
What Can I Not Do? Towards an Architecture
for Reasoning about and Learning Affordances

Mohan Sridharan and Ben Meadows and Rocio Gomez
Department of Electrical and Computer Engineering

The University of Auckland, Auckland 1023, NZ
{m.sridharan@auckland.ac.nz, bmea011@aucklanduni.ac.nz, mgom004@aucklanduni.ac.nz}

Abstract

This paper describes an architecture for an agent to learn and
reason about affordances. In this architecture, Answer Set
Prolog, a declarative language, is used to represent and reason
with incomplete domain knowledge that includes a represen-
tation of affordances as relations defined jointly over objects
and actions. Reinforcement learning and decision-tree induc-
tion based on this relational representation and observations
of action outcomes, are used to interactively and cumulatively
(a) acquire knowledge of affordances of specific objects be-
ing operated upon by specific agents; and (b) generalize from
these specific learned instances. The capabilities of this ar-
chitecture are illustrated and evaluated in two simulated do-
mains, a variant of the classic Blocks World domain, and a
robot assisting humans in an office environment.

1 Introduction

Consider a robot1 assisting humans by delivering specific
objects to specific people or places in an office environment.
This robot will be called upon to do a variety of tasks in a
complex, dynamic environment under resource constraints.
While it will be difficult for the robot to operate in such
an environment without substantial domain knowledge and
guidance, it will be equally challenging for human partici-
pants to continuously observe and guide the operation of the
robot. Considerable attention continues to be devoted to the
underlying problems such as autonomy, perception, control
and high-level cognition. However, to truly assist and col-
laborate with humans in complex environments, the robot
also needs the ability to recognize and reason about human
intent and its own action capabilities, which remains an open
problem in robotics and artificial intelligence (AI).

This paper focuses on enabling a robot to reason about
and learn affordances. Research in psychology and AI has
provided many theories and computational models for affor-
dances, as discussed in Section 4. We consider a thing’s af-
fordance as a combination of its attributes with reference to
an agent and an action under consideration (Gibson 1986),
e.g., we describe the affordance of a person climbing a stair
in terms of the stair’s height with reference to the person’s
leg length (Warren 1984). Reasoning with such affordances

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1We use terms “robot”, “agent” and “learner” interchangeably.

is important to compute and successfully execute a planned
sequence of actions to achieve any given goal, but it will be
difficult to fully and correctly specify the attributes of all ob-
jects, agents and actions. In addition, the robot may have to
reason with different descriptions of knowledge and uncer-
tainty, including default knowledge (“textbooks are typically
in the library”) and probabilistic notations (“I am 90% sure I
saw Marc in his office”). These challenges are partially ame-
liorated by the understanding that the robot’s observations
are a rich (albeit unreliable) source of information about ac-
tion capabilities. Furthermore, planning and learning can
bootstrap off each other, e.g., the robot can actively direct its
sensing and actuation to acquire relevant information, and
the learned information can be used to compute better plans
to achieve desired goals. The architecture proposed in this
paper builds on this understanding to address the challenges
in reasoning about and learning affordances—it has the fol-
lowing key features:

• An action language describes the incomplete domain
knowledge, potentially at different resolutions. The cor-
responding tightly-coupled transition diagrams are trans-
lated to relational representations that are used for infer-
ence, planning and diagnostics.

• Non-monotonic logical reasoning, relational reinforce-
ment learning and decision tree induction are used for
cumulatively acquiring knowledge regarding affordances,
and for generalizing across specific instances. This
knowledge is used for subsequent reasoning.

Although the overall architecture supports reasoning with
both logic-based and probabilistic knowledge at different
resolutions, we abstract away perceptual uncertainty and
probabilistic reasoning in this paper to focus on the inter-
play between planning and learning. Non-monotonic logical
reasoning is achieved by translating the domain knowledge
to an Answer Set Prolog (ASP) program that is solved for
planning and diagnostics. Knowledge about affordances is
acquired and generalized using reinforcement learning and
decision-tree induction based on the relational representa-
tion. These capabilities are illustrated in two simulated do-
mains: (1) a variant of the classic Blocks World domain in
which the goal is to stack blocks in specific configurations;
and (2) an assistive robotics domain in which the robot has
to deliver specific objects to specific people or locations.

Proceedings of the Twenty-Seventh International Conference on Automated Planning and Scheduling (ICAPS 2017)

461

Action language
description

Decision−tree

induction

formulation
Learning

diagnostics

Planning +

description

Relational Inference

Inference

Generalization

knowledge

affordances
Learned

Domain

Figure 1: Architecture combines non-monotonic logical rea-
soning and relational learning for reasoning with and learn-
ing affordances.

The remainder of the paper is organized as follows. First,
Section 2 describes the example domains and the proposed
architecture. Next, Section 3 illustrates, and describes the
results of experimentally evaluating, the architecture’s capa-
bilities in the example domains. Section 4 discusses a rep-
resentative set of related work, followed by the conclusions
and directions for future research in Section 5.

2 Proposed Architecture

Figure 1 presents an overview of the proposed architecture.
Incomplete domain knowledge about actions is encoded in
an action language and used in conjunction with other do-
main knowledge (e.g., about initial domain state) to con-
struct a relational representation. This architecture builds on
our prior work that supports logic-based and probabilistic
reasoning at two tightly coupled resolutions (Sridharan and
Gelfond 2016; Sridharan et al. 2016). However, in this paper
we focus on the interplay between reasoning and learning
and abstract away perceptual uncertainty. We thus do not de-
scribe probabilistic reasoning and translate the relational do-
main representation into an ASP program that is solved for
planning and diagnostics. Reasoning with the ASP program
is also used to formulate the task of discovering affordances
as a relational reinforcement learning problem, using deci-
sion tree induction to generalize across specific instances of
affordances. The discovered affordance relations are added
to the ASP program and used for subsequent reasoning. We
illustrate the architecture’s capabilities using the following
two simulated domains.

• Blocks Puzzle (BP): a variant of the classic Blocks
World domain, in which the robot’s objective is to use
an arm/gripper to stack blocks in particular configura-
tions. The arm is characterized by atype (magnetic, pneu-
matic) and asize (small, large). Blocks are characterized
by bcolor (red, green, blue), bsize (small, large), and
bmaterial (metallic or wooden). The action in the domain
is move, and the robot may not know that:

– A magnetic arm cannot move a wooden block.

– A small arm cannot move a large block.
• Robot Assistant (RA): a domain that simulates a robot

delivering objects to people or places in an office build-
ing with four places (office, kitchen, library, workshop).
Each room has one or more doors and instances of ob-
jects such as desk, book, cup and computer. Human(s) in
each room may have a different role (engineer, manager,
programmer). Objects are characterized by osize (small
or large), oweight (heavy, light) and otype (fragile, nor-
mal). A door is characterized by dsize (small, large) and
dknobpos (high, medium, low). The robot’s arm is char-
acterized by astrength (weak, strong), amaterial (padded,
normal), and alength (short, medium, long). The robot’s
actions include pickup, putdown, opendoor, move and
serve. The robot may not know the following about the
pickup action:
– A weak arm cannot pick up a heavy object.
– Only a padded arm can pick up a fragile object.
and the following about the opendoor action:
– A weak arm cannot open a heavy door.
– A short arm cannot open a door with a high knob.

2.1 Relational Domain Representation

Action languages are formal models of parts of natural lan-
guage that are used for describing action effects. We use
action language ALd (Gelfond and Inclezan 2013) to de-
scribe the transition diagrams of our domains. ALd has a
sorted signature with three sorts: statics, fluents and actions.
Statics are domain properties whose truth values cannot be
changed by actions, whereas fluents are domain properties
whose truth values can be changed by actions. Basic fluents
obey laws of inertia and are changed directly by actions, and
defined fluents do not obey inertial laws and are not changed
directly by actions. Actions are defined as a set of elemen-
tary operators. A domain property p or its negation ¬p is a
domain literal. ALd allows three types of statements:

a causes lb if p0, . . . , pm (Causal law)
l if p0, . . . , pm (State constraint)
impossible a0, . . . ,ak if p0, . . . , pm (Executability condition)

where a is an action, l is a literal, lb is a basic literal, and
p0, . . . , pm are domain literals.

Domain description The domain representation consists
of system description D , a collection of statements of ALd ,
and history H . D has a sorted signature Σ and ax-
ioms that describe the desired transition diagram τ . Sig-
nature Σ defines the basic sorts, domain properties and
actions of the domain. For instance, basic sorts of the
BP domain include block, place, bcolor, bsize, bmaterial,
robot etc, whereas the sorts of the RA domain include
place, robot, role, book, computer, osize, oweight, otype,
astrength, amaterial, alength etc. Sorts that are subsorts
of other sorts, e.g., cup and book are subsorts of ob ject,
are arranged hierarchically. Σ also includes ground in-
stances of sorts, e.g., in the RA domain, rob1 of sort

462

robot, {o f f ice,workshop,kitchen, library} of sort place,
and {engineer, programmer,manager} of sort role. Both
domains include sort step for temporal reasoning.

Domain properties and actions are described in terms
of the sorts of their arguments. The BP domain’s ba-
sic fluent loc(block, place) describes the place location of
each block. Static attributes include color(block,bcolor),
size(block,bsize) and material(block,bmaterial). Ac-
tion move(robot,block, place) has the robot move a
block to another block or the table. The RA do-
main’s fluents are loc(entity, place), the location of the
robot and objects—the location of humans is a de-
fined fluent (e.g., obtained from a sensor network);
and in hand(robot,ob ject). Static attributes include
armlength(robot,alength), knobpos(door,dknobpos) etc.
Actions include move(robot, place), pickup(robot,ob ject),
putdown(robot,ob ject), serve(robot,ob ject, person) etc.
In both domains, relation holds(f luent,step) implies that
a particular fluent holds true at a particular timestep.
For the BP domain, D includes axioms such as:

move(R,B,L) causes loc(B,L)
¬loc(B,L2) if loc(B,L1), L1 �= L2

impossible move(R,B1,B2) if size(B1, large),
size(B2,small)

For the RA domain, D includes axioms such as:

pickup(rob1,O) causes in hand(rob1,O)

serve(rob1,O,P) causes in hand(P,O)

¬loc(E,L2) if loc(E,L1), L1 �= L2

impossible pickup(rob1,O) if loc(rob1,L1), loc(O,L2),

L1 �= L2

The recorded history H of a dynamic domain is usually a
record of fluents observed to be true/false at a time step, i.e.,
obs(f luent,boolean,step), and the occurrence of an action
at a time step, i.e., hpd(action,step). Our model of his-
tory expands this notion to allow representation of defaults
describing the values of fluents in their initial states. For
instance, we can encode “books are usually in the library”,
and exceptions, e.g., “cookbooks are in the kitchen”.

ASP-based inference The domain representation is trans-
lated into a program Π(D ,H) in CR-Prolog2, a variant of
ASP that allows us to represent and reason with defaults,
direct and indirect exceptions to defaults, and incorporates
consistency restoring (CR) rules (Balduccini and Gelfond
2003). ASP is based on stable model semantics, and sup-
ports default negation and epistemic disjunction, e.g., unlike
“¬a” that states a is believed to be false, “not a” only implies
a is not believed to be true, and unlike “p ∨ ¬p” in propo-
sitional logic, “p or ¬p” is not tautologous. ASP can rep-
resent recursive definitions, defaults, causal relations, and
constructs that are difficult to express in classical logic for-
malisms. Π consists of causal laws of D , inertia axioms,

2We use the terms “ASP” and “CR-Prolog” interchangeably.

closed world assumption for defined fluents, reality checks,
and observations, actions, and defaults recorded in H . Ev-
ery default is turned into an ASP rule and a CR rule that al-
lows the robot to assume, under exceptional circumstances,
that the default’s conclusion is false, so as to restore program
consistency. Although not discussed here, Π also includes
relations and axioms for explaining unexpected outcomes
and partial descriptions extracted from sensor inputs. The
ground literals in an answer set obtained by solving Π rep-
resent beliefs of an agent associated with Π. Algorithms for
computing the entailment, and for inference, planning and
diagnostics, reduce these tasks to computing answer sets of
CR-Prolog programs.

Affordance representation Positive affordances describe
permissible uses of objects in actions by agents, whereas
negative (i.e., forbidding) affordances describe unsuitable
combinations of objects, agents, and actions. In this paper,
we represent forbidding affordances as follows:

a ff f orbids(ID,A)← not f ails(ID,A),
f orbidding a ff (ID,A)

¬occurs(A, I)← a ff f orbids(ID,A)

The second statement implies that action A cannot occur if
it is not afforded, and the first statement provides the condi-
tions under which the action is not afforded. Any action can
have one or more such relations defined with unique IDs.
For instance, if the robot in the RA domain knows that a
weak arm cannot pick up a heavy object, the following state-
ments will be included in the ASP program:

f orbidding a ff (id1, pickup(R,O))

f ails(id1, pickup(R,O)) ←
not weight(O,heavy)

f ails(id1, pickup(R,O)) ←
not armstrength(R,weak)

In complex, dynamic domains, it is difficult to equip a robot
with accurate and complete domain knowledge. This is es-
pecially challenging for complex action capabilities that de-
pend on the attributes of specific objects, agents and ac-
tions. Also, the representation of some affordances may
be incomplete or omitted unintentionally, and may change
over time (e.g., due to wear and tear). The plans created
using this incomplete knowledge may result in unintended
outcomes. Consider a scenario in the RA domain in which
the goal of a robot (that has just delivered an object to the
kitchen) is to deliver the AI book bk1 to the o ff ice. The plan,
based on the default knowledge about the location of books
(library) and the belief that the kitchen door and library door
are open, includes move(rob1, library), pickup(rob1,bk1),
opendoor(rob1,door2), move(rob1,o ff ice), followed by
putdown(rob1,bk1). The robot expects this plan to succeed
but is unable to open the office’s door (door2) because it
does not know that its weak arm, in conjunction with the
heavy door of the office, does not afford the opendoor ac-
tion. In this paper, we focus on discovering such previously

463

unknown affordances that will forbid the corresponding ac-
tions from being considered during planning to achieve any
given goal.

2.2 Relational Learning

Incompleteness or lack of knowledge about affordances is
likely to be discovered in one of two ways. The discovery of
positive (i.e., enabling) affordances may require the robot to
actively explore new object-action combinations, including
actions expected to fail. Negative (i.e., forbidding) affor-
dances, which we focus on here, are usually found when the
unexpected transition observed after executing a plan step
is considered to imply that the action is inappropriate given
the object and agent involved. To model the relationships
that led to this transition, our architecture explores the space
of relevant transitions, produces candidate relations and ax-
ioms corresponding to affordances, generalizes across these
candidates, validates the most likely candidates, and adds
them to the system description, as described below.

Tree induction When an action produces an unexpected
transition, the resultant state becomes the goal state in a re-
lational reinforcement learning (RRL) problem to find state-
action pairs likely to lead to analogous “error” states. The
RL formulation is based on the tuple 〈S,A,Tf ,R f 〉 that de-
fines the underlying Markov decision process (MDP):
• S is the set of states;
• A is the set of actions;
• Tf : S×A×S′ → [0,1] is the state transition function;
• R f : S×A×S′ → ℜ is the reward function.
Here, Tf and R f are unknown (to the agent), and each el-
ement in S grounds the domain properties. Such an RL
formulation is chosen to mimic the cumulative and in-
teractive acquisition of experiences by a robot as it per-
forms its assigned tasks—it also helps distribute the im-
mediate reward suitably over a sequence of past states and
actions. In complex domains, instead of operating over
the entire state-action space, ASP-based reasoning can au-
tomatically compute the system description relevant to a
given transition. This reduction will significantly improve
the computational efficiency of RL, while elegantly main-
taining correspondence with the original description—for
details, see our prior work (Sridharan and Gelfond 2016;
Sridharan et al. 2016). The description below assumes that
such a reduction is constructed before performing RL over
the corresponding MDP.

To estimate the Q-values of state-action pairs Q(s,a), we
employ a variation on the basic Q-learning algorithm, us-
ing a relational representation to generalize to relationally
equivalent states. An episode of Q-learning terminates when
a time limit is exceeded, or the target action succeeds, i.e.,
further exploration will not provide useful information—the
physical configuration of objects is reset to what it was at
the beginning of the episode for another episode. After one
or more episodes of Q-learning, all visited state-action pairs
and their estimated Q-values are used to update a binary de-
cision tree (BDT). The path from the BDT’s root to a leaf

node corresponds to a pair (s,a) of partial state description
s and action a. Internal nodes correspond to boolean tests
of specific attributes (of objects, agents or actions, and de-
termine the node’s descendant branches. The remainder of
the state description is stored at the leaf; some of this infor-
mation may be transferred to a new node when the BDT is
updated, if this reduces variance in Q-values. The revised
tree is used to compute a new policy, eliminating the need
to completely rebuild the tree after each episode. When the
learning process is completed, the BDT relationally repre-
sents the robot’s experiences.

Construction and revision of the BDT was informed by
the algorithm of Driessens and Ramon (2003), but our ap-
proach differs substantially. In each Q-learning episode, the
system stochastically decides to attempt either a random ac-
tion or the one preferred by the current policy, ignoring ac-
tions currently invalidated by known constraints or affor-
dances. Each action application also updates the informa-
tion stored at a relevant leaf. As more such examples are
processed, a higher value is assigned to outcomes perceived
to be similar to the originally encountered instance of un-
expected transition. These (similar) unexpected transitions
may appear in the context of many different combinations of
attributes of agents and objects. To generalize across such
related transitions, the underlying combinations of the val-
ues of attributes are revised during learning (e.g., after Q-
values have converged for a specific MDP). With our BDT
representation, we are able to easily include the experiences
from the corresponding different, but similar, MDPs. As
these different MDPs are explored, many of the explored
combinations of values of attributes will modify the current
Q-values. The Q-learning episodes are performed until the
Q-values stored in the BDT converge. Overall, multiple fac-
tors could determine the amount of time dedicated to this
learning task that mimics learning through interaction with
the environment. For complex domains, we assume that the
exploration is terminated when a certain fraction of the pos-
sible search space has been sampled.

Candidate generation In the next step, candidate affor-
dances are constructed. Given the focus on forbidding affor-
dances, each candidate is composed of the precluded action,
and a conjunction of one or more relevant attributes of ob-
jects and agents, as described in Section 2.1.

To construct candidate affordance relations, each leaf
from the induced BDT is examined, a partial state-action de-
scription is extracted using the path from the leaf to the root,
and the stored information about attributes is aggregated.
Branches with low Q-values or corresponding to an action
that did not result in the observed unexpected transition are
eliminated. The resulting structures include information on
the mean and variance of the stored Q-value, based on the
different samples clustered under each leaf. Each structure’s
statements about object attributes holding or not holding are
partitioned into two subsets, and all possible pairwise com-
binations of those subsets are examined, producing unique
tuples that each form the basis of a candidate and store the
(a) amassed Q-value; (b) total variance; and (c) number of

464

training samples that influenced the candidate.
Next, each candidate’s quality is computed based on

the Q-values of the samples it has experienced. Random
samples are drawn from the BDT3 without replacement.
Each sample is a state description combining the infor-
mation stored at a leaf and the tests at its non-terminal
ancestors. Each state description that matches a candi-
date affordance adds to its Q-value, variance, and count.
For instance, consider the target affordance in the BP do-
main, which prevents a magnetic arm from trying to move
a non-metallic object. Consider a candidate affordance
constructed from a leaf node whose path to the root de-
scribes the state color(b1,red), ¬material(b1,metallic),
armtype(rob1,magnetic), with a predicted Q-value = 9. The
resulting candidate may be:

positive:[armtype(rob1,magnetic)]
negative:[material(b1,metallic)]
Q-sum: 9.0, Count: 1, Mean: 9.0

Of the random samples drawn during candidate quality es-
timation, only some will match the candidate’s partial state
description. For example:

positive:[color(b1,blue), color(b2,red),
size(b1,small), armtype(rob1,magnetic)]
negative:[material(b1,metallic), size(b2,small)]
Q: 10.0

The system uses this sample to update the candidate:

positive:[armtype(r1,magnetic)]
negative:[material(b1,metallic)]
Q-sum: 19.0, Count: 2, Mean: 9.5

Once all candidate are found, we move to the next step.

Filtering candidates The final set of affordances is identi-
fied by eliminating candidates that do not have a sufficiently
high likelihood of representing the truth. First, candidates
that were not refined by additional training samples after
their construction are removed. Then, the highest-valued
candidates are ranked by the number of samples used to
update them. Any candidates that elaborate other, higher-
ranked candidates are also removed. Finally, the adequacy
of the remaining candidates is validated in simulation. A
candidate negative affordance, if true, should describe con-
ditions when an action is not afforded by the agent and ob-
ject under consideration. If we can construct a state in which
the action corresponding to a forbidding affordance should
not be considered, but executing that action results in the
expected outcomes, the constructed candidate affordance is
incorrect. To conduct such validation tests, our approach
takes a random state where the target action is known to suc-
ceed, and makes the minimal changes required (to attributes
of objects and the agent) to make the state match the par-
tial state description of the candidate. If the action in this

3The number of draws is heuristically set to be proportional to
the tree’s size and the number of attributes not used as tests.

adjusted state is executed successfully, the candidate affor-
dance is discarded. These validation tests are guaranteed not
to retract correct affordances, but may fail to retract incorrect
affordances. Candidate affordances that survive all these fil-
ters are considered to be generalized affordances—the cor-
responding axioms are added to the ASP system description
after suitably replacing constants with variables.

3 Experimental Setup and Results

In this section, we describe the results of experimentally
evaluating the following claims:

1. Proposed architecture supports accurate, cumulative dis-
covery of affordances;

2. Fraction of affordances discovered increases with the
fraction of the search space explored;

3. Affordance discovery approach is robust to perceptual
noise; and

4. Discovered affordances improve plan quality.

These claims are evaluated in the BP domain and RA do-
main, with two and four (generic) target affordances (respec-
tively).

3.1 Experimental Setup

Parameters in our RRL approach were initialized with values
that were determined (experimentally) to provide reasonable
results without unduly increasing the processing time. For
instance, the learning rate and the policy’s exploration pref-
erence were fixed at 0.1. The values of positive and negative
reward were 10.0 and 0.0 respectively—the system was ag-
nostic to the values of these parameters as long as they were
distinctly dissimilar. The candidate affordances considered
were constrained to have no more than two positive liter-
als and two negative literals formed of domain properties.
This limit was more than sufficient for the affordances in our
domains—they can be increased (as needed) for more com-
plex domains. Furthermore, up to 10 validation tests were
conducted to evaluate and filter the candidate affordances.

Methodology In the experimental trials reported below,
affordances associated with each action were discovered
concurrently. Unless otherwise specified, each value of a
performance measure reported below was obtained by aver-
aging the results over 1000 repetitions. We used precision
and recall as the performance measures—they indicate the
system’s ability to avoid false positives and false negatives
respectively. The affordances produced were required to ex-
actly match the ground truth to be counted as true positives,
i.e., over-specifications of an affordance, although not ex-
actly incorrect, are considered false positives.

Simplifying assumption: Our interpretation of relevance
(in Section 2.2) translates to the simplifying assumption
that axioms describing affordances may only refer to the
attributes and object classes involved in the action. To de-
termine the effect of this assumption, we examined a “max-
imal” version not constrained by this simplifying assump-

465

tion, i.e., it can consider information about any of the do-
main objects in its search for affordances. We considered
four different parameterizations, with 200 repeated trials for
each parameterization. Since its search space was rather
large, the maximal version discovered fewer affordances
than the version with the simplifying assumption, for the
same number of trials, e.g., it discovered 34.1% fewer af-
fordances in the BP domain and the recall dropped from
0.86 to 0.61 in comparison with a system that included the
simplifying assumption. When the maximal version was al-
lowed to explore the same proportion of the search space as
the version with the simplifying assumption, performance
improved, e.g., in some trials in the BP domain, the recall
and precision were 1.0 and 0.98 respectively. However, in
the RA domain, the number of possible combinations to ex-
plore was so large (≈ 1.7 billion) that it was not feasible to
evaluate the maximal version—this is also likely to be true
of other such complex domains. All the experimental re-
sults discussed below thus include the simplifying assump-
tion, i.e., only relevant objects and agent attributes were con-
sidered while adding nodes to the BDT, varying the object
configurations, and constructing candidate affordances.

3.2 Execution Traces

The following execution traces illustrate the working of the
proposed architecture and learning approach.

Execution Example 1. [BP domain execution example]
In the BP domain, assume that the learner does not know that
it is impossible to pick up a wooden object with a magnetic
arm. Assume there are three blocks: b1 (small red wooden),
b2 (small blue wooden), and b3 (small blue metallic), and
the initial state is:

loc(b1, table), loc(b2, table), loc(b3, table)

and it is known that armtype(rob1,magnetic). Now, let the
goal state description be:

loc(b1, table), loc(B,b1)

which implies that the robot has to stack some block on
block b1. Based on the existing knowledge, the robot con-
structs a plan with the action move(rob1,b2,b1), which is ex-
pected to achieve the goal. However, there is an unexpected
transition, and the robot observes that b2 is still on the table.
This unexpected transition triggers RRL for discovering any
unknown affordances.

During the RRL trials, the robot acquires experiences
from training examples involving a magnetic arm and a
wooden object, which may differ in terms of the other at-
tributes of objects and the robot. Eventually, the robot is
able to add the following axioms related to a specific affor-
dance to its system description:

f orbidding a ff (id1,move(R,B,L))
f ails(id1,move(R,B,L)) ←

not material(B,wooden)
f ails(id1, pickup(R,O)) ←

not armtype(R,magnetic)

which will, for a wooden object and magnetic arm, ensure
that action move(rob1,b2,b1) is not available for inclusion
in the computed plan. Upon replanning, rob1 will now com-
pute a different plan:

move(rob1,b3,b1)

which when executed will successfully place metallic block
b3 on top of b1, thus achieving the desired goal.
Execution Example 2. [RA domain execution example]
In the RA domain, suppose the robot does not know that it
cannot open a door with a high knob if it has a short arm. As-
sume that the library has two doors—door1 is light and has
a high knob while door2 is light and has a knob at medium
height. Assume that the initial state has loc(rob1,kitchen),
i.e., the robot is in the kitchen. Let the desired goal state be:

in hand(rob1,bk1)

which implies that the robot has to have the book bk1 in its
arm. It is also known that:

size(bk1,small), weight(bk1, light),
armlength(rob1,short), armstrength(rob1,strong)

Based on default knowledge, the robot believes that bk1 is in
the library. Hence, the robot constructs the following plan
to achieve this goal:

opendoor(rob1,door1), move(rob1, library),
pickup(rob1,bk1).

which could potentially be because door1 is closer, although
we do not model that here. Its first action is to open door1 in
order to enter the library. This results in an unexpected tran-
sition because the robot observes that door1 is not open—
this is because the robot has a short arm. This unexpected
transition triggers RRL, and the robot gathers experiences
corresponding to different attributes of the robots and doors.
Eventually, the robot is able to learn a new forbidding affor-
dance for the opendoor action that is encoded as:

f orbidding a ff (id1,opendoor(R,D))

f ails(id1,opendoor(R,D)) ←
not armlength(R,short)

f ails(id1, pickup(R,O)) ←
not knobpos(D,high)

which, in our current example of a short arm and high door-
knob, is sufficient to prevent the robot from creating plans
that require it to open door1, i.e., it does not consider action
opendoor(rob1,door1) while computing a plan. Instead,
rob1 finds an alternative plan:

opendoor(rob1,door2), move(rob1, library),
pickup(rob1,bk1).

which it is able to execute to successfully achieve the goal—
open door2, enter the library, and pick up bk1.
An appealing qualitative outcome of the proposed approach
is that the discovered affordances are relations that may be
used in different ways with different actions. For instance,
having a weak arm may forbid the robot from lifting an
heavy object. The same relation may, however, enable the
robot to move faster. Modeling such enabling affordances is
a direction for future research.

466

Table 1: Rate of ground truth affordances found (recall) for
different extents of learning.

Exploration Recall Precision

5% 0.09 1.0
10% 0.27 1.0
20% 0.56 0.99

3.3 Discussion

We now experimentally examine and evaluate the four
claims made in the beginning of Section 3.

Accuracy We conducted 1000 trials in each domain to
evaluate the ability to discover affordances. Each trial ex-
plored 10% of the search space. In the BP domain, the 1000
trials corresponded to 2000 possible affordances—two pos-
sible affordances in each trial—of which 1570 were found,
leading to a recall of 0.79. Three of the discovered affor-
dances were over-specifications that were considered to be
incorrect, i.e., precision ≈ 1.0. In the RA domain, the 1000
trials corresponded to 500 for each of the two actions that
each have two unknown affordances. Of the total 2000 pos-
sible affordances, 533 were found, providing recall and pre-
cision scores of 0.27 and 1.0 respectively. These results sup-
port the claim that the proposed architecture is able to cumu-
latively and accurately discover the affordances.

Discovery and effort To determine whether the fraction
of affordances discovered increases with the fraction of the
search space explored, we conducted trials in the RA domain
by systematically varying the fraction of the space of pos-
sible combinations of domain properties that the system is
allowed to explore—this implicitly varies the number of Q-
learning episodes the robot uses to discover the affordances.
The corresponding performance, described in terms of the
recall and precision scores, is summarized in Table 1. The
results indicate that as the robot explores a larger fraction
of the search space, the recall scores increase. The recall
scores are low when only a small fraction of the relevant
search space is explored. However, the almost perfect preci-
sion scores (there are a few over-specifications when 20% of
the relevant space is explored) indicate that the robot is able
to learn cumulatively from experience.

Perceptual noise Next, we evaluated whether the pro-
posed approach provided robustness to perceptual noise,
which we interpreted as the noise having a negative but non-
catastrophic impact on performance. We introduced noise
in the form of a fixed chance for an action to have an un-
expected outcome in the form of the removal or addition of
a single literal formed of a random fluent of the desired re-
sultant state. We performed 1000 trials in the RA domain
with a 10% exploration of the search space, and for 3% and
6% added noise. The performance with added noise was
compared with the performance with no noise, which corre-
sponds to the second line of Table 1.

With 3% noise, the robot was still able to discover some
affordances, with a recall of 0.29—although this is better
than the recall with no noise, the difference is not statis-
tically significant. The corresponding precision score was
0.87, but all the false positives were over-specifications of
the target axioms, i.e., they included conditions that would
correctly prevent an action from being considered during
planning but were not in the most general form possible. For
example, the following affordance was reported:

f orbidding a ff (id2,opendoor(R,D))

f ails(id2,opendoor(R,D)) ←
not armlength(R,short)

f ails(id2, pickup(R,O)) ←
not knobpos(D,high)

f ails(id2, pickup(R,O)) ←
not armmaterial(R, padded)

where the fact that the robot’s arm was padded was an over-
specification of the desired affordance, that a short arm can-
not be used to open doors with high knobs.

Next, with 6% noise, the performance dropped further,
resulting in a recall of 0.21 and a precision of 0.79. In
this case, all but two of the false positives were over-
specifications of the desired target axioms, i.e., the affor-
dances discovered were still (for the most part) just insuf-
ficiently general rather then incorrect. Discounting these
over-specific affordances would result in near perfect pre-
cision. We also observed that, even with the added noise,
the recall and precision scores improved as the fraction of
the search space explored increased. We hypothesize that
is may be possible to further improve performance by using
ASP-based reasoning to identify and eliminate inconsisten-
cies during generalization.

Planning performance with learned affordances: Fi-
nally, to evaluate the effect of the discovered affordances on
the quality of plans generated, we conducted 1000 paired tri-
als of ASP-based planning with and without the correspond-
ing axioms—the initial state and goal were set randomly in
each paired trial. For the BP domain, 1.67 plans were found
with the axioms, and 2.84 plans were found without the ax-
ioms. In another set of 1000 paired trials in the BP domain
with an observation (in history H) to limit the number of
plans computed, e.g., obs(on(b1,b0),2), 0.87 plans were
found with the axioms and 1.42 plans were found without
the axioms. In a set of 1000 trials conducted in the RA do-
main, 1.87 plans were found with the axioms and 3.90 plans
were found without the axioms. We verified that including
the discovered axioms always provided correct plans that
were a subset of the plans found without the axioms.

4 Related Work

In psychology, action capabilities have been determined by
modeling how people judge the capabilities of another per-
son (Mark 2007). Researchers have shown that such judg-
ments are based on the observed kinematics that do not have

467

to be associated with the desired action (Ramenzoni et al.
2010; Stoffregen et al. 2009). Observers can judge if an ac-
tor can jump to reach an object by watching the actor walk
or lift a weight—also, different kinematics are not equally
informative. Research has also shown that humans make ac-
curate judgments of others’ capabilities based on very sim-
ple representations, e.g., the movement of lights on a few
joints of a person can be used to judge gender and physical
abilities (Ramenzoni et al. 2010). These studies and other
work in ecological psychology have inspired approaches
in AI for modeling and reasoning about affordances, e.g.,
in the context of tool and object use (Griffith et al. 2012;
Guerin, Kruger, and Kraft 2013), but open questions re-
main regarding the definition and representation of affor-
dances (Horton, Chakraborty, and Amant 2012).

There are two broad classes of approaches for inferring
affordance, intent, and activity. Systems in the first class
apply probabilistic methods such as hidden Markov models
and partially observable Markov decision processes on per-
ceptual descriptions (Brand, Oliver, and Pentland 1997; Kel-
ley et al. 2012). These systems assume that the model struc-
ture is given, and estimate probabilities of transitions and
observations. Systems in this class have difficulty encoding
and using relational structures and declarative knowledge,
and do not scale to complex domains. Approaches in the
second class infer affordance and intent as logic statements
over relational, hierarchical knowledge structures. These
approaches have used first-order logic and non-monotonic
logic for recognizing activities and intentions (Gabaldon
2009; Hobbs, Stickel, and Martin 1993). Since logic-based
reasoning methods typically require detailed domain knowl-
edge and do not support probabilistic models of uncer-
tainty, methods such as Bayesian logic programs (Milch
et al. 2006) and probabilistic event calculus (Skarlatidis
et al. 2015) reason with logic-based and probabilistic rep-
resentations. However, these methods do not support all
the desired capabilities such as non-monotonic logical rea-
soning, and qualitative reasoning with default knowledge
and beliefs. Probabilistic extensions to ASP address some
of these limitations (Baral, Gelfond, and Rushton 2009;
Lee and Wang 2015), but they do not support incremental
addition of knowledge and are computationally expensive.

Algorithms have been developed for agents to start with
incomplete domain knowledge and learn from interactions.
Early research used first-order logic statements and the ob-
served effects of actions to learn causal laws when predic-
tions fail, but only an action’s encoded conditions or effects
were monitored (Shen and Simon 1989). Another approach
incrementally refined first-order logic operators by making
the unexpected observations preconditions or effects—this
work augmented existing knowledge but did not revise in-
correct axioms, and did not consider that the same action can
lead to different outcomes in different contexts (Gil 1994).
In addition to the limitations of first-order logic, these ap-
proaches did not support generalization as described in this
paper. In the logic programming community, inductive logic
has been combined with ASP to monotonically learn causal
rules (Otero 2003), and a maximum satisfiability framework
has been used with plan traces for refining incomplete do-

main models (Zhuo, Nguyen, and Kambhampati 2013). In-
teractive learning has also been posed as an RL problem with
an underlying MDP (Sutton and Barto 1998). Approaches
for efficient RL in dynamic domains include sample-based
planning algorithms (Walsh, Goschin, and Littman 2010),
and Relational RL, which uses relational representations and
regression for Q-function generalization (Dzeroski, Raedt,
and Driessens 2001; Tadepalli, Givan, and Driessens 2004).
However, most RRL algorithms focus on planning, limit
generalization to a single planning task, or do not support
the desired commonsense reasoning capabilities. One ex-
ception was our prior work that combined ASP with RRL
to discover conditions under which specific actions cannot
be executed (Sridharan and Meadows 2016). The proposed
architecture builds on the complementary notions of affor-
dance in ecological psychology and AI, while supporting
non-monotonic logical reasoning and probabilistic reason-
ing with incomplete domain knowledge, in the context of
cumulative and interactive learning of affordances.

5 Conclusions

The paper described an architecture that combined non-
monotonic logical reasoning and relational learning to rea-
son about and learn affordances that are defined as relations
between the attributes of objects, agents and actions. An-
swer Set Prolog was used to reason with incomplete do-
main knowledge for planning and diagnostics, while rela-
tional reinforcement learning and decision tree induction
were used to identify specific candidate affordances and gen-
eralize across specific instances. Experimental results indi-
cate the reliable, cumulative discovery of affordances, ro-
bustness to noise, and improvement in plan quality.

The proposed architecture opens up multiple directions
for further research. We have only focused on learning
affordance relations that forbid the execution of specific
actions—future work will also support the learning of af-
fordances that enable the execution of specific actions. In
addition, we have currently abstracted away the ability to
reason probabilistically, especially with perceptual inputs—
this ability will be important when the architecture is used on
physical robots that sense and interact with the environment.
The long-term objective is to enable reliable and efficient in-
ference of intent and affordance on robots that assist humans
in complex domains.

Acknowledgements

This work was supported in part by the Asian Office of
Aerospace Research and Development award FA2386-16-
1-4071, and the US Office of Naval Research Science of
Autonomy award N00014-13-1-0766. All opinions and con-
clusions described in this paper are those of the authors.

References

Balduccini, M., and Gelfond, M. 2003. Logic Programs with
Consistency-Restoring Rules. In AAAI Spring Symposium
on Logical Formalization of Commonsense Reasoning, 9–
18.

468

Baral, C.; Gelfond, M.; and Rushton, N. 2009. Probabilistic
Reasoning with Answer Sets. Theory and Practice of Logic
Programming 9(1):57–144.
Brand, M.; Oliver, N.; and Pentland, A. 1997. Coupled
Hidden Markov Models for Complex Action Recognition.
In International Conference on Computer Vision and Pattern
Recognition (CVPR), 994–999.
Driessens, K., and Ramon, J. 2003. Relational Instance-
Based Regression for Relational Reinforcement Learning.
In International Conference on Machine Learning, 123–
130. AAAI Press.
Dzeroski, S.; Raedt, L. D.; and Driessens, K. 2001. Rela-
tional Reinforcement Learning. Machine Learning 43:7–52.
Gabaldon, A. 2009. Activity Recognition with Intended
Actions. In International Joint Conference on Artificial In-
telligence (IJCAI).
Gelfond, M., and Inclezan, D. 2013. Some Properties
of System Descriptions of ALd . Journal of Applied Non-
Classical Logics, Special Issue on Equilibrium Logic and
Answer Set Programming 23(1-2):105–120.
Gibson, J. J. 1986. The Ecological Approach to Visual Per-
ception. Psychology Press.
Gil, Y. 1994. Learning by Experimentation: Incremental Re-
finement of Incomplete Planning Domains. In International
Conference on Machine Learning, 87–95.
Griffith, S.; Sinapov, J.; Sukhoy, V.; and Stoytchev, A. 2012.
A Behavior-Grounded Approach to Forming Object Cate-
gories: Separating Containers From Noncontainers. IEEE
Transactions on Autonomous Mental Development 4:54–69.
Guerin, F.; Kruger, N.; and Kraft, D. 2013. A Survey of
the Ontogeny of Tool Use: from Sensorimotor Experience
to Planning. IEEE Transactions on Autonomous Mental De-
velopment 5:18–45.
Hobbs, J.; Stickel, M.; and Martin, P. 1993. Interpretation
as Abduction. Artificial Intelligence 63:69–142.
Horton, T. E.; Chakraborty, A.; and Amant, R. S. 2012.
Affordances for Robots: A Brief Survey. Avant: Journal of
Philosophical-Interdisciplinary Vanguard III(2):70–84.
Kelley, R.; Tavakkoli, A.; King, C.; Ambardekar, A.; Nico-
lescu, M.; and Nicolescu, M. 2012. Context-Based Bayesian
Intent Recognition. IEEE Transactions on Autonomous
Mental Development 4(3):215–225.
Lee, J., and Wang, Y. 2015. A Probabilistic Extension of
the Stable Model Semantics. In AAAI Spring Symposium on
Logical Formalizations of Commonsense Reasoning.
Mark, L. S. 2007. Perceiving the Actions of Other People.
Ecological Psychology 19(2):107–136.
Milch, B.; Marthi, B.; Russell, S.; Sontag, D.; Ong, D. L.;
and Kolobov, A. 2006. BLOG: Probabilistic Models with
Unknown Objects. In Statistical Relational Learning. MIT
Press.
Otero, R. P. 2003. Induction of the Effects of Actions by
Monotonic Methods. In International Conference on Induc-
tive Logic Programming, 299–310.

Ramenzoni, V. C.; Davis, T. J.; Riley, M. A.; and Shockley,
K. 2010. Perceiving Action Boundaries: Learning Effects
in Perceiving Maximum Jumping-Reach Affordances. At-
tention, Perception and Psychophysics 72(4):1110–1119.
Shen, W.-M., and Simon, H. 1989. Rule Creation and Rule
Learning through Environmental Exploration. In Interna-
tional Joint Conference on Artificial Intelligent, 675–680.
Skarlatidis, A.; Artikis, A.; Filippou, J.; and Paliouras, G.
2015. A Probabilistic Logic Programming Event Calculus.
Theory and Practice of Logic Programming 15(2):213–245.
Sridharan, M., and Gelfond, M. 2016. Using Knowl-
edge Representation and Reasoning Tools in the Design of
Robots. In IJCAI Workshop on Knowledge-based Tech-
niques for Problem Solving and Reasoning (KnowProS).
Sridharan, M., and Meadows, B. 2016. Should I do that?
Using Relational Reinforcement Learning and Declarative
Programming to Discover Domain Axioms. In Interna-
tional Conference on Developmental Learning and Epige-
netic Robotics (ICDL-EpiRob).
Sridharan, M.; Gelfond, M.; Zhang, S.; and Wyatt, J. 2016.
A Refinement-Based Architecture for Knowledge Represen-
tation and Reasoning in Robotics. Technical report, http:
//arxiv.org/abs/1508.03891.
Stoffregen, T. A.; Yang, C.-M.; Giveans, R.; Flanagan, M.;
and Bardy, B. G. 2009. Movement in the Perception of
an Affordance for Wheelchair Locomotion. Ecological Psy-
chology 21(1):1–36.
Sutton, R. L., and Barto, A. G. 1998. Reinforcement Learn-
ing: An Introduction. MIT Press, Cambridge, MA, USA.
Tadepalli, P.; Givan, R.; and Driessens, K. 2004. Relational
Reinforcement Learning: An Overview. In Relational Rein-
forcement Learning Workshop at International Conference
on Machine Learning.
Walsh, T. J.; Goschin, S.; and Littman, M. L. 2010. In-
tegrating Sample-Based Planning and Model-Based Rein-
forcement Learning. In AAAI Conference on Artificial In-
telligence.
Warren, W. H. 1984. Perceiving Affordances: Visual Guid-
ance of Stair Climbing. Journal of Experimental Psychol-
ogy: Human Perception and Performance 10(5):683–703.
Zhuo, H. H.; Nguyen, T.; and Kambhampati, S. 2013. Re-
fining Incomplete Planning Domain Models Through Plan
Traces. In International Joint Conference on Artificial Intel-
ligence (IJCAI), 2451–2457.

469

