively
short term use. Maturing probabilistic methods in robotics,
however, are providing a sound basis for symbol grounding
that supports using probabilistic distributions over symbolic
entities as the basis for planning. In this paper, we describe a
belief-space planner that stabilizes the semantics of feedback
from the environment by actively interacting with a scene.
When distributions over higher-level abstractions stabilize,
powerful symbolic planning techniques can provide reliable
guidance for problem solving. We present such an approach
in a hybrid planning scheme that actively controls uncertainty
and yields robust state estimation with bounds on uncertainty
that can make effective use of powerful symbolic planning
techniques. We illustrate the idea in a hybrid planner for au-
tonomous construction tasks with a real robot system.

Introduction

Planning and executing tasks in partially observable systems
is a challenging problem. One common way researchers are
addressing this challenge is by using a family of hierarchi-
cal planners called task and motion planners (Gravot, Cam-
bon, and Alami 2005; Wolfe, Marthi, and Russell 2010;
Srivastava et al. 2013). Generally, these approaches divide
the problem into two parts, a high-level task planner that
manipulates a symbolic representation of the problem and a
low-level motion planner that controls effectors to realize the
symbolic plan. High-level planners often rely on symbolic
representations of the problem that makes planning tractable
by typically ignoring hidden state and/or uncertainty.

Some researchers investigate grounding symbolic rep-
resentations in actions and experience (Pasula, Zettle-
moyer, and Kaelbling 2007; Kulick et al. 2013; Konidaris,
Kaelbling, and Lozano-Perez 2014). Maturing probabilistic
methods in robotics are providing a sound basis for sym-
bol grounding that supports using probabilistic distributions
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over symbolic entities as the basis for planning. Our ap-
proach grounds symbols describing objects in probabilistic
distributions over models called Aspect Transition Graphs
(Sen 2013; Ku et al. 2014; Ruiken et al. 2016b). Our sys-
tem actively interacts with a scene until the distribution
over higher-level abstractions stabilizes adequately at which
point, powerful symbolic planning techniques can provide
reliable guidance to problem solving.

Figure 1: The left figure shows the robot identifying a goal
object from a model set through interaction. Once uncer-
tainty over objects is controlled, assemblies can be planned
symbolically and executed (right figure).

We investigate a sensorimotor task that constructs a
replica of a reference arrangement of objects through ac-
tively interacting with partially observed objects. Uncer-
tainty and partial observability are addressed using a Dy-
namic Bayes Network to fuse information over sequences
of actions and to condense belief on symbols (Figure 1
left panel). Plans are then constructed that respect precon-
ditions and postconditions as well as resource constraints
using symbolic planning techniques on the vetted symbols
and executed (Figure 1 right panel).

Related Work

Several groups are investigating hybrid task planning ap-
proaches (Wolfe, Marthi, and Russell 2010; Gravot, Cam-
bon, and Alami 2005; Srivastava et al. 2014). These ap-
proaches divide the task into a symbolic task planning prob-
lem and a realized motion planning problem. The motion
planners used by these approaches provide guarantees on
path planning and collision avoidance, handling uncertainty
and errors at execution time. These approaches utilize an in-
terface layer between the task level symbolic planner and
the motion planner which translates symbols into actions.



Object identity is rarely considered in task and motion plan-
ning work, as is the question of where the symbols origi-
nated from.

To address the “where did the symbol come from” prob-
lem, several researchers are exploring methods to ground
symbols. In order to account for noise and uncertainty in
action Pasula et al. learn domain specific probabilistic mod-
els that can be used to realize symbols for planning in a
simulated environment (2007). Rather than use predefined
symbols, Konidaris et al. learn symbol representations from
low-level features in simulation (2014). Kulick et al. demon-
strate how relational symbols that are grounded through su-
pervised learning can be acquired and utilized for planning
on a robot (2013). These methods demonstrate that symbols
can be grounded in robotics to facilitate planning. However,
the models require some predefined structure or are domain
specific.

Belief space approaches to the task planning problem
have been investigated previously, notably in Kaelbling and
Lozano-Pérez (2011) and in Hadfield-Menell et al. (2015).
Kaelbling and Lozano-Pérez recursively refine an abstract
task level plan through planning and acting in belief space.
The key insight in this work is to construct finite horizon
plans based on current belief and re-plan when necessary.
Hadfield-Menell et al. utilizes a belief space planner based
on geometric principles with a pre-defined domain and prob-
lem. In our approach, a domain for symbolic planning is de-
rived from a model set with additional geometric constraints.
Planning problems are generated at run-time.

Recognizing objects in a scene has been extensively in-
vestigated in the computer vision community. Recent re-
sults in deep learning have shown great success in this area
(Krizhevsky, Sutskever, and Hinton 2012; Long, Shelhamer,
and Darrell 2015). These methods use a single image to
recognize objects. Some objects are ambiguous from a sin-
gle viewpoint, so these approaches may not work. A robot
can actively interact with the object to obtain multiple per-
spectives to resolve these ambiguities. Actively selecting the
next viewpoint is known as active perception. Active per-
ception has been investigated in both computer vision and
robotics (Aydemir et al. 2013; Shubina and Tsotsos 2010;
Denzler and Brown 2000; Ruiken et al. 2016b; Sridharan,
Wyatt, and Dearden 2010). The goal of this area is to find
or recognize an object. They do not consider how to conduct
higher-level tasks with this information.

Hybrid Task Planner

Our hybrid task planner consists of two planning algorithms:
a model-based belief space planner and a symbolic planner.
The model-based belief space planner is used to overcome
uncertainty in lower-level interactions with objects in the en-
vironment and to ground symbols. It is used to recognize the
target and to orient the target to specific configurations rel-
ative to the robot. The symbolic planner is used at the high-
level to handle resource and geometric constraints. In this
paper, we focus on a task where a robot copies a demon-
strated arrangement of features. We define an assembly to
consist of the observable features from a pre-specified view-
point. The copy task involves the following sub tasks: (1)
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find the targets for assembly, (2) orient the targets, and (3)
pick&place the target in the arrangement.

A pseudo-code of our proposed algorithm is shown in Al-
gorithm 1. If the symbolic planner provides a solution, the
robot executes the solution. Otherwise, the robot searches
for building blocks using the belief space planner until the
symbolic planner finds a solution. The details are explained
in the following sections.

Algorithm 1 Hybrid Task Planner

1: while assembly is not done do
2:  solution=SymbolicPlanner(PDDL problem)
3. if solution does not exist then
4 Compute ctqrger using Eqn (3)
5: Select a(hy) € Afing from ABP with find(ciarget)
6: Execute a(hy)
7: if bel(cf,,get) > Bsymbor in Eqn (1) then

8 Symbolize cf,. get and generate PDDL problem
9: else

0 Select a(hy, cfa,.get) € Apick&place from solution
1 € Aprient from ABP with

—_ =

Select %orient (hk)
OI‘l@nl‘(Cmrget)

12: Execute aorient (M)

13: ifbel(cf,,get) > Borient in Eqn (4) then
14: Execute a(hy, ¢}y ger)

15: Observe and generate PDDL problem

Object model—Aspect Transition Graph

We use the Aspect Transition Graph (ATG) (Sen 2013)(Ku
et al. 2014)(Ruiken et al. 2016b) to model the objects used
as the building blocks for assembly. The term “aspect” has
roots in the computer vision community (originally intro-
duced in the 70s (Koenderink and Doorn 1979)) to represent
an object using multiple viewpoints. We adopted this term in
our work to represent salient features observed from a spe-
cific, relative sensor geometry and use it as the latent state in
our system. A subset of observable features f provides sup-
port for aspect nodes x that can be generated by objects. Ac-
tions a € A cause transitions between the aspects nodes. The
transition probabilities are defined as p(z;|z;, a(f)), where
0 are parameters of the action stored in the ATG.

Belief Space Planning

To address the first two sub tasks (finding and orienting the
object), we employed the Active Belief Planner (ABP) of
(Ruiken et al. 2016a). Their algorithm computes the belief
over the classes of models C' by summing the belief of aspect
nodes x € C' that satisfy a given specification. Actions are
then selected to condense belief over these partitions.

Finding an object with the target aspect In our task,
only a subset of an object’s properties such as visual ap-
pearance and haptic response are needed to achieve the task.
A robot finds ¢sqrget, a suitable class of object that contains
the aspect necessary for the task. Following (Ruiken et al.
2016a), we define the find(ciqrget) task as follows,



Elhk [bel(cfarget) > ﬂsymbol]a (1)
where h represents an object hypothesis in the scene, k is the
ID of the hypothesis, and 3ympoi is a threshold. A “hypoth-
esis” is a spatially constrained volume in which we maintain
distributions of belief over multiple object models. ciqrget 15
computed as follows,

Ctarget = {xlElijlOk [p(0k|$z) = 1A (2)

ploklz;) = 1A T(z;) =11},
where o is an object, x is an aspect node of the object,
p(o|x) is the probability that aspect node = belongs to object
o0, and C' is a set of aspects that satisfy the task. 1(x) = 1
if x € C and 0 otherwise. We use mutual information as a
metric to find the best next action a € Ay;,q to reduce the
uncertainty of the aspect effectively.

In our task, the robot needs to find multiple target goals
Ctargety s Ctargetss " » Ctargety, Where M is the number of
goals necessary for the task. The robot selects c;qyget t0 in-
vestigate by choosing the goal whose entropy is the highest
among the target goals ciarget;»

Ctarget = arg max E[_ 10g2 (p(ctargetj ))]

Cta,rgﬁtj

€)

Orienting an object The robot will be required to ori-
ent the target block to specific configurations relative to the
robot in order to prepare for pick&place. Following (Ruiken
et al. 2016a), the orient(cfarget) task is defined in ABP as
follows to obtain a € A, ient,

bel(cfarget) > ﬁorient|cta7~get = {$J|]l(l‘]) = 1} (4)

Symbolic Planning and Symbol Grounding

We leverage the power of symbolic planning to resolve the
preconditions of actions and resource constraints. In order
for such a system to be reliable we ground the symbols
by condensing belief. Symbols are derived from aspects in
ATGs. By utilizing aspects as symbols, we can aggregate all
the aspects (regardless of the object that they belong to) that
support the task. When the belief in an aspect is sufficiently
high, we can symbolize the aspect for use in planning.

Currently, we assume a task domain has been specified
in PDDL!. Inspired by (Srivastava et al. 2014), we use an
interface layer to translate between the symbolic and belief-
based physical representations in order to generate PDDL
problems at run-time (Lines 8, 15 in Algorithm 1)(See Fig-
ure 2 for an example).

The main symbols used in our system are directly de-
rived from the ATG model set provided to the robot and the
specified goal. Additional constraints (such as supporting/on
relations) are determined using additional geometrical con-
straints. After a problem has been generated, it is submitted
to a symbolic planner (Helmert 2006) that quickly finds a
satisficing plan if one is available. In the problems we con-
sidered, satisficing was a more practical choice over opti-
mality due to the inherent partial observability present in the
task. If a plan does not exist the robot continues to symbolize
its environment until one can be found.

"PDDL files are available at:
https://www-robotics.cs.umass.edu/index.php/Main/Publications
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(define (problem auto-generated)
(:domain arcube-assembly )
(:objects floor - aspect h2 - obj

hO - obj hl - obj
1-x - aspect 3-0 - aspect )

(:init (clear floor) (valid_object h2)
(valid_object h0) (valid_object hl)
(has_aspect h0 1-x) (has_aspect hl 1-x)
(has_aspect h2 1-x) (has_aspect h2 3-0) )
(:goal (and (on 1-x floor) (on 3-0 1-x)) ))

Figure 2: Example of an ARcube assembly problem gen-
erated during the task in Figure 3. :goal statement is gen-
erated when the robot registers the demonstrated assembly.
The :init and :object statements are updated after each sym-
bolization.

Demonstrations

To demonstrate our proposed mechanism, we conducted a
simple copy task with resource constraints using the uBot-
6 mobile manipulator (Ruiken, Lanighan, and Grupen 2013)
with ROS (Quigley et al. 2009). We construct assemblies out
of objects in the ARcube model-set of (Ruiken et al. 2016b).
ARcubes are partially observable objects that can be used to
precisely control planning complexity. Each ARcube has 48
aspect nodes. Twenty different ARcubes are in the model set
in our demonstration, yielding n % 20 %48 states for the belief
space planner to consider where n is the number of build-
ing blocks present. Motion constraints are considered by the
belief-space planner and solved using a harmonic function
motion planner (Connolly and Grupen 1993). The ABP uses
an adaptive search depth akin to (Ruiken et al. 2016a) where
belief is propagated further into the future if the next action
is planned in 0.6 seconds. This better informs action selec-
tion.

The robot constructs a copy of a stack that is presented
a priori. The copy task requires the proper arrangement of
two ARcubes. The robot first needs to register the goal of
the task by observing a target stack. There will be two target
aspects in the stack: one aspect for the bottom of the stack
and one for the top. The robot parses these aspects based
on its model-set to register the goal. The robot then goes to
the copy area to observe the current copy state. The robot
determines what aspects are missing for the copy, then gen-
erates sub-tasks to search for these aspects. There are three
ARcubes to consider as building blocks for the replica. Each
of the three affords aspects that can be used for the bottom
block, but only one of them satisfies the top (see Figure 3).
The planner must resolve resource constraints before arrang-
ing the objects.

Initially, the robot is unaware of the number or identity of
building blocks available for the copy task. The number and
identity are exposed through the belief space planner. Ac-
tions used by the symbolic planner are limited to pick and
place actions. These symbolic actions are realized through
an interface layer of actions A := {pick&place, orient},
which resolves motion constraints by orienting the objects if
needed. Actions used for orient and find tasks are Aypient =
Afinag = {orbit, flip, lift, push}. pick&place action a €
Apicksplace takes two parameters: which hypothesis to pick



Figure 3: The left figure shows the goal of the copy task.
The building blocks that can be used to copy the structure
are displayed on the right. Although not visible from this
view angle, hypothesis s has both aspects ‘1-x’ (an aspect
with ‘1’ in front) and ‘3-0’ (an aspect with ‘3’ in front and
‘0’ on top), while hypotheses h( and h; only have aspect ‘1-
x’. This introduces a resource constraint as only hypothesis
ho can be used for the top position.

Figure 4: On the left is the demonstrated stack, while the
right stack is the approximate copy constructed by the robot.

and the place goal. We use Bsymbor = 0.9 and Borient = 0.7
in this demonstration.

Results and Discussion

The robot successfully constructed the copy despite the re-
source constraint situation as shown in Figure 4. Belief over
the aspects used in the plan is shown in Figure 5. The fig-
ure shows when hypotheses were symbolized, when targets
were oriented, and when pick&place actions were started.
Executing physical actions dominates planning time. Physi-
cal actions took 38.8 seconds on average. On average, ABP
with 1-ply took 0.26 seconds, and 3.7 seconds for 2-ply. The
symbolic planner took 0.23 seconds on average. The effi-
cient computation is partially due to the simple domain and
problem we are addressing at the symbolic level.

In our demonstration the robot correctly symbolized the
objects needed to complete the task as seen in Figure 5 while
not falsely symbolizing improper objects even though sym-
bolizing objects in partially observable problems (such as
those with ARcubes) is difficult. Symbols should be gen-
erated only when the semantics of actions are vetted by the
belief space planner. To illustrate, the result would have been
different if we had used a maximum likelihood observation
to symbolize after the first action at 423 seconds (Figure
5). The plan formed from this belief would have led to a
sub-optimal solution only containing one block—failing the
copy as it would not be able to resolve the resource con-
straint.

We performed ten experiments changing the number of
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Figure 5: The figures show the task beliefs for each hypoth-
esis in the scene for finding aspect ‘1-x’ (top figure) and
aspect ‘3-0’ (bottom figure). The robot symbolized all of the
hypothesis with aspect ‘1-x’ after the first observation at 423
seconds, and symbolized hypothesis hy with aspect ‘3-0" at
759 seconds.

building blocks used in the copy task from two to four for the
two object stack problem. In these preliminary experiments,
eight successfully symbolized and planned a solution for the
copy with the current implementation. The two failures were
due to stochastic action outcomes. In a fully implemented
closed loop belief-space approach a robot would never fail,
continuing to take actions to increase belief unless some in-
surmountable error occurred. The only effect such failures
would have is to increase the length of execution.

Conclusion and Future Work

We proposed a hybrid planning architecture that utilizes a
model-based belief space planner and a symbolic planner.
With this approach, we demonstrated how a belief space
planner stabilizes the semantics of feedback from the envi-
ronment through interaction to enable reliable symbolization
of higher level abstractions. We detailed a preliminary result
of our architecture on a real robot system performing a two-
block stacking copy with resource constraints. Thanks to the
symbolization grounded in belief, the system was able to
overcome the resource constraint in this example that would
have prevented maximum likelihood approaches from suc-
ceeding. Future work will focus on implementing additional
actions and planning structures to enable the system to re-
cover from failures in this domain.
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