Proceedings of the Twenty-Seventh International Conference on Automated Planning and Scheduling (ICAPS 2017)

Framer: Planning Models from Natural
Language Action Descriptions

Alan Lindsay,! Jonathon Read,’ Jodo F. Ferreira,'
Thomas Hayton,! Julie Porteous,! Peter Gregory!
'Digital Futures Institute, School of Computing, Teesside University, UK.
2QOcado Technology, Hatfield, UK.
3HASLab/INESC TEC, Universidade do Minho, 4704-553 Braga, Portugal.
firstinitial.lastname @tees.ac.uk | jonathon.read @ocado.com

Abstract

In this paper, we describe an approach for learning planning
domain models directly from natural language (NL) descrip-
tions of activity sequences. The modelling problem has been
identified as a bottleneck for the widespread exploitation of
various technologies in Artificial Intelligence, including auto-
mated planners. There have been great advances in modelling
assisting and model generation tools, including a wide range
of domain model acquisition tools. However, for modelling
tools, there is the underlying assumption that the user can
formulate the problem using some formal language. And even
in the case of the domain model acquisition tools, there is
still a requirement to specify input plans in an easily machine
readable format. Providing this type of input is impractical for
many potential users. This motivates us to generate planning
domain models directly from NL descriptions, as this would
provide an important step in extending the widespread adop-
tion of planning techniques. We start from NL descriptions of
actions and use NL analysis to construct structured representa-
tions, from which we construct formal representations of the
action sequences. The generated action sequences provide the
necessary structured input for inducing a PDDL domain, us-
ing domain model acquisition technology. In order to capture
a concise planning model, we use an estimate of functional
similarity, so sentences that describe similar behaviours are
represented by the same planning operator. We validate our
approach with a user study, where participants are tasked with
describing the activities occurring in several videos. Then our
system is used to learn planning domain models using the
participants’ NL input. We demonstrate that our approach is
effective at learning models on these tasks.

Introduction

Modelling problems appropriately for use by a computer
program has been identified as a key bottleneck in the ex-
ploitation of various Al technologies. In Automated Plan-
ning, this has inspired a growing body of work that aims
to support the modelling process including domain acquisi-
tion tools, which learn a formal domain model of a system
from some form of input data. There is interest in apply-
ing domain model acquisition across a range of research
and application areas. For example within the business pro-
cess community (Hoffmann, Weber, and Kraft 2012) and

Copyright (© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

434

space applications (Frank et al. 2011). An extended ver-
sion of the LOCM domain model acquisition system (Cress-
well, McCluskey, and West 2009) has also been used to
help in the development of a puzzle game (Ersen and Sariel
2015) based on spatio-temporal reasoning. Web Service
Composition is another area in which domain model ac-
quisition techniques have been used (Walsh and Littman
2008). These tools vary in the specifics of the input language,
such as example action sequences (Cresswell, McCluskey,
and West 2009; Cresswell and Gregory 2011), or action se-
quences and a partial domain model (McCluskey et al. 2009;
Richardson 2008); the query system by which they ac-
quire the input data, which is typically static training sets,
although there are examples working with an interactive
querying system (Walsh and Littman 2008; Mehta, Tade-
palli, and Fern 2011); and the target model language, includ-
ing STRIPS (Cresswell, McCluskey, and West 2009; Cress-
well and Gregory 2011), probabilistic (Mourdo, Petrick, and
Steedman 2010), and numeric (Gregory and Lindsay 2016;
Hayton et al. 2016). However, in each case the user is left
the responsibility of defining a formal representation for the
solution.

Defining these logical formalisms and applying them con-
sistently requires time and experience in both the target do-
main and in the representation language, which many poten-
tial users will not have. It is therefore important to consider
alternative input languages, such as Natural Language (Gold-
wasser and Roth 2011). Natural Language (NL) input is the
most natural way for humans to interact and it is no surprise
that there is much interest in using NL as input for com-
puter systems. In day-to-day life, Siri and its competitors
are controlled by simple spoken word input, but can activate
complex procedures on our phones. In the RoboCup@Home
competitions robots are controlled by task descriptions and
are automatically translated into a series of simple actions
that can be performed on the robot. And NL lessons have
been used to learn partial representations of the world dynam-
ics for game-like environments (Goldwasser and Roth 2011).
A key aspect of these systems is an underlying language,
which the NL input is mapped onto. For example, in the
case of RoboCup@Home, an input of ‘go to the living room’
might be mapped onto quite a different representation, using
the action name ‘move’ and requiring a set of parameters that
break the movement into smaller steps between connected

NL Input
: “Drive the red truck from location A to location B ”
: “Move the Parcel1 from location B into the red truck ”
: “Drive the red truck from location B to location C ”
: “Move the Parcel1 from the red truck to location C ”

Induced Domain Model
LOCM-based

(zaction drive_1
:parameters (?Blue - blue 7Location2 — location
2Location3 - location)

iirements :typing)
(itypes blue location parcel)

(location_state_1_1 ?Location3 ?Blue1)

(location_state_1_1 ?Location2 ?Blue1)

(blue_state_1_1 7Bluet ?Locaton2))

 state.
(location_state

Y, (location_state_2._
(parcel_state_1_1?v1 - parcel 2v2 - location)

171 - location)
221 - location)

o

offect
(an
(
(@

(parcel _state_1_2?2v1 - parcel 2v2 - blue)

d
(blue_state_1_1 ?Blue1 ?Location3)
(not (blue_state_1_1 7Blue1 7Location2)))

(:action move_2
parameters (7Parcel1 - parcel

PLocation? - location 7Blue3 - lve)

‘precondition caction move 3

:parameters (?Parcel1 - parcel ?Blue2 - blue

S3 (blue_state_1_1 ?Blue3 7L ocation2)

(and
2Location - location)
:precondition
(an
(location_state_1_1 ?Location3 ?Blue2)
. state_1_1 7Blue2 ?Locaton3)
(parcol_state_1_2 ?Parcel1 7Blue2))

(ocation_state_2_1 ?Location2)
(ocation_state_1_1 ?Location2 7Biue3)
(parcel_state_1_17Parcel1 7Location2))
‘effect

(and
(location_state_2_2 ?Location2)

(not (location_staie_2_1 ?Location2)) (and
(parcel_state_1_2 7Parcelt 7Blue3) (parcel_state_1_1 ?Parcel1 ?Location3)
arcel_stale (not (parcel_state_1_2 ?Parcelt ?Blue2)))

Q .‘ 7

(not (parcel_state _1_1 ?Parcel1 ?Location2))))

s - N
Action Templates Sentence Clusters
tion: dr action: dr
action: drive { s1 action: move { s2 ; acol:':cl "rev;(wms“ ao:i:ct"r;}rudg
object: red truck, object: parcell, i [beons, from loeonDs
from: location a, from: location b, Sl :
to: location b into: red truck
ction: S2]
: ’ o
2| from: location b,
5 | into: red truck Actions
action: drive { 3 action: move { S4 } '
object: red truck, object: parcell, - 4
from: Iogation b, from: refj truck, 9& M::l:ﬁmg"
to: location ¢ to: location ¢ | B R
}) B8 b to: location ¢

Consistent Formulation of Sentences

S1:
8§2:

;i\ S4:

Drive_1 red_truck location_A location_B

Move_2 Parcel1 location_B red_truck

Drive_1 red_truck location_B location_C

Move_3 Parcel1 red_truck location_C)

83:

Figure 1: System overview: NL sentences are transformed into reduced representations (action templates) (a) that are clustered
based on similarity (b). Consistent formulations of the original sentences are then extracted (c¢) and a PDDL domain model is

induced using the domain model acquisition tool LOCM (d).

rooms. Therefore in these domains there is still a requirement
for a domain engineer to develop the formal representation.

In this work we consider the problem of generating plan-
ning action representations automatically from a collection
of NL sentences that are descriptions of actions. The ben-
efit of this is that we can target domain model acquisition
systems, but do not have to manually define a formal repre-
sentation for the solution. The key challenge is to generate
an appropriate formal representation, from which a general
and concise model can be induced, and that best represents
the input sentences. Our approach, illustrated in Figure 1,
can be summarised as follows. The first step (a) generates a
reduced representation of each sentence, an action template,
which captures the main action as well as the objects that are
mentioned and an indication of their roles in the sentence.
The second step (b) uses a measure of functional similarity,
based on the reduced representations, in order to cluster sen-
tences into operator sets. A consistent action representation is
then established by defining a mapping between the members
of each cluster. The action sequences are then rewritten (c)
using these action representations and used to induce a PDDL
domain model (d) using the domain model acquisition tool,
LOCM? (Cresswell and Gregory 2011).

In our implemented system user interaction is allowed dur-
ing the development of the representation, although it is not
required at any step. There are three key aspects where the
user can influence the representation: the user can rephrase
sentences where an action was not detected; they can mod-
ify the automatically selected sentence clusters (operator
sets); and finally they can correct or fill-in missing action
roles (parameters). In the evaluation, we demonstrate that our
approach can accurately identify behaviour groups in NL sen-
tences describing actions, rewrite related sentences using a
single representation and be robust to certain inconsistencies.
These sentences were used to induce a PDDL model in three
domains: Towers of Hanoi, Logistics and Tyreworld.

435

Background

Here we present relevant background in planning, domain
model acquisition and NLP approaches.

The description of a planning problem in PDDL (McDer-
mott et al. 1998) is separated into two parts: the domain
model, a definition of the problem domain that defines the
world and its behaviours; and an explanation of the specific
problem to be solved within that world. It is the domain
model which is the target output of our approach. A domain
model is a tuple, D = (O, P), defining the sets of operators,
O, and predicates, P. An operator, O € Q, is represented
by an operator header: a unique symbol (operator name)
and a list of typed variables (parameters). The operator body
consists of three sets of predicates: the preconditions, and the
add and delete effects. An action, .4, is a planning operator,
O, that has been instantiated with problem constants (param-
eters, preconditions and effects) and an action header is a
name and a list of constants (the instantiated parameters).

Our approach builds over work in domain model acqui-
sition, which exploits assumptions in the structure of the
input to learn planning models using a minimal input lan-
guage (Cresswell and Gregory 2011). LOCM (Cresswell,
McCluskey, and West 2009; Cresswell and Gregory 2011;
Gregory and Cresswell 2015; Gregory and Lindsay 2016) is a
family of domain model acquisition systems that operate from
a set of example plans and generates a planning domain in
the standard Planning Domain Definition Language (PDDL).
The LOCM procedure uncovers the structure embedded in
the action sequences in order to identify FSM descriptions
for each object type. In order to do this, the system observes
the transitions that an individual world object makes and then
generalises these behaviours to types based on the parameter
position that the objects take in each action. The structures
captured by the FSMs are then used to define a domain model
and from this and the input sequences, problem descriptions
can be generated.

We use Stanford CoreNLP (Manning et al. 2014), a
publicly-available and widely-used annotation pipeline for

NL ‘ Pick up Parcell from location B and put in the red truck

[Pick/VB
compound:prt>up/RP
dob j>Parcell /NN
nmod: from> [B/NN case>from/IN compound>location/NN]
cc>and/CC
conj:and> [put/VB nmod:in>
[truck/NN case>in/IN det>the/DT amod>red/JJ]]]

CoreNLP
Annotation

pick._and_put {
parcell
location b
red truck }

action
object
from
in

Action
Template

Figure 2: Example NL sentence input, with its CoreNLP
annotation and resulting action template after rewrite rules:
from CoreNLP annotation, verb, subject and object of the
sentence form the action name and arguments (see text).

natural language analysis. Of most relevance to the current
work are the syntactic parsing annotations CoreNLP pro-
duces. Syntactic analysis in CoreNLP is a two-stage process.
Firstly, phrase structure trees are generated using statistical
analysis of datasets containing many examples of manually
annotated sentence parses (Klein and Manning 2003). Sec-
ondly, these phrase structure trees are converted to depen-
dency parse graphs using a series of manually-curated rules
based on patterns observed in the phrase structure trees (de
Marneffe, MacCartney, and Manning 2006).

Extracting action templates from NL input

The first step in our approach (see Figure 1(a)) is genera-
tion of action templates: reduced representations of input
sentences, which capture the main action, objects that are
mentioned and an indication of their roles in the sentence.
For this we utilise the dependency graphs output by CoreNLP,
illustrated in Figure 2. The structure of this middle represen-
tation must be further simplified to move closer to a predicate
logic representation. This is achieved through a recursive set
of rules that crawl the dependency graph, transforming the
relations based on their types. Most importantly, the root verb
of the sentence forms the basis of the action name, while the
verb’s subject and objects form the arguments. Conjunctions
introduce new clauses of the sentence, which form further
predicates. Other relation types such as modifiers and com-
pounds are used to transform the names of the predicates
and arguments. The input of this process is a sentence and
the output is a collection of slot label (e.g., in) and slot filler
(e.g., red truck) pairs. Where an action is detected, one or
more of the slot fillers will identify action name elements.
The other slot labels indicate the associated slot filler’s role
in the sentence.

There are many possible ways that users could formulate
sentences to describe what happens during a single action.
This structure therefore provides a reduced representation
that identifies the main actors in an action and the roles
that they play in the sentence. It should be noted that our
approach relies on consistent object references (e.g., ‘the
red truck’ in Figure 1) throughout the action sequence. In

436

order to maintain the same level of granularity as the input
descriptions, internal action predicates are merged to join a
single action template. In Figure 2 the internal put predicate
is merged into the pick action, creating a single action
template for pick_and_put. It is important to notice that
this structure is similar to the one generated for S2 in Figure 1
for quite a different sentence structure.

Partitioning sentences into operator sets

The next step is to identify an appropriate partitioning of
the reduced sentences that best represent them, in order to
derive a set of consistent and general operator descriptions (as
shown in Figure 1(b)). Our approach is to define a distance
measure between sentence pairs and use it to identify clusters.
As each cluster represents a planning operator in the final
domain model, we also consider, in the following discussion,
how the clustering can be controlled in order to effect the
generality of the generated domain model.

Functional distance between sentences

The ideal distance measure would estimate the difference
between the underlying functional process described in the
sentences. This would require a rich description of the under-
lying process, whereas we consider how this can be estimated
using the sentences in isolation. However, we do not want
to directly estimate the distance between the sentences. In-
stead we want to estimate the structural difference between
the sentences, with specific focus on the key action of the
sentence. In particular, we want to exploit the structure of the
generated templates (previous section), which identifies the
main action of the sentence and provides a context for the
purpose (or role) of each object in the sentence.
For example, consider these sentences:

S5 The truck has moved from Aberdeen to Dundee
S6 A green box was put onto the truck in Dundee
S7 The truck was driven from Dundee to Stirling

Sentences S5 and S7 are very similar in structure and prob-
ably describe a similar underlying behaviour. In particular,
we observe that the words moved and driven are in fact often
used interchangeably and that representing them with a single
operator would lead to a more concise and general model. In
contrast, sentence S6 differs in the specific verb as well as
the structure of the sentence and therefore we would expect
it to be represented in a planning model with a different plan-
ning operator. In general then we would expect that those
templates that are similar to each other might be represented
by a single operator. However, it is not as simple as collecting
similar verbs. For example in Figure 1, S2 and S4 share the
same verb, however, describe different behaviours, which
can only be distinguished by the roles of the objects in the
sentences.

We first describe our approach for estimating the similarity
of individual symbols (i.e., the distance between them) and
then build from this to a complete similarity measure.

Distance between terms In this application, we are specif-
ically interested in whether words can be used in place of
each other and are therefore synonymous with each other. We

use a collection of online lexical resources' in order to gener-
ate a set of weighted synonyms (a similar approach was used
to find antonyms for action and predicate names in (Porteous
et al. 2015; Lindsay et al. 2015)). Online lexical resources
provide a source of typical synonyms without relying on the
user to identify similar terms; however, the quality of output
can be inconsistent and therefore it is prudent to combine
several sources. Each source, S;, can be seen as a function
providing a vote and its score for each word pair can be nor-
malised to a value between 0 and 1 (higher scores for higher
correspondence). The sources can also be parameterised by
the parts of speech (POS) of the generated synonyms, which
is useful in the case of estimating action type similarity, as
these tend to be verbs. We define the similarity function,
SIM(wo, w1, POS), which estimates the similarity between
words wg and wy, with the set of accepted POS, as:

SIM(wO,wl, POS) = % E?:l Si(’wo, w1, POS)

In the case of multiple word terms, the above function is gen-
eralised using the Levenshtein distance (Levenshtein 1966)
of the two word sequences (using a symbol for each word)
and using the complement of the similarity scores (distance
measure) as a partial match cost. This provides a measure of
correspondence between the sequences, while also respecting
ordering.

Similarity measure The similarity measure is based on
the idea that if the actions involved in a pair of sentences are
similar and the roles of the objects are similar then we expect
that the function that the sentences are describing is similar.

The similarity measure for templates 7y and 71, denoted
by (70,71), is computed from two values:

e SAN(7p, 71) : The similarity of the action names (entries in
slots with label action) of 7y and 7;

e SSL(7p,71): The average similarity for each non-action
slot label (each role) from 7 to 7¢, where for each role of
To the closest matching role of 71 is selected.

These values rely on the similarity SIM(wg, wy, POS), de-
fined above, which is used with action names with the ar-
gument, POS=verb and for roles with argument, POS=x
(any part of speech).

The similarity measure can be computed as:

8(70,71) =7 X SAN(79,71) + (1—7) x SSL(70,71)

The parameter v controls the importance in similarity be-
tween roles and action names.

Cluster-based approach to operator sets selection

Clustering identifies groups of elements, which are similar
(or close) to the elements in their own group, while being
dissimilar (or far away from) elements in other groups. It is
a hard problem in general, especially in domains where the
number of clusters cannot be guessed. However, it is a very
well studied area and many off-the-shelf toolkits exist. In
this specific problem we want to cluster the action templates

"Merriam-Webster http://www.dictionaryapi.com; Big Huge
Thesaurus http://words.bighugelabs.com; Power Thesaurus http:
/Iwww.powerthesaurus.org

437

into similar groups. We can use the distance matrix for the
distance between templates pairs for clustering, which saves
defining a projection of a template into a space.

We adopt the Partitioning Around Medoids (PAM) im-
plementation of the k-medoids method (Kaufmann and
Rousseeuw 1987). This approach partitions the data into
k clusters, each associated with a representative data point,
considered the most central in the cluster. The specific bene-
fits for this work are that the algorithm partitions the objects
and operates from the dissimilarity matrix of the data points,
allowing us to use an arbitrary distance score.

Model generality Selecting an appropriate clustering is
an interesting problem and one that will effect the gener-
ality of the final representation. There may be more than
one correct partitioning of the sentences into correct be-
haviour groups. For example, consider the various encodings
of stacking behaviours in PDDL: Depots, Towers of Hanoi,
and multiple representations of Blocksworld. Our default
approach is to calculate the average silhouette score for the
clusters (Rousseeuw 1987), which evaluates the clusters by
averaging the similarity within clusters and dissimilarity be-
tween clusters, with respect to the distance measure. This
can only be evaluated accurately for at least 2 clusters, so we
first test to determine whether more than 1 cluster is appro-
priate (Duda, Hart, and others 1973). The optimal average
silhouette score indicates a good trade-off between the size
of k and the amount of dissimilarity in each cluster.

Our system supports interaction at this stage, allowing the
user to pick between different values of k, but also changing
the clusters. It is interesting to notice that the user organises
(their own) NL sentences into behaviour groups and therefore
does not need to interpret any abstracted representation.

Generating a domain model

We have presented our approach for selecting the operator
sets that determine the main language for the generated do-
main model. In this section we construct a planning model
that represents the dynamics captured in the NL action de-
scriptions. The first step is to define the action language of the
planning model and this is achieved by demonstrating a con-
sistent formalisation within each group of templates that have
been partitioned into a single operator set (as shown in Figure
1, step (c)). This supports the rewriting of the sentences as
sequences of action headers, which is a sufficient input for
domain model acquisition (Figure 1, step (d)). We conclude
the section by considering how missing values (parameters)
can be addressed.

Formalised representation of the sentences

We use the centre most element (the medoid and therefore
a natural output from the clustering algorithm) as the basis
for the operator description. For the associated template we
define an operator header as follows: the name is the con-
catenation of the terms with action slot labels (joined with
a symbol, e.g., ‘-’); and the parameter list is represented
by the (non-action) slot labels (i.e., the slot fillers represent
instantiations of those parameters). The translation of the
medoid sentence into the language of the action model is a

A B C

Pick up the vellow block from the red block with the gripper

©
o—@

—

@

(c) Logistics

(d) Tyreworld

Figure 3: Screenshots from the videos used in the evaluation.

space-separated concatenation of the name and the slot filler
(multiple words joined with a symbol, e.g., *-’), for each of
the slot labels in order.

To translate one of the other templates 7/ of the cluster, we
establish a mapping between the slot labels of the medoid
template, 7™, and those of 7. This is done by establishing
a best match between the slot labels of the templates, by
maximising the overall similarity of labels, using the (pre-
viously defined) function: SIM(slot-label.m, slot-label..,).
The sentence is then constructed in a similar way, except
for a specific slot label, the mapping is used to identify the
corresponding slot label in 7" and use its entry instead of
7™ In the case that a mapping is not found for a tag in y%
of the members of a cluster then the tag is pruned. As in
some cases a description will have more information than is
necessary, this filtering process aims to identify the important
parameters for the operator.

The output of this process are sequences of action headers
that each instantiate one of the operator headers implied by
the behaviour groups. It has been shown that, within certain
restrictions, sequences of action headers provide sufficient
evidence of the dynamic structure of planning domains and
can be used directly to induce a domain model (Cresswell
and Gregory 2011). It is presenting the key objects in consis-
tent orderings (achieved through our mapping approach) that
allows LOCM to uncover the inherent structures. It is then
the job of LOCM to identify the key relationships between
the parameters of actions, which it then encodes as predicates
in the induced domain model.

Missing parameter values

In practice, a user may not always mention all of the objects
involved in an action, or may not be consistent with the ob-
jects mentioned. There is no guaranteed method of inferring
the missing parameters as the correct dynamics of the sys-
tem (even if they can be expressed in STRIPS) are unknown.
Thus the system supports user interaction at this stage, al-
lowing the user to both fill in missing parameters and correct
incorrect parameters. The representative sentence for each
cluster is used as a template to rewrite each of the sentences
of the cluster. The slot fillers of the representative sentence
are replaced with the relevant fillers from the member sen-

438

tence (see the discussion for plan rewriting in the evaluation).
Missing values are indicated and can be filled in by the user.
The main benefit of this approach is that the user can interact
with the system using only NL.

The default behaviour in this case is to break the plan
into two action sequences by removing the partially speci-
fied action. That is, for a plan 7 = ag,...,a;,...,a,, and
partially specified action, a;, we create two plan fragments:
7l = ag,...,a;_1 and 72 = a;1,...,a,. These frag-
ments can then be used as input to the domain acquisition
system instead of the complete plan descriptions.

Evaluation

In this section we present a case study examining the ap-
proach developed in this paper. This is split into two sections:
the first examines the viability of acquiring suitable input
sentences from users; the second examines whether operator
sets can be synthesised that generalise user sentences and
planning models induced.

Acquiring action descriptions

In order to obtain the action descriptions we asked naive users
to explain animations that depicted action sequences from a
collection of typical planning benchmark domains. The users
were provided with recommendations for constructing the
sentences and were provided guidance when their sentences
did not meet these recommendations. In each case we noted
the type of deviation that was made and we are therefore
able to provide an indication of the areas where training is
required, or opportunities for supporting similar approaches
with inference. The specific descriptions made by each user
still provide a wide variety of inputs.

We gathered sentences from 10 participants with a mix-
ture of backgrounds and no experience of PDDL or related
languages. In each session we collected 39 action descrip-
tions between 3 domains. The session started by reading an
introduction to the study and several recommendations for
the sentences, including general properties of the sentences,
e.g., that it was a stand-alone sentence without co-reference
(not enforced). The key recommendations were: that the sen-
tence should always include an explicit description of the
starting situation of the main object before the action (e.g.,
pick up the blue block from the red block); and to use con-
sistent referencing for objects; for example if you refer to an
object as ‘the red block’ to always use this name. The partici-
pants were then shown an example video and sentence in the
Blocksworld domain (Figure 3a). The participants described
actions for animated videos in the following domains:

o Towers of Hanoi: The benchmark domain, visualised with
cards and not pegs (Figure 3b). A card can only be placed
on top of a card with a lower rank. The player must move
the cards so that all 4 cards are piled on the right-most
stack. We used the first 8 moves of a solution.

e Logistics: A standard logistics domain with misplaced
packages that must be relocated using trucks (Figure 3c).
The goal indicates the final configuration of the packages.
The videos presented one small (4 step) and one longer
(15 step) scenario.

|| Ref. Variation | More info. | Action detection | Others

Hanoi 3 5 1 2

Logistics 0 7 3 4

Tyres 0 4 4 0
Table 1: The number of instances for each category of

guidance required by participants during sentence collection
(from a total of 390 action descriptions collected). The cate-
gories are: referential variation, more required information,
no action detected in the sentence, and others (concentration
and participant instigated querying of verb use).

Open the boot of the red car

Take out the jack from the boot of the red car

Put the jack underneath the front of the red car

Lift the front of the red car with the jack

Remove the front wheel of the red car

Replace the front wheel of the red car

Let down the front of the red car with the jack

Take the jack from underneath the front of the red car
Put the jack into the boot of the red car

Close the boot of the red car

Figure 4: An example of the input NL sentences (from par-
ticipant p5) describing the actions in the Tyreworld scenario.

e Tyreworld: A subset of the benchmark domain. The sce-
nario involves jacking a car up by opening the boot, re-
moving the jack, raising the car and removing the wheel
(Figure 3d), before reversing the process. An example of a
participants sentences are presented in Figure 4.

Table 1 presents a coding of the guidance that was required
during participant construction of input sentences. These can
be largely divided into two areas: parsing the inputs and
guidance on specific content of the inputs. The main parsing
issue involved a failure of the parser to extract actions from
the sentences. We were able to test the user sentences as
they were constructed and therefore discover an alternative
quickly. In these cases (e.g., ‘load’ or ‘lower’ at the beginning
of a sentence) we asked the participant to consider using an
alternative verb.

The main limitation observed in the user sentences was
missing out one of the key actors in the action. It is perhaps
unsurprising that in the first sentences for Logistics and Tow-
ers of Hanoi the participants often did not mention the starting
location when describing moving a card, truck or package.
Although it should be noted that the participants had been
explicitly asked to do so using the Blocksworld example.
Missing information was less of a problem in the Tyreworld
domain. The most common omission was not mentioning the
jack’s role in lowering the car.

In Towers of Hanoi, some of the participants described the
cards moving between columns, or an enumeration of the
cards in the involved stacks. Use of alternative referencing
encodings (referential variation) was not observed in other
domains. Of course these alternative descriptions are valid
and more importantly might be appropriate for alternative
model acquisition target languages.

There were certain aspects of the participants’ sentences

439

[pl p2 p3 p4 p5 p6 p7 p8 p9 plo
Hanoi |0(1) 0(3)x 0(2)x 0(1) 0(1)x 0(1) 0(2)x 0(2)x 0(4)x 0(2)x
Log. |0(3) 03) 1(4)* 03) 03) 1(3) 03) 1(#)* 0(3) 0(3)
Tyres |2(6) 2(6)% 2(6) 0(5) 3(5)% 1(5) 1(5)% 1(5)% 2(6)% 1(5)

Table 2: Number of errors and clusters (in parenthesis) for the
sentences for each participant (p1-p10) in the three domains.
Each cell records the number of wrongly allocated sentences
and the cluster count in parenthesis. The symbol * indicates
at least one k (not selected by silhouettes) partitions the
sentences into distinct behaviours.

that were surprisingly good. There were relatively few typos
and only one occurrence of entering the wrong event. There
was only one occasion where a participant changed the way
they were recording a behaviour during a scenario in such
a way that the following sentence did not include enough
information (from a lack of concentration). Although we
had to request more information on several occasions, the
participants typically continued to provide this in subsequent
descriptions (within that scenario).

In a final step, we normalised user references, e.g., ‘point
A’ and ‘A’ were both mapped to ‘location A’. This was in
order to assist with reference disambiguation and parsing,
e.g., ‘A’ is a word and parsed differently from ‘B’ or ‘C’.

In general, the main limitation of the sentences was spe-
cific missing information. Therefore, considering how this
information can be recovered from alternative sources, in-
cluding additional user input is key future work in extending
the applicability of this approach.

Inducing planning models

In this part we take each participant’s input separately and
learn a domain model using the process as presented.

Identifying behaviour groups The first stage is clustering
the sentences into individual behaviour groupings. Table 2
shows the number of errors in splitting the sentences into
behaviours. In Logistics there are three main behaviours and
the clustering approach typically divides the sentences ac-
cordingly. There were several cases (p6, p7, p8, p10) where
the same verb was used for distinct behaviours, e.g., using
‘moved’ for driving, loading and unloading. However, the
clustering was robust to this, although in some of these cases
other causes impacted on the performance. This demonstrates
the importance of using the roles as part of the similarity
measure. In fact the only source of error in Logistics was
inconsistency in the sentences. This happened both in verb
use (p3) and different role identifiers (p6, p8, p10).
Whereas in Logistics there seem to be clear distinct be-
haviours, there is more ambiguity in the other domains. In
the Towers of Hanoi examples there are 4 behaviours that
can be distinguished: from empty, to empty; from empty, to
card; from card, to empty; and from card, to card. In some
cases the participants made consistent distinctions and some
of these behaviours were isolated. In Table 3 we present the
number of behaviours that were correctly isolated using dif-
ferent values of k in the clustering algorithm. In some cases,
no distinction in language was made and only a single be-

|pl p2 p3 p4 p5 p6 p7 p8 p9 plo
1 cluster v v v v v v v /v v
2clusters | X v VX V X v vV / v
Bclusters | X v/ X X X 1 X v /
4clusters | X v 1 X X x x X Vv 1

Table 3: Tower of Hanoi results for participants (p1-p10).
For the 4 possible behaviours (i.e. clusters £ = 1 to max.
4.): v/ indicates the participant correctly distinguished the
behaviour; v the number of clusters selected by the average
silhouette score; ‘1’ indicates a single change was required;
and X failure to distinguish behaviour (see text).

Avg. Silhouette

0.0 02 04 06
o

Figure 5: Plot of average silhouette scores for different values
of k in Tyreworld (participant p5).

haviour was identified (e.g., p1, p4 and p6). The ‘to empty’
and ‘empty to empty’ behaviours were the most commonly
distinguished.

The performance of the silhouette selection is not as effec-
tive in Tyreworld. The number of samples from each partic-
ipant is small and this is particularly relevant in Tyreworld
where there can be 10 different behaviours (depending on
participant encoding). It is important to note that there are
7 out of 10 cases where the distance measure distinguished
behaviours for some value of k. The silhouette plot presented
in Figure 5 illustrates how close the silhouette scores were
for p5 to a correct partitioning at k=8.

In Logistics and Hanoi, the v (the bias between action
name and roles in the distance measure) values: 0.33, 0.5
and 0.66, generated the same clusters. In Tyreworld there
are small differences in the order the sentences break into
separate clusters as k is increased. However, there is only one
change in silhouette score (p2) and by & = 8 (approximately
the number of behaviours) all clusters are the same.

In general over the 3 domains there are only 4 instances
where there is not a valid partitioning for some value of k.
This provides support that the selected distance measure is
an effective approach for identifying behaviours. However,
choosing amongst correct partitionings is still an interesting
problem, as it can influence the generality of the induced
model. However, pragmatically selecting one that has least
missing values could be considered.

Formalising the behaviour representations In this part
we assume that the behaviours have been correctly identified
and split into different clusters (i.e., not necessarily the one

440

|pl p2 p3 p4 p5 p6 p7 p8 p9 plo
Hanoi v/ R IR v v Vv Vv V Rx R
Logistics | v v vV vV V vV V Ix vV 1
Tyres v v v v v v v v v /

Table 4: Whether the correctly clustered sentences induced a
model. v: a PDDL model was induced; n: some fixes were
required and then a model was induced; *: a partial model
was induced before fixes; R: a correct representation was
constructed.

selected by silhouettes). A representative was selected for
each cluster and then a mapping was made onto each mem-
ber of the cluster to identify the best match for each of the
(unfiltered) representative’s roles. We set the parameter for
tag filtering at y = 20%.

As we have seen above (e.g., Table 3) in Towers of Hanoi,
the participants varied in their chosen description strategy.
When selecting a single cluster, the action headers for partici-
pants pl, p4, pS, p6, p7 and p8 are equivalent to the PDDL
benchmark model. Participants: p2, p3, p9, p10, made dis-
tinctions between the different behaviours. In these cases
the short action sequence that they were asked to describe
was insufficient to provide enough examples for LOCM to
induce a model properly. However, for participants, p2, p3
and p10, the final operator headers correctly described the
actions. For p9, the rewriting rules used during parsing re-
moved some of the important content and so the resulting
operator headers, while correct for the information, did not
contain all the important objects. In each case except 9, if
additional sentences are added (we added 15 sentences) using
a consistent method of description and the sentences are sepa-
rated into four clusters then a PDDL similar to the 4-operator
Blocksworld model is induced.

In Logistics the participants used predominantly consistent
sentences within each of the three behaviour groups. Out of
four inconsistencies, there were two cases (p8 and p10) that
prevented the correct slot fillers to be identified. For example,
one participant mixed ‘onto’ and ‘into’ and these words are
not identified as synonyms by the selected sources. However,
p3 changed their explanation of taking a package out of a
truck from: ‘The Parcell has been taken out of the red truck at
location C’ to “The Parcel2 has been removed from the blue
truck at location E’. The sources matched both ‘taken’ and
‘removed’ as synonyms, as well as the roles ‘from’ and ‘out’.
This highlights how the use of synonyms help to generalise
over some of the variation in descriptions.

In Tyreworld the main structure is in sequential applica-
bility of operators. One participant captured a more factored
model, representing the jack moving out from the car boot to
the ground, round the car and then to a position underneath
the car (with its return journey). This provided a traversal
structure, whereas most of the other descriptions used distin-
guishing language between the behaviours, e.g., putting the
jack in and taking it out of the boot.

The learnt PDDL model Once consistent formulations of
the input NL sentences had been extracted, the resulting ac-
tion sequences were formatted, as action headers, and input

Jjack-1
a2 raised
2022 I

in-boot take_2.1 on-ground ‘\M
0 0 e, ;
S in-boot-again

i

V)

Figure 6: Induced FSM for a jack in Tyreworld. The states
have been labelled for presentation.

to LOCM. LOCM generates a collection of FSMs that char-
acterise the dynamics of the problem domain. For example,
Figure 6 presents the structure identified for the jack object
for a participant’s sequences for Tyreworld. These FSMs can
be used to induce a planning domain model (e.g., the Logis-
tics domain for the sentences of p6 is presented in Figure 1)
and in combination with an action sequence, to generate a
problem model. For example, a planning problem was gen-
erated using p6’s descriptions of the Logistics scenario (a
larger example of sentences S1-S4) and Figure 7 presents a
plan generated to solve that problem.

During processing, the mapping from the original sentence
to the action template is retained and the parameter positions
of the operator are identified in each sentence. This provides
us with a template for rewriting a generated plan by fitting
the arguments into the sentence. For example, in Figure 7,
we present a plan generated using the learnt model. Using the
template for the move_2 operator, plan step two can be rewrit-
ten as ‘move the Parcell from location_B into the red_truck’
(underscores retained for clarity). The development of this
would be to modify the sentence using a language model,
e.g., selecting determiners.

This system presents a step towards a general interface for
exploiting planning technologies using only NL.

Related work

The majority of related work has aimed at mapping NL input
onto an existing formal representation.

In RoboCup@Home various approaches have been
adopted to define the mapping onto the grounded domain
representation. For example Kollar et al. (2013) present a
probabilistic approach to learning the referring expressions
for robot primitives and physical locations in a region. And
Mokhtari, Lopes, and Pinho (2016) present an approach to
learning action schemata for high-level robot control.

In (Goldwasser and Roth 2011) the authors present an
alternative approach to learning the dynamics of the world
where the NL input provides a direct lesson about part of
the dynamics of the environment. For example, the lesson:
“You can move any of the top cards to an empty free-cell’ is a
general rule that applies across several grounded situations.
Each lesson is supported by a small training data set (e.g., 20
examples) to support learning from the lessons. In contrast
to our approach, their system relies on a representation of
the states and actions, which means their NLP approach can
target an existing language.

More closely related to our work are attempts to learn
planning models in the absence of a target representation.

441

drive_1 red_truck location_A location_B
move_2 Parcell location_B red_truck
drive_1 red_truck location_B location_E
move_3 Parcell red_truck location_E
drive_1 red_truck location_E location_C
move_2 Parcel2 location_C red_truck
drive_1 red_truck location_C location_A
move_3 Parcel2 red_truck location_A
move_2 Parcell location_E blue_truck
move_3 Parcell blue_truck location_E

drive_1 blue_truck location_E location_C

Figure 7: Logistics domain: plan generated from a larger
example including sentences S1-S4 (participant p6).

These include (Sil and Yates 2011) who used text mining
via a search engine to identify documents that contain words
that represent target verbs or events and then uses inductive
learning techniques to identify appropriate action pre- and
post-conditions. Their system was able to learn action rep-
resentations, although with certain restrictions such as the
number of predicate arguments. Branavan et al. (2012) intro-
duce a reinforcement learning approach which uses surface
linguistic cues to learn pre-condition relation pairs from text
for use during planning. The success of the learnt model
relies on use of feedback automatically obtained from plan
execution attempts. Yordanova (2016) presents an approach
which works with input text solution plans, as a proxy for
instructions, and aims to learn pre- and post-condition ac-
tion representations. However this approach uses hand-coded
representations of the initial and goal state for input plans.

Conclusion and future work

We believe this is the first approach that generates PDDL mod-
els directly from NL without an existing target model. Our
approach harnesses a selection of existing technologies, in-
cluding Standford CoreNLP, several online lexical resources,
PAM, and LOCM. In our evaluation we demonstrated that the
system can create formalisms from a variety of different NL
representations. Although improving the robustness of the
approach will be important future work, it should be noted
that once a model is generated then it can be combined with
the large body of existing work that looks at mapping NL
onto existing formalisms. In the current approach, separating
the sentences into appropriate behaviours plays an important
role in determining the quality of the generated PDDL model.
Important future work will explore generating models with
various granularities and identifying whether they can be
supported by the information content of the input sentences.
Another avenue of future work is considering more intelli-
gent ways of dealing with missing information. Our approach
relies heavily on a sufficient number and length of fully speci-
fied sequences in the input. An interesting approach would be
to use a predictive model to estimate the parameter selections;
perhaps taking inspiration from the recommendation system
approach presented in (Krivic et al. 2016) for predicting ini-
tial world object properties. Alternatively, we could target
other domain acquisition systems, such as (Mourdo, Petrick,
and Steedman 2010) that handle noisy data.

Acknowledgements
This work is supported by EPSRC Grant EP/N017447/1.

References

Branavan, S. R. K.; Kushman, N.; Lei, T.; and Barzilay, R.
2012. Learning High-level Planning from Text. In Proceed-
ings of the 50th Annual Meeting of the Association for Com-
putational Linguistics, ACL *12, 126—135. Stroudsburg, PA,
USA: Association for Computational Linguistics.

Cresswell, S., and Gregory, P. 2011. Generalised domain
model acquisition from action traces. In Proc. of the 21st Int.
Conf. on Automated Planning and Scheduling (ICAPS).

Cresswell, S. N.; McCluskey, T. L.; and West, M. M. 2009.
Acquisition of Object-Centred Domain Models from Plan-
ning Examples. In Proc. of 19th Int. Conf. on Automated
Planning and Scheduling (ICAPS).

de Marneffe, M.-C.; MacCartney, B.; and Manning, C. D.
2006. Generating typed dependency parses from phrase struc-
ture parses. In Proceedings of the Conference on Language
Resources and Evaluation, 449-454.

Duda, R. O.; Hart, P. E.; et al. 1973. Pattern classification
and scene analysis, volume 3. Wiley New York.

Ersen, M., and Sariel, S. 2015. Learning behaviors of and in-
teractions among objects through spatio-temporal reasoning.
Computational Intelligence and Al in Games, IEEE Transac-
tions on 7(1):75-87.

Frank, J. D.; Clement, B. J.; Chachere, J. M.; Smith, T. B.; and
Swanson, K. J. 2011. The Challenge of Configuring Model-
Based Space Mission Planners. In International Workshop on
Planning and Scheduling for Space.

Goldwasser, D., and Roth, D. 2011. Learning from natural
instructions. In Proc. of the 22nd Int. Joint Conf. on Artifical
Intelligence (IJCAI).

Gregory, P., and Cresswell, S. 2015. Domain Model Acquisi-
tion in the Presence of Static Relations in the LOP System. In
Proc. of 25th Int. Conf. on Automated Planning and Schedul-
ing (ICAPS), 97-105.

Gregory, P, and Lindsay, A. 2016. Domain Model Acquisi-
tion in Domains with Action Costs. In Proc. of the 26th Int.
Conf. on Automated Planning and Scheduling (ICAPS).

Hayton, T.; Gregory, P.; Lindsay, A.; and Porteous, J. 2016.
Best-fit action-cost domain model acquisition and its applica-
tion to authorship in interactive narrative. In AAAI Conf. on
Al and Interactive Digital Entertainment (AIIDE).

Hoffmann, J.; Weber, I.; and Kraft, F. M. 2012. SAP speaks
PDDL: Exploiting a software-engineering model for planning
in business process management. Journal of Artificial Intelli-
gence Research 44:587-632.

Kaufmann, L., and Rousseeuw, P. J. 1987. Clustering by
means of medoids. Journal of Machine Learning Research.
Klein, D., and Manning, C. D. 2003. Fast exact inference with
a factored model for natural language parsing. In Advances
in Neural Information Processing Systems, volume 15. 3-10.
Kollar, T.; Perera, V.; Nardi, D.; ; and Veloso, M. 2013. Learn-
ing Environmental Knowledge from Task-based Human-

442

robot Dialog. In Proceedings of IEEE International Confer-
ence on Robotics and Automation (ICRA).

Krivic, S.; Cashmore, M.; Ridder, B.; and Piater, J. 2016.
Initial State Prediction in Planning. In Proc. 31st Workshop
of the UK Planning and Scheduling SIG (PlanSIG).

Levenshtein, V. I. 1966. Binary codes capable of correcting
deletions, insertions and reversals. Cybernetics and Control
Theory 10:707-710.

Lindsay, A.; Charles, F.; Read, J.; Porteous, J.; Cavazza, M.;
and Georg, G. 2015. Generation of non-compliant behaviour
in virtual medical narratives. In Proc. of the 15th Interna-
tional Conference on Intelligent Virtual Agents (IVA).

Manning, C. D.; Surdeanu, M.; Bauer, J.; Finkel, J. R;
Bethard, S.; and McClosky, D. 2014. The stanford corenlp
natural language processing toolkit. In The Annual Meet-
ing of the Association for Computational Linguistics (System
Demonstrations), 55-60.

McCluskey, T. L.; Cresswell, S. N.; Richardson, N. E.; and
West, M. M. 2009. Automated acquisition of action knowl-
edge. In International Conference on Agents and Artificial
Intelligence (ICAART), 93—-100.

McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL-the
planning domain definition language. Technical report, Yale
University.

Mehta, N.; Tadepalli, P.; and Fern, A. 2011. Efficient Learn-
ing of Action Models for Planning. In ICAPS Planning and
Learning Workshop (PAL),.

Mokhtari, V.; Lopes, L. S.; and Pinho, A.J. 2016. Experience-
Based Robot Task Learning and Planning with Goal Infer-
ence. In Proc. of the 26th International Conference on Au-
tomated Planning and Scheduling (ICAPS).

Mourio, K.; Petrick, R. P. A.; and Steedman, M. 2010. Learn-
ing action effects in partially observable domains. In Proc.
19th European Conference on AI (ECAI). 10S Press.

Porteous, J.; Lindsay, A.; Read, J.; Truran, M.; and Cavazza,
M. 2015. Automated extension of narrative planning domains
with antonymic operators. In Proc. of the Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS).

Richardson, N. E. 2008. An Operator Induction Tool Support-
ing Knowledge Engineering in Planning. Ph.D. Dissertation,
School of Computing and Engineering, University of Hudder-
sfield, UK.

Rousseeuw, P. J. 1987. Silhouettes: a graphical aid to the
interpretation and validation of cluster analysis. Journal of
computational and applied mathematics 20:53-65.

Sil, A., and Yates, A. 2011. Extracting strips representations
of actions and events. In Recent Advances in Natural Lan-
guage Processing (RANLP).

Walsh, T. J., and Littman, M. L. 2008. Efficient Learning of
Action Schemas and Web-Service Descriptions. In Proc. of
23rd AAAI Conference on Artificial Intelligence.

Yordanova, K. 2016. From Textual Instructions to Sensor-
based Recognition of User Behaviour. In Proc. of 21st Int.
Conf. on Intelligent User Interfaces, IUl Companion. ACM.

