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Abstract

This paper presents a framework developed for an industrial
robotics system that utilises two different planning compo-
nents. At a high level, a multi-robot mission planner inter-
faces with a fleet and environment manager and uses mul-
tiagent planning techniques to build mission assignments to
be distributed to a robot fleet. On each robot, a task planner
automatically converts the robot’s world model and skill defi-
nitions into a planning problem which is then solved to find a
sequence of actions that the robot should perform to complete
its mission. This framework is demonstrated on an industrial
kitting task in a real-world factory environment.

Introduction

Modern industrial robotics is characterised by a need for in-
creased autonomy in factory environments. In particular, the
current generation of factory robots often possesses low de-
grees of autonomous operation in non-static environments.
The particular application for the work in this paper is the in-
dustrial kitting problem, where collections of parts are gath-
ered from a factory ‘supermarket’ area and delivered to a
production line. This paper introduces a robotics framework
for solving the kitting problem that utilises planning at two
different levels: at a multi-robot mission planning level, and
at a single-robot task planning level.

One advantage of industrial robotics tasks is that the effi-
ciency of a solution can often be improved by increasing the
number of robots. However, planning domains often scales
exponentially with the number of actors. This work therefore
presents a multiagent mission planning algorithm that pro-
duces low makespan plans in problems traditional planning
algorithms cannot solve, and that prior multiagent planning
algorithms can only solve by reduction to a single agent.

At the robot level, task-level programming provides a
way of simplifying the job of controlling a robot. In this
paradigm, a human programmer specifies what the robot
should do in terms of the high-level ‘skills’ and objects in-
volved in the task. Skills are identified as the re-occurring
actions that are needed to execute standard operating pro-
cedures (e.g., operations like pick ‘object’ or place at ‘lo-
cation’). Embedded within skill definitions are the sensing
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Figure 1: A robot operating in a factory environment using
the integrated system. The robot is executing a six-step plan
to place two parts in the white kitting box it is carrying.

and motor operations that accomplish the goals of the skill
as well as a set of condition checks that are made before and
after execution. This paper shows how the condition checks
can be automatically converted into planning actions, and
how a planning problem can be built from the robot’s world
model and then solved to generate an ordered sequence of
skills that will achieve the robot’s mission.

The paper is organised as follows. First, the related work
is considered and the complete system architecture of our
solution is introduced. Next, the mission planning system is
discussed and a multiagent planning algorithm is introduced
for finding reduced makespan plans for the multirobot prob-
lem. The task planning system is then introduced, and it is
shown how planning domains and problems can be automat-
ically generated. The paper concludes with a set of experi-
ments, some in simulation and some from a real factory en-
vironment, that demonstrate the complete system.

Related Work

Planning has a long association with robotics, stretching
all the way back to Shakey (Nilsson 1984) and Handey
(Lozano-Pérez et al. 1989). Most modern autonomous
robots follow a hybrid approach (Gat 1998; Ferrein and
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Lakemeyer 2008; Bensalem and Gallien 2009; Magnenat
2010), with researchers focused on finding appropriate inter-
faces between the declarative descriptions needed for high-
level reasoning and the procedural ones needed for low-level
control. For example, in architectures like (Gat 1998), a de-
liberative layer is responsible for generating plans. The in-
termediate “sequencing” layer is responsible for choosing
the plan that is appropriate for the current situation and the
reactive layer executes the actions specified in the plan.

Robot task planning has also become an active research
area recently, with approaches taken from areas such as
sampling-based motion planning (Plaku and Hager 2010;
Barry 2013), symbolic planning invoking motion-planning
functions (Dornhege et al. 2009; Gravot, Cambon, and
Alami 2005), and probabilistic pre-image back-chaining
(Kaelbling and Lozano-Pérez 2013). ROSPlan (Cashmore
et al. 2015), a Robot Operating System (ROS)-based tool
for task planning provides a general framework for plan-
ning in robotics and has been successfully deployed on au-
tonomous underwater vehicles. Our work adds the capability
of automatically generating planning domains and problems
from existing robot-level skill definitions: reusable robot-
level control modules, which are a common technique for
representing a robot’s actions.

Knowledge representation also plays a fundamental role
in the integration of planning in robotics. A prominent ex-
ample is the KnowRob system (Tenorth and Beetz 2013;
2012), which combines knowledge representation and rea-
soning methods for acquiring and grounding knowledge in
physical systems. KnowRob uses a semantic library which
facilitates loading and accessing ontologies represented in
the Web Ontology Language (OWL). A similar approach is
presented in (Björkelund et al. 2012; Stenmark and Malec
2013; Bjørkelund and Edstrom 2011) as part of the Rosetta
project, which focuses on how skills should be modelled for
industrial assembly tasks. Another study can be found in
(Huckaby 2014), who defined a precise taxonomy of skills.
Our approach also uses an OWL ontology at the task plan-
ning level for the robot’s world model and skill definitions.

Mission planning also plays an important role in our
work, for assigning goals to individual robots in a robot
fleet, by focusing on multiagent techniques that attempt to
exploit the underlying structure inherent in multiagent do-
mains (Brafman and Domshlak 2008). ADP (Crosby, Rovat-
sos, and Petrick 2013) and MAPR (Borrajo 2013) are exist-
ing multiagent planners that could solve the problems, but
only with outputs where one robot performs all actions. For
MAPR, the load-balance option could give results with low-
ered makespan, but this could not scale up to the full-sized
problems. Load-balance is a goal assignment strategy that
has similarities to the methods employed in this paper, de-
signed to keep a good work-balance among the agents. Other
multiagent planners such as MA-FD (Nissim and Brafman
2012) did not scale to the problems sizes used in our domain.

System Architecture

Figure 2 shows the system architecture. Arrows represent
generic ROS services, except for communication between

Figure 2: Overview of the system architecture.

the logistics manager and the manufacturing execution sys-
tems (MES), which conforms to the factory’s system inter-
faces. At the centre of the upper level is the logistics man-
ager which is responsible for handling the complete environ-
mental (world) model, including the status of each robot, and
also for interfacing with the factory’s manufacturing execu-
tion system (MES) in order to retrieve information about the
current state of the factory environment and the orders to be
filled. The logistics manager also interacts with the mission
planner. When orders are received they are sent to the mis-
sion planner which returns mission assignments to be sent to
individual robots in the fleet.

At the centre of the lower level is the SkiROS system
(Skills-ROS) (Rovida and Krüger 2015), with an instance
running on each robot. Once a mission is sent to a robot,
SkiROS invokes the task planner to find a sequence of skills
whose execution should lead to the successful completion
of the mission’s goals. Skills contain robot execution code,
sensing actions, and world model updates. The world model
updates are accessible to the task planner and used to au-
tomatically create planning actions. During skill execution,
the robot’s internal world model is constantly updated and
replanning is invoked in the case of execution failure.

Both the logistics manager and SkiROS have GUIs de-
signed for easy access to the current system state, and for
factory workers to program and update the system. The lo-
gistics manager’s user interface can be used to configure
the warehouse environment, trigger the mission planner to
generate missions, send and receive missions and tasks, and
to monitor the system. The SkiROS user interface can be
used to add custom skill sequences, monitor and update the
robot’s world model, and initiate the execution of skills.

Mission Planning

The mission planner has the task of assigning missions (goal
sets) to each robot in the fleet by communicating with the
logistics planner which models world state information.
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Figure 3: Logistics manager world model modes: (a) 2D
CAD image, (b) 2D SLAM image, and (c) 3D point cloud.

Logistics Manager

The logistics manager forms the bridge between the robots,
the mission planner, and the factory’s MES elements
(Crosby et al. 2016). It stores data about the working en-
vironment, including identifiers for all physical objects and
their three dimensional models. Information is initially com-
piled from the MES, manual input by a kitting technician,
and the states and capabilities of the robots as defined in
SkiROS (see below). The information communicated by
the logistics manager mainly concerns the physical objects
that are located in the environment. In our application, this
equates to shelves, small and large boxes, conveyors, kits,
parts, and packaging elements.

The logistics manager supports three methods for in-
putting and storing information about the environment (Fig-
ure 3). First, a 2D image is created by a CAD application to
visually specify the location and orientation of each object in
the logistics supermarket (Figure 3a). The red rectangle rep-
resents the object being placed whilst the remaining rectan-
gles represent objects already in place. Second, a 2D image
created by the robot through its Simultaneous Localization
and Mapping (SLAM) functionality can be used to visually
specify an object’s location and orientation (Figure 3b). Fi-
nally, a 3D image of the supermarket is also created to visu-
ally specify object locations and orientations (Figure 3c).

Mission Planner

The mission planner takes goal and world state information
from the logistics manager and returns goal assignments for
each robot in the fleet. To achieve this, it solves a multi-
agent planning problem and uses the goal decomposition
of the returned plan as the mission assignment. The plan-
ning domain here is created manually allowing it to focus on
only the salient information for multirobot goal assignment
contained in the logistics manager’s detailed world model.

Algorithm 1: Heuristic Value Calculation of ADBP.
Input : State S, Goals G
Output: h max , h square, or h total

1 Relaxed Planning Graph Generation (full)
2 if Max layer > 0 then
3 Calculate Subgoals

G ← G ∪ subgoals
4 foreach agent i do
5 foreach Goal g ∈ G do
6 if h add(g, i) > 0 then
7 ExtractRelaxedPlan(g, i)
8 hff (i) ← RelaxedP lan(i).cost
9 h max = max i hff(i)

10 h square =
∑

i hff(i)2
11 h total =

∑
i hff(i)

The CAD models and exact locations and orientations of ob-
jects are ignored. Using the hand-crafted planning domain, a
planning problem instance is generated automatically from
the logistics manager’s world model (which also contains
the skill sets for each robot). The details of this generation
are fairly trivial once a suitable extracted planning domain
is decided upon and will not be covered here.

Table 1 shows the results of testing several planners on
problem instances of different sizes. The single-agent plan-
ners could not scale to the larger problems and, while the
multiagent planner ADP could, it could only return plans
with a single robot performing all the actions. The only rea-
son it could cope with the larger problems was that it effec-
tively ignored the extra complexity introduced by multiple
robots. Its decomposition algorithm splits the problem into
one for each robot and then, because of the way the heuristic
is designed, finds that the first robot can complete the entire
problem and never needs to consider any of the other robots
again. MAPR set to rest-achievable is a similar algorithm
and has the same behaviour, while on other settings it can-
not scale past the single-agent planners. It is therefore not
useful for our purpose as not only do we need to find a solu-
tion in a reasonable timeframe, but the solution must also be
fairly evenly balanced amongst the robots.

Our solution is a new multiagent planning algorithm
called ADBP that is implemented as a derived class of the
Heuristic class in Fast Downward (Helmert 2006). ADBP
modifies the heuristic function of ADP to return results that
respect each agent’s possible contribution for each state in
the search space. While slowing down planning times, this
leads to the planner returning lower makespan plans in a rea-
sonable time frame for our application, and is the only so-
lution we know of that works for our problem with larger
numbers of robots. The makespan of the returned plans is
calculated as the maximum number of actions that a single
agent must perform.

ADBP uses the agent decomposition calculated by ADP
(Crosby 2014). The heuristic value calculation is shown in
Algorithm 1. Relaxed Planning Graph (RPG) Generation is
based on that introduced by FF (Hoffmann and Nebel 2001),

473



Problem No. of No. of POPF2 FF LAMA ADP
Number Robots Goals time (s) cost time (s) cost time (s) cost time (s) cost

1 2 4 0.52 29 0.01 30 0 24 0.01 24
2 2 4 – – 0.34 54 0.01 54 0 54
3 2 4 – – 0.01 74 0.01 74 0.01 74
4 2 6 – – 7.11 132 0.04 111 0.02 132
5 4 6 – – – – – – 0.02 111
6 4 8 – – – – – – 0.03 148
7 6 8 – – – – – – 0.05 148
8 6 10 – – – – – – 0.06 185
9 8 10 – – – – – – 0.08 185

10 10 10 – – – – – – 0.11 185

Table 1: Table showing the performance of planners on mission planning domains when the makespan of the output plans was
ignored. A ‘–’ means that the planner did not return a plan within 300 seconds.

but modified for the multiagent case. Each agent generates
its own RPG based on the problem reduced to only their
variables and environment variables. After this, the union of
the final state of each agent is then used to create another
layer of RPGs. This process repeats until no further proposi-
tions can be added by any agent and guarantees that the full
relaxed plan space is explored.

If more than one layer of RPGs have been generated, then
subgoals are calculated. Any time a goal proposition appears
in a layer above the first, this means that it cannot be reached
by an agent on its own. Therefore, plan extraction (Hoff-
mann and Nebel 2001) is used to find which proposition is
utilised from the previous layer. All necessary propositions
from the previous layers are added to the set of subgoals.

In the final step of the heuristic calculation, each agent
creates its own relaxed plan to every goal in the goal set
(including subgoals) that it can achieve. This is simply the
goals that appear in the first layer of the multiagent RPG for
each agent. The value hff (i) is the cost of agent i’s relaxed
plan. This only counts each action once (even if it is used to
reach multiple goal propositions). Any action that appears
in a relaxed plan (of any agent) that is also applicable in the
current state is set as a preferred operator. With this informa-
tion, there are three different versions of ADBP based on the
way the individual heuristic values calculated by each agent
at each state are combined:

ADBP-max uses the value h max which is the maximum
hff value of all the agents. This discards a lot of the informa-
tion that has been calculated, but is as close as possible to the
estimated makespan of the plan from the current state. As
ADBP is primarily concerned with minimising makespan,
this is a natural heuristic to investigate. The downsides are
that it discards a lot of potentially useful information and has
little concern for how close the goal state actually is. For ex-
ample, 5 agents with hff = 9 return a worse heuristic value
than if four have hff = 0 and one has hff = 10.

ADBP-total takes the other extreme and uses the sum
of each agent’s hff values. This is much further from the
makespan heuristic estimate but encodes more information
about the distance from the state to the goal. It should be
noted that this is different than the single-agent FF value
for the state because goals are repeated by all agents that

can achieve them and subgoals are included in the calcula-
tion. The downside of this calculation is that it does not take
makespan into account at all (beyond the fact the value is
calculated over multiple agents).

ADBP-square attempts to mediate between the two ex-
tremes and uses the sum of squares of the hff values of the
agents. The idea is to use all the information available whilst
taking the variance between the agent values into account.

The difference between ADBP and ADP’s heuristic calcu-
lation is massive. Once ADP chooses an agent to perform the
next goal set, it restricts the planning problem to that agent
and then never considers any of the others until it either gets
to a dead end or completes all the current goals. In ADBP,
each agent in involved in the heuristic value calculation for
every state in the search space.

Task Planning

Task planning is performed by each robot using a domain
and problem automatically generated by the robot’s on-
board world model and skills definitions, with the goals sent
to it from the mission planner (mediated by the logistics
manager). The world model and skills information are stored
and managed by SkiROS (Skills-ROS).

SkiROS

A SkiROS component is located on each robot and con-
trols robot-level execution and ontology management. It also
communicates status updates and receives mission assign-
ments from the logistics manager. SkiROS is organised into
four layers, each of which is represented by a manager. The
lowest layer is the device manager, which loads proxies
(drivers which conform to a standard interface) and presents
standard interfaces for similar devices (e.g., gripper, arm,
camera, etc.). The second layer contains the primitive man-
ager which contains motion primitives and services. The
third layer, the skill manager, loads skills (see below) and
provides interfaces to the layer above. It also registers the
robot subsystem with the world model, specifying the hard-
ware, available modules, and available skills. Finally, the
fourth layer of the architecture is the task manager which
monitors the presence of subsystems via the world model
and acts as a general coordinator. The task manager contains
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Figure 4: An overview of the SkiROS architecture of which
the task planner is a part.

Figure 5: The conceptual model of a SkiROS skill.

the task planner and is the interface for external systems, de-
signed to be connected to a GUI or the factory’s MES.

A central concept in SkiROS is the idea of skills, which
can be thought of as modelling self-contained, re-occurring
operations that a robot might perform. For example, a sys-
tem might include calibration skills, manipulation skills for
operations like picking and placing, as well as driving skills
for mobile robots. The conceptual model of a robot skill is
shown in Figure 5. A skill takes as input a set of param-
eters and the current world state and outputs a set of state
changes. A skill contains interactions with the world model
in the form of either pre-execution or post-execution checks
and updates. For example, a pre-execution check for a pick
skill might be that the item to be picked must be visible to a
camera, and a post-execution check might be that the picked
item is in the gripper. These become preconditions and post-
conditions when translated to a planning domain.

SkiROS’s world model acts as a knowledge integration
framework and uses the web ontology language OWL. The
world state is partially defined by a human operator in the
ontology, partially abstracted by the robot using perception,

Figure 6: A simplified world model instance, presenting
some physical objects (blue) and abstract objects (orange).
All physical objects are connected by one spatial relation
(“hasA” or “contain”) in a scene graph structure.

Drive(MobileBase, Container) :

add: RobotAt(Container, MobileBase)

Pick(Gripper, Object, Container) :

pre: empty(Gripper)
pre: robotAt(Container, Robot)
pre: objectAt(Container, Object)
del: empty(Gripper)
add: contains(Gripper, Manipulatable)

Figure 7: Part of the skill definitions in the SkiROS world
model accessible to the task planner.

and completed with the procedural knowledge embedded in
the skills and primitives. It is originally populated with the
robot skills knowledge, robot-specific knowledge such as
grasp poses or parameter settings, and with the world model
provided by the logistics manager. Each skill manager in
the system is responsible for keeping the world model up-
dated with its subsystem information (e.g., hardware, avail-
able primitives, skill state, etc.). Figure 6 shows an example
instance of a world model for our application domain.

Skills are modelled to be object centric, and are therefore
parameterised solely using elements that are instantiated in
the scene. If a new skill is added to the system, then it must
interact with the same (perhaps updated) world model and
same object representations. Figure 7 shows the part of the
definition of the Drive and Pick skills accessible to the task
planner. The Properties component shows the different types
of parameters that the skill can be instantiated with. The pre-
conditions and postconditions can be chosen from a library
of predefined classes derived from properties that can be set
or verified in the ontology. The skill also contains an exe-
cutable part that embeds the procedural knowledge about the
action in the real world, and which maps to a corresponding
modification in the world model.
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Figure 8: Overview of the task planning process and the cre-
ation of its internal planning representation. Dotted arrows
towards the representation represent data modification while
dotted arrows in the other direction represent read access.

Task Planner

The task planner has three main functions: it creates a PDDL
representation of the skills, current state and goals; it calls
an external planner to attempt to find a plan for the cur-
rent goals; and, if a plan is found, it returns a sequence of
skills to the task manager. The task planner creates a plan-
ning domain and problem written in PDDL 1.2 with only the
types requirement. This means that the output is suitable
for use with almost all modern planning systems. In what
follows we use the standard definition of STRIPS-like plan-
ning actions (Fikes and Nilsson 1971) with pre, add, and del
representing the preconditions, add effects and delete effects
of an action, respectively.

Task Planner Operation

The task planner uses skill information about the parame-
ters, the current state of the world model required for the
skill to be execute, and the expected state change caused by
the successful execution of the skill. The skill properties be-
come the parameters for the action and the preconditions and
postconditions become the members of pre and del ∪ add ,
respectively. An overview of the task planner’s algorithm for
generating the planning problem is shown in Figure 8. This
process is invoked (with the internal planning representation
reset) every time the task manager requires a plan. The cen-
tral part of the figure shows the task planning library which
contains all the necessary structures to create a PDDL plan-
ning problem out of the current world state, skills and goals.

The code blocks on the left hand side of the figure deal
with naı̈ve translations of world model information into
the structures used in planning. This process is relatively
straightforward given the design of the skills. The right hand
side involves transforming the skills and world model infor-
mation to ensure a consistent planning problem.

Initial Planning Representation The process of creating
the initial planning representation is given in Algorithm 2
and involves three main steps. The first step is to parse the
skills that exist in the world model. Only types or predicates
parsed from the skills will be required to solve the planning
problem (it would be impossible to change the truth value of

Algorithm 2: Planning Domain Creation
Input : SkiROS World Model (wm), Goals (goal)
Output: Initial Planning Representation
// Parse Skills

1 foreach Skill s : wm do
2 types.addAllNewTypes(s)
3 predicates.addAllNewPredicates(s)
4 actions.addNewAction(s)
// Add Goal State

5 foreach Goal g : goal do
6 goals.add(g);
// Parse World Model State

7 foreach Predicate p: predicates do
8 initState.addAllTrueGroundings(p, wm)
9 objects.addAllNewObjects(p,wm)

Algorithm 3: Planning Domain Refinement
Input : Initial Planning Representation
Output: Final Planning Representation
// Add Capabilities

1 foreach Action a : actions do
2 predicates.add(can a ?robot)
3 a.pre.add(can a ?robot)
4 foreach Robot r : hasSkill(a, r) do
5 initState.add(can a r)
// Spatial Relation Constraints

6 foreach Action a do
7 foreach Spatial Relation S(o, s) ∈ a.add do
8 if � ∃S ∈ a.pre AND � ∃S ∈ a.del then
9 s.params.add(x, s.type)

10 s.pre.add(S(o, x))
11 s.del.add(S(o, x))
12 else if � ∃S ∈ a.pre then
13 s.pre.add(S(o, s))
14 else if � ∃S ∈ a.del then
15 s.del.add(S(o, s))

any predicate that does not appear in the effect of an action,
or require the truth of any predicate that does not appear
in the precondition of an action). Parsing a skill involves
an almost direct translation from Properties to parameters,
hasPreCondition to preconditions and hasPostCondition
to the add and del effects. Skill parsing adds all required
types to the planning representation.

The second step instantiates the goal returning an error if
it contains a predicate that has not yet appeared. The final
step obtains initial state of the planning problem from the
world model. This process creates both the initial state, and
the list of objects in the domain. The process iterates over all
the predicates added when parsing the skills and queries the
world model (through the interface available in SkiROS) to
find all ground instances of the predicates that are true.

Transforming the Planning Problem The right hand side
of Figure 8 encodes implicit properties of the world model
and system. The first part makes sure that skills are only us-
able by the correct elements, by querying the hasSkill rela-
tion from the world model. For each action, a new invariant
predicate (can a ?robot) is added to the planning de-
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(:action drive
:param (?R - Agent ?T - Location
* ?preT - Location)

:pre (and
* (can_drive ?R)
* (RobotAtLocation ?R ?preT))

:eff (and
* (not (RobotAtLocation ?R ?preT))
(RobotAtLocation ?R ?T)))

Figure 9: The Drive skill after translation to PDDL. The as-
terisked (*) lines are added by the translation.

scription. An extra precondition (can a ?robot) is also
added to each action so that it can only be instantiated by
the correct robots. If the Robot parameter is not in the skill
definition then it is added to the action parameters (and re-
moved before returning a plan).

The second part adds any preconditions and delete effects
necessary to maintain the tree structure of the spatial rela-
tions in the world model. SkiROS contains methods for in-
ternally updating its world model that need to be modelled
explicitly in the planning domain. For instance (see Figure 7)
the Drive skill only contains a single predicate which speci-
fies the new location of the robot. The drive action must be
modified so that robotAt is true of only one grounding for
the robot performing the Drive skill, so the old location must
be added as a precondition and delete effect of the action.

Figure 9 shows the skills from Figure 7 after translation
to PDDL. In terms of implementation, the parameter added
to the Drive skill is removed when returning the parame-
terised skill to the task manager. The translation adds three
new preconditions and two new delete effects over the two
actions. Performing an action created by the task planner on
a problem whose spatial relations form a tree will result in
a state in which the spatial relations still form a tree. This is
because any deletion of a spatial relation property inserts it
elsewhere with the same object (therefore moving the whole
subtree), and every addition has a corresponding deletion.

Once the translation is complete, the planning problem is
written to domain and problem files in PDDL for use with an
external planner. The planner’s output (a sequence of instan-
tiated actions) is parsed and converted back to parameterised
skills to be sent to the task manager for robot execution.

Experiments

Three separate experiments were performed to test the sys-
tem. The first experiment involved offline testing of the mis-
sion planner to determine which planning algorithm worked
best for this domain. As no existing algorithm could solve
the largest problem and produce a multiagent solution, a new
algorithm was developed for this task. The second set of ex-
periments involved offline testing of the task planner in sim-
ulation, and its integration with the SkiROS system. These
tests showed successful automatic generation and solution
finding for the skills used in the application domain. Finally,
on-site testing with a physical robot in a real factory environ-
ment explored how the planning system performed as part of
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Figure 10: A visualisation in rviz of the simulated environ-
ment used for the offline task planner experiments.

the complete system.

Offline Mission Planner Testing Table 2 shows the re-
sults for the different versions of ADP. While ADBP takes
considerably longer than ADP, it can find properly multi-
agent plans with the output split between multiple robots.
These plans are found within a reasonable time frame for the
system. Of the other multiagent planning algorithms tested
that can return lower makespan plans, MA-FD solves only
problem 1, and MAPR on load-balance setting can solve
only up to problem 4. The results for ADBP-max are clearly
also not good enough for it to be usable in our application.
However, they have an interesting property that the returned
plans contain actions that are almost always interleaved be-
tween the different robots. ADBP-squ and total on the other
hand return plans with agents performing many actions in a
row. This does not affect the mission assignments performed
in our application, but may of interest for other work.

Offline Task Planner Testing Figure 10 depicts the sim-
ulated environment. The experiments used a simulated ver-
sion of a mobile manipulator containing an articulated robot
arm mounted on a mobile platform. For the simulation, the
hardware drivers are substituted with simulated versions us-
ing the same ROS interfaces. An inherent part of the skills is
that they perform the necessary sensing operations to com-
plete the skill, these are set to automatically return success
in the simulation.

For the experiments, the task planner used the Fast-
Downward planner (Helmert 2006), with A* search and the
landmark-cut heuristic. Since the planning problems created
by the translation process do not test the limits of the exter-
nal planner there was no benefit in comparing different plan-
ning approaches. Instead, any state-of-the-art planner that
supports the required features could be used in its place.

The first experiment did not include the skill manager of
the mobile base. The robot was placed in front of a pallet
with two smaller boxes containing thermal shields and en-
gine supports. The pick and place skills were executed cor-
rectly when the goal contained only those two parts. If other
parts (in different locations) are added to the goal, then the
task planner returns (correctly) that no plan can be found.
The extraction of the planning domain, and the planning it-
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Problem No. of No. of Time (seconds) Plan Length Makespan
Number Robots Goals orig max squ total orig max squ total orig max squ total

1 2 4 0.01 0.01 0.01 0.01 24 24 24 24 24 12 12 12
2 2 4 0 0.01 0.01 0.01 54 54 54 54 54 27 27 27
3 2 4 0.01 0.03 0.02 0.02 74 74 74 74 74 37 37 37
4 2 6 0.02 0.46 13.11 13.07 132 132 153 154 132 66 95 95
5 4 6 0.02 3.91 0.19 0.19 111 174 111 111 111 58 37 37
6 4 8 0.03 – 0.35 0.35 148 – 147 147 148 – 37 37
7 6 8 0.05 – 0.96 0.95 148 – 148 148 148 – 37 37
8 6 10 0.06 – 1.59 1.6 185 – 185 185 185 – 37 37
9 8 10 0.08 – 3.42 3.41 185 – 185 185 185 – 37 37

10 10 10 0.11 – 6.33 6.31 185 – 185 185 185 – 74 74

Table 2: Table showing the performance of the different versions of ADP on the testing domains. Key: orig is the original ADP
algorithm. max is ADBP-max, squ is ADBP-square, and total is ADBP-total.

drive mobbase-2 loc-1 lbox-10
pick lbox-10 gripper-6 t_shield robot-3
drive mobbase-2 lbox-10 lbox-9
place grip-6 t_shield celld-19 kit-15 robot-3
pick lbox-9 gripper-6 starter robot-3
place grip-6 starter cellb-17 kit-15 robot-3

Figure 11: An example plan from testing in simulation.

Order Attempts Planning Success Exec Time (s)
3 parts 15 15 310
4 parts 22 22 380
5 parts 2 2 -

Table 3: Results from testing the complete system in a fac-
tory environment.

self, is completed in 0.6s, resulting in a plan with four skills
that is executed in 78s.1

In the second experiment, the skill manager of the mo-
bile base is added, which adds the drive skill, allowing the
robot to navigate to different containers. Domain extraction
correctly registers the additional drive skill from the extra
skill manager, and includes this in the planning domain. The
goal can now include any part, and a plan is found that will
drive the robot to the correct pallet before picking the part
and placing it in the kit. Figure 11 shows the plan found for
the goal of filling a kit with two parts: a thermal shield and
a starter. If a goal for the robot to finish at a particular lo-
cation is included, then this is achieved as well. When the
goal request is for a complete kit with six parts, the PDDL
extraction and planning takes 0.9s. The resulting plan with
18 skills is executed correctly in 371s.

Factory Testing The complete system was deployed in a
real-world environment at a PSA Peugeot Citroën factory (as
shown in Figure 1). The results of the experimental testing
are presented in Table 3. The tests were carried out using
simulated kitting orders as input. The planner used in this

1Planning, motion planning, simulation, SkiROS and visualisa-
tion ran on a 2011 laptop with an i7@2.7GHz processor.

system was Temporal FastDownward (Eyerich, Mattmller,
and Röger 2009). As we had access to only one robot in the
testing factory, this could not test the multi-agent planning
component of the system.

The planning success rate shows the success of the sys-
tem up to the point of creation of the robot’s task-level plan.
In all cases, the mission planner successfully found mis-
sion assignments, and the task planner found correct skill
sequences to complete the missions. The main failure points
in the system, leading to no complete missions in the 5 parts
case, came from robot execution code for individual skills,
which is still under development. In some failure cases, re-
planning was able to recover from a failure in execution.
However, execution failure often led to the robot being man-
ually stopped, or to inconsistent world states where replan-
ning was not effective.

Overall, the results show that the system architecture is
sound, but the execution code for the skills needs to be im-
proved. Due to the modular nature of the system design, the
skill execution code can be updated without affecting the au-
tomated planning in the system.

Conclusions

This paper presented a fully implemented software frame-
work for deploying autonomous robot systems in an indus-
trial setting, which used two different planning systems. A
task planner used a robot skills model to automatically gen-
erate a planning problem to be solved from the robots’ world
model. The system also included a high-level mission plan-
ner and a new multiagent planning algorithm that could find
mission assignments for a larger robot fleet. The resulting
system has been shown to operate successfully in a simu-
lated factory environment, and the planning systems have
been successfully deployed in a real factory setting.
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