
Performance Modelling of Planners
from Homogeneous Problem Sets

Tomás de la Rosa, Isabel Cenamor, Fernando Fernández
Departamento de Informática, Universidad Carlos III de Madrid

Avda. de la Universidad, 30. Leganés (Madrid). Spain
trosa@inf.uc3m.es,icenamor@inf.uc3m.es,ffernand@inf.uc3m.es

Abstract

Empirical performance models play an important role in the
development of planning portfolios that make a per-domain
or per-problem configuration of its search components. Even
though such portfolios have shown their power when com-
pared to other systems in current benchmarks, there is no
clear evidence that they are capable to differentiate problems
(instances) having similar input properties (in terms of ob-
jects, goals, etc.) but fairly different runtime for a given plan-
ner. In this paper we present a study of empirical performance
models that are trained using problems having the same con-
figuration, with the objective of guiding the models to rec-
ognize the underlying differences existing among homoge-
neous problems. In addition we propose a set of new features
that boost the prediction capabilities under such scenarios.
The results show that the learned models clearly performed
over random classifiers, which reinforces the hypothesis that
the selection of planners can be done on a per-instance basis
when configuring a portfolio.

Introduction

Empirical Performance Models (EPMs) for automated plan-
ners are built to predict the behavior of planners when they
solve a particular planning task. The straightforward ap-
plication of these EPMs is the per-instance selection of a
good planner or set of candidate planners for solving the
task. Other interesting application is the generation of hard
planning tasks without actually running any planner. EPMs
should be trained extracting from the learning instances a
set of relevant features able to discriminate, given a specific
planner, between its different performance outcomes. How-
ever, there is no clear evidence that EPMs are able to classify
planning tasks by their intrinsic difficulty and not by other
properties that make them different from other examples of
the training set: on the one hand, many features used to char-
acterize planning tasks are considered weak given that they
might not have a direct correlation with the task difficulty;
on the other hand, when input files are similar, the vast ma-
jority of the state of the art features extracted from the in-
stantiation of the tasks produce the same or fairly similar
values, and therefore they do not add discriminant informa-
tion to recognize which tasks are potentially difficult for a

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

given planner. From our point of view, given a particular
planner, an EPM may encode knowledge as a combination
of the following capabilities:

• Domain discrimination: the models learn how to recog-
nize planning tasks from a certain domain, usually using
features at domain/problem level (i.e., features generated
from the PDDL (Planning Domain Definition Language)
input files. Then, the models tend to predict the average
performance seen on that domain. In this case, we can
consider that these models are over-fitted, given that there
is no justified correlation between shallow features such
as the number of PDDL actions and the difficulty of a
planning task. Moreover, consider that most of these fea-
tures could be artificially modified in the PDDL descrip-
tion without altering the performance of a planner at all
(e.g., adding a number of actions that never become ap-
plicable, but that alter the feature values).

• Size discrimination: the models give relevance to features
from the instantiation, so they can recognize the magni-
tude or the size of the problem. This makes sense because,
for a given domain, larger problems would need more
time to run on average. This effect is particularly domi-
nant when models are trained with problems of a single
domain.

• Search space discrimination: The models predict the per-
formance based on features from some characteristics that
are intrinsic to the search tree or to the process of explor-
ing it. This kind of discrimination could be the only one
useful when trying to classify problems of the same size
and configuration.

Planning EPMs have been usually trained using a set of
available benchmarks. Most of these benchmarks have been
created for the evaluation in International Planning Compe-
titions (IPCs). Thus, each problem set has planning tasks of
incremental size to show how state-of-the-art planners scale
in their performance until hopefully fail in the largest in-
stances. Under these circumstances is very hard to isolate the
effect of different discrimination types. For the case of the
learning tracks of the IPC, the models are trained with prob-
lem sets of the same domain, and therefore only the size and
and the search discrimination could be combined into the
model. In other tracks, like deterministic, domain and size

Proceedings of the Twenty-Seventh International Conference on Automated Planning and Scheduling (ICAPS 2017)

425

discrimination would be enough to obtain very high predic-
tion performance.

The contributions of this work are: (1) The empirical
study that confirms that EPMs for planning are able to show
the search space discrimination. We achieve this target by
training EPMs with homogeneous problem sets (i.e., pre-
venting the models from using other discrimination capa-
bilities) and validating that these models perform better than
random classifiers. (2) A new set of easily computable fea-
tures that improve prediction capabilities of state-of-the-art
EPMs for planning. (3) An analysis of the feature relevance
to recognize which features are important to predict the em-
pirical hardness of planning task when they belong to homo-
geneous sets.

Related Work
EPMs of automated planners have evolved during the last
years. Roberts et al. 2008; 2009 trained EPMs on known
benchmarks up to 2008, showing good accuracy on pre-
dicting whether a planner will succeed or not. The fea-
tures used to generate their models were from the domain
and problem definition. Therefore, this set of features is
not useful for models trained with homogenous problem
sets given that they will produce the same values. Cen-
amor et al. 2012; 2013 trained EPMs including features from
the causal graph and domain transition graphs, as well as
some instantiation level features extracted from the Fast-
Downward translator (Helmert 2006). These features con-
tributed to the learning of both classification and regression
models: a classification model was able to predict whether a
given planner will solve an input problem in the given time
(1800 seconds) and, if so, the regression model was able to
estimate how long it would take to achieve the best solu-
tion. Nevertheless, these models were trained using existing
benchmarks, which contains problems of incremental size,
and therefore can not give a clear evidence on the effect
of the search space discrimination. Fawcett et al. 2014 ex-
tended the set of Cenamor’s features including features ex-
tracted by probing the search with short runs of Fast Down-
ward, and features extracted from the SAT encoding of the
planning task. Results showed they improved existing re-
gression models. However, the SAT-encoding features were
reported as computationally expensive, and therefore less at-
tractive to include in EPMs generated for a per-instance se-
lection of planners in a portfolio. Moreover, as these fea-
tures are not expressed in terms traditional planning task el-
ements, it seems difficult to analyze results if one want to
recognize what makes a planning task easy or hard. As other
work, these EPMs were trained with existing benchmarks.
Fawcett et al. also included features from Torchlight (Hoff-
mann 2011), which computes features under the topology of
delete relaxation heuristics and its relation to causal graphs.
However they reported that Torchlight features were in gen-
eral less relevant for such predictions. The IBACOP2 plan-
ner (Cenamor, de la Rosa, and Fernández 2016), the winner
of the sequential satisficing track of IPC-2014, is a planning
portfolio that uses EPMs to make a per-instance selection of
planners to run. It extends the set of features of a previous
work (Cenamor, de la Rosa, and Fernández 2013) but rather

than probing the search, it includes heuristic values of the
initial state using different heuristics in the planning liter-
ature. In addition, IBACOP2 includes fact balance features,
a set features extracted from the relaxed plan of the initial
state that enrich its characterization in addition to the sin-
gle computation of the FF heuristic (Hoffmann and Nebel
2001). As the rest of research work, IBACOP2 models were
trained using existing benchmarks, therefore even that they
claim to make a per-instance configuration of the portfolio,
from their result we can not conclude that these results are
supported by the search space discrimination. In this work
we have used the set of features included in IBACOP2 as our
starting point to evaluate whether the search space discrimi-
nation exists and to propose additional features.

Planning Task Features

We have augmented the set of features proposed in IBA-
COP2 by including (1) the Red-Black heuristic (Domshlak,
Hoffmann, and Katz 2015) to the list of heuristic values
computed for the initial state; (2) new fact balance features
that give an overall measure to characterize the relaxed plan
rather than giving statistics of its elements and (3) features
extracted from the landmark graph computed also in the ini-
tial state. The last two groups are explained in detail in this
section.

Fact Balance Features

As background knowledge for describing fact balance fea-
tures we state that a planning task is defined as the tuple
Π = 〈P ,A, I,G〉, where P is a set of propositions, A is a set
of actions, I is the initial state and G is the set of goals. Each
a ∈ A is defined as the tuple 〈pre(a), add(a), del(a)〉 rep-
resenting the action preconditions, added effects and deleted
effects respectively. A plan π = {a1, . . . , an} is a sequence
of actions that transforms I into a new state where goals in
G have been achieved.

A relaxed plan π+ is the sequence of actions that solves a
relaxed planning task, i.e. a task in which deleted effects of
actions have been ignored (Hoffmann and Nebel 2001). The
plan π± is defined as the sequence of actions corresponding
to π+, but with actions taken from the original task. This
plan is obviously not applicable in most of the cases, but
it provides useful information for a variety of search con-
trol techniques, such as lookahead states (Vidal 2004). For
the fact balance, π± is the base for encoding additional in-
formation that is not incorporated in the heuristic values of
delete relaxation heuristics. Particularly, the information is
computed from the relaxed plan of the initial state, which is
denoted by π±

I . We will still call π± a relaxed plan to remark
it is basically obtained by the original procedure of π+.

Definition 1 Given a relaxed plan π±, the balance of a fact
p is a function B that computes the difference of the number
of times p is added and the number of times p is deleted in
π±.

B(p, π±) = |{a|a ∈ π± ∧ p ∈ add(a)}|
− |{a|a ∈ π± ∧ p ∈ del(a)}| (1)

426

The idea behind computing the balance of facts is that we
can reflect with a number whether the relaxation is altering
more or less the possible application of a sequence of ac-
tions from π±. A negative balance for a fact p indicates that
π± probably will not be applicable, and p will have to be
recovered by other actions in the real plan.

From a propositional machine learning perspective, one
would like to generate a fixed set of features that charac-
terize a relaxed plan. However, the number of propositions
is dependent of the planning task, therefore the balance of
facts can not be encoded as individual features. Instead, the
information is aggregated computing statistics over set of
propositions. The set of fact balance features considered in
IBACOP2 are:

• The min., average, and standard deviation of
B(p, π±

I), ∀p ∈ P .

• The min., average, and standard deviation of
B(g, π±

I), ∀g ∈ G.

For this work we have generated three new features that
also provide additional information regarding the Relaxed
Planning Graph (RPG) built by the FF planner (Hoffmann
and Nebel 2001). An RPG is a sequence of proposition
and action layers P0, A0, P1, A1, . . . , At−1, Pt, representing
the reachability analysis of the relaxed planning task. Each
action in π± has an associated layer that we denote with
level(a). The FF heuristic is the number of actions in the
relaxed plan. However, this number does not reflect many
properties of the structure of π± and its corresponding RPG.
The idea behind these new features is to partially encode
this underlying structure, and therefore find the difference
between tasks that may have the same heuristic value in the
initial state.

Definition 2 the level balance of a fact p at layer l is a
function B[l] that computes the difference of the number of
times p is added and the number of times p is deleted by
actions of π± that belongs to layer l − 1.

B[l](p, π
±) = B(p, {a|a ∈ π± ∧ level(a) = l − 1})

In the same way, we define the function B[∗l](p, π±) to
compute the sum of level balance for a fact up to layer
l, which considers the prefix of π± that includes all actions
from layer 0 to l − 1.

We compute the balance in each RPG layer because we
can use it to realize part of the structure of π±. If we imag-
ine the application of π± by a group of actions (i.e, divided
by each layer), each layer would have a mark or a “balance
footprint” of how far is π± from being applicable. Figure 1
presents the BalanceFootprint function, an algorithm that
computes the following values:

1. fp+
l , the balanced footprint in layer l, as a measure that

aggregates the occurrences in which a fact has a positive
balance.

2. fp−
l , the unbalanced footprint in a layer l, as a measure

that aggregates the occurrences in which a fact has a neg-
ative balance.

3. dist fpl, the distortion of the unbalanced footprint to
record whether the facts remain unbalanced for many lay-
ers. This measure is computed as an exponential penalty
of the number of layers, to represent that unbalanced facts
tends to produce uninformed heuristic values specially if
this situation holds for many layers or until RPG fix-point.

BalanceFootprint (RPG, π±, l): (fp+, fp−, dist fp)

fp+: (positive) balanced footprint of a layer
fp−: (negative) unbalanced footprint of a layer
dist fp : distortion of the unbalanced footprint

fp+ = 0; fp− = 0; dist fp = 0
for each p in P do

if is goal(p) then
target = 1

else
target = 0

if B[l](p, π
±) =! 0 then

if B[∗l](p, π
±) ≥ target then

fp+ += B[∗l](p, π
±) - target

else

fp− += target - B[∗l](p, π
±)

lgap = 1
diff = B[∗l](p, π

±)
while ((lgap+l) < layers(RPG) and diff ≥ target)

diff += B[l](p, π
±)

lgap += 1
dist fp += (target - B[∗l](p, π

±)) * 2lgap

Figure 1: Algorithm for computing the positive and negative
balance footprints for a layer of the RPG.

The balance footprints computed by the algorithm in Fig-
ure 1 are associated to particular layers of RPG. Also, their
magnitude is affected by the number of actions in the previ-
ous layer. Therefore, to compute the balance and unbalance
features in a normalized way, we aggregate the value of each
layer multiplying it by a weight that represent the propor-
tion of actions that appear in each particular layer of RPG.
The distorsion measure involve information of several lay-
ers, therefore it will not be weighted. Thus, after computing
the balance footprints, the three new features are computed
as follows:

BalancedRP =

layers(RPG)∑

i=1

|Ai−1|
|A| × fp+i

UnbalancedRP =

layers(RPG)∑

i=1

|Ai−1|
|A| × fp−i

DistortedRP =

layers(RPG)∑

i=1

dist fpi

427

Landmark Graph Features

The landmarks of a planning task are a set of propositions
that have to become true at some point in every solution
plan. They give information about specific conditions that
must hold in intermediate steps of the search process. Nev-
ertheless, as many of them can be computed beforehand in
a pre-processing step, this knowledge is suitable for charac-
terizing planning tasks from a non-syntactical perspective.
The set of landmarks and their orderings induce a land-
mark graph. In this work, we have used the procedure pro-
vided by Fast-Downward to extract landmarks, which cre-
ates a single graph merging two different techniques for ex-
tracting landmarks (Richter, Helmert, and Westphal 2008;
Zhu and Givan 2003). We use the landmark graph to com-
pute the new set of features proposed next:

• Number of landmarks (nodes in the landmark graph)

• Number of edges in the landmark graph

• Number of parent nodes (i.e., landmarks with no input
edges)

• Number of children nodes (i.c., landmarks with no output
edges)

• Number of inner nodes

• The ratio between landmarks and edges

• Maximum, average and standard deviation of the number
of input edges for a landmark

• Maximum, average and standard deviation of the number
of output edges for a landmark

The first four features are new to the set of IBACOP2 fea-
tures, but should not be considered as new features in the
literature given that they were included as part of Fast Down-
ward search probe features proposed by Fawcett et al. 2014.

Experimental Setup

In this section we describe the methodology we have fol-
lowed to prepare the experimental evaluation for learning
EPMs from homogeneous problem sets. We say that two
problems of a given domain are homogeneous if:

1. they have the same distribution of objects.

2. their initial state and goals have been sampled from the
same state/goals distributions

Even though the second condition might seem open to
cover fairly different problems, what we want to state is that
we are interested in problems that produce a zero or near
zero variance for features generated from a syntactical pre-
process of the input files. From a practical point of view, we
consider that a problem set is homogeneous if their prob-
lems have been generated with the same input parameters of
a random problem generator.

Next, we enumerate the planners selected and describe
how we have selected the planning domains and problems;
then, we motivate the performance metric used in the learn-
ing evaluation and describe how we have created the training
sets.

Planners, Domains and Problems

For the evaluation we have selected three stand alone plan-
ners that have shown great performance on the sequen-
tial satisficing tracks of recent IPCs and that are reason-
ably different in their search techniques. The selected plan-
ners are: LAMA (Richter, Helmert, and Westphal 2008;
Richter, Westphal, and Helmert 2011), the winner of IPC-
2011; MERCURY (Domshlak, Hoffmann, and Katz 2015)
the third best planner in terms of quality score and the best
stand-alone planner in IPC-2014; and PROBE (Lipovetzky
and Geffner 2011), the second best planner in terms of cov-
erage in IPC-2011.

As we discussed before, IPC problem sets are designed
to show an incremental difficulty, therefore they are not suit-
able for our evaluation. In addition, not all domains are inter-
esting for analyzing the search space discrimination. On the
one hand, a class of problems in a domain might not be chal-
lenging for planners, therefore the runtime for solving these
problems is a straightforward function of the problem size,
no matter the particular differences of the search trees. On
the other hand, available random problem generators might
create a low diversity problem set given the same input pa-
rameters, which would lead to similar planner performance,
and therefore uninteresting for our study.

For the evaluation we have initially considered the do-
mains from IPC-2011 and IPC-2014 for which we have
found random problem generators. The first step we have
performed towards the selection of interesting problem sets
is the generation of a set of 30 random problems with the
same input parameters for each domain. The problem size,
determined by these input parameters, was manually ad-
justed to have non trivial problem that, in most cases, can be
solved within 1800 time bound. The specific parameters for
each domain will be described in the Results section. Plan-
ners were run on these problem sets to visualize the perfor-
mance profile of each domain.

Table 1 shows the coefficient of variation (i.e., the ratio
of the standard deviation to the mean, Cv = σ/μ) for the
runtime each planner used in solved instances. With this rel-
ative measure of dispersion one can compare performance in
different domains and realize which of them have more va-
riety in their performance profile. We have marked in bold
the top 10 Cv , which have a value higher than 1. We have
focused on these planner/domain performance for the rest of
the evaluation. The selected problem sets are from Barman,
Depots, Elevators, Floortile, Satellite and TPP.

For each selected problem set, we have generated 170 ad-
ditional problems to complete a set of 200 training prob-
lems. Each planner of interest has been run on these prob-
lems to collect the performance data. The complete evalua-
tion was run on a cluster nodes that have an Intel XEON2
2.93Ghz processor, 8 GB of memory and are running on
Linux Ubuntu 14.04 LTS.

The Learning Process

For the study we have focused on recognizing if a given
planning task is “easy” or “difficult” for a planner. How-
ever, from a experimental point of view such concepts are

428

Domain Mercury Probe Lama
barman 2.86 2.02 2.63
blocksworld 0.53 0.14 0.76
depots 2.97 0.08 1.99
elevators 0.04 0.22 1.03
floortile 0.95 1.75 0.68
gripper 0.72 0.04 0.65
nomystery 0.25 - 0.41
parking 0.20 0.69 0.26
rovers 0.49 0.17 0.42
satellite 1.25 0.39 0.30
spanner 0.04 0.21 0.08
tpp 1.57 0.17 1.07
transport 0.02 0.00 0.01

Table 1: Coefficient of variation (Cv = σ/μ) of the planner
runtime on solved instances. Each set contains 30 homoge-
neous problems. The top higher values are shown in bold.

somehow artificial in planning evaluations, since the con-
cept of difficulty changes while planning research advances,
and more important it is relative to the time bound used for
evaluation. Regarding the homogeneous problem sets, the
important key is to differentiate which problems of the same
type are difficult, or at least more difficult than the rest.
Therefore we say that a problem is difficult for a planner
with respect to a (homogeneous) problem set if the runtime
to solve such problem is over a given percentile of the time
required to solve any problem of the set. Consider for in-
stance Figure 2, where we show histograms of Mercury run-
time for the 200 problems of the Barman domain. With the
same profile one can use different cut-off points to define
the class proportion of easy/hard problems. As we can see,
execution time could be said to follow a gamma distribu-
tion shape with a long right tail. Such tail could be consid-
ered to include the difficult problems if, for instance, we as-
sume percentiles of 90 (top image) or 75 (bottom image).
For the evaluation we have used the percentiles 95, 90, 75,
and 66 as cut-off points to generate training sets with differ-
ent easy/hard proportion of problems.

To evaluate the performance of the classifiers, we avoid
using classical classification metrics as accuracy, since the
data we use might have a unbalanced classes, and different
cut-off points could not be compared. Instead, we use the
Area Under the ROC Curve (AUROC) metric (Bouckaert
2006). A ROC curve of a binary classifier is a graph where
the x-axis represents the false positive rate and the y-axis the
true positive rate. The classifier is assumed to be instantiated
with a parameter t such that it assigns to a new instance a
positive class if the predicted probability to belong to such
class is larger than t. When t ranges from 0 to 1, the ROC
curve is generated, describing the balance between the true
positive and the false positives. For t = 0, both true and
false positive rates are also 0, since the classifier never out-
puts a positive value. When t = 1 both values are 1, since
the classifier returns a positive class for all the instances. The
AUROC metric is interpreted as the probability that the clas-

 0

 20

 40

 60

 80

 100

 120

0 1 2 3 4 5
1

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0
1

4
0

1
6

0
1

8
0

2
0

0
2

2
0

2
4

0
2

6
0

2
8

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

8
0

0
9

0
0

1
0

0
0

1
1

0
0

1
2

0
0

1
3

0
0

1
4

0
0

1
5

0
0

1
6

0
0

1
7

0
0

1
8

0
0

3
6

0
0

S
o

lv
e

d
 P

ro
b

le
m

s

Execution Time(s)

 0

 20

 40

 60

 80

 100

 120

0 1 2 3 4 5
1

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0
1

4
0

1
6

0
1

8
0

2
0

0
2

2
0

2
4

0
2

6
0

2
8

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

8
0

0
9

0
0

1
0

0
0

1
1

0
0

1
2

0
0

1
3

0
0

1
4

0
0

1
5

0
0

1
6

0
0

1
7

0
0

1
8

0
0

3
6

0
0

S
o

lv
e

d
 P

ro
b

le
m

s

Execution Time(s)

Figure 2: Histogram of Mercury execution runtime for 200
problems of Barman. Green bars represent easy tasks up to
percentile (top) 90 and (bottom) 75. Red bars represents hard
tasks.

sifier will rank a randomly chosen positive example higher
than a randomly chosen negative example. Thus, a random
classifier has an AUROC of 0.5, no matter the class balance,
given that true and false positive ratios are independent of
the number of positive and negative instances. In our experi-
ments, if the computed AUROC for a classifier is larger than
0.5, we can claim that it behaves better than random and pro-
vides useful knowledge to classify tasks at the given cut-off
point.

For each problem set and cut-off point we trained classi-
fication models using 4 machine learning techniques: naive
Bayes and decision trees, to have traditional and compre-
hensive models; and random forest and rotation forest, that
have been shown as good learners in recent work on EPMs
for planning (Fawcett et al. 2014; Cenamor, de la Rosa,
and Fernández 2016). These classifiers were trained us-
ing Weka (version 3.6.10), a widely used machine learning
Toolkit (Witten and Frank 2005).

To find the features that are able to discriminate easy and
hard problems, different feature selection processes could be
followed. In this work, we have used a ranker based on the
information gain ratio, also provided by Weka. The informa-
tion gain ratio is a standard discrimination criteria used in
the induction of tree-based classifiers, such as decision trees

429

Planner Solved f-set Real 95% 90% 75% 66%

MERCURY 100 all - 0.68 0.71 0.71 0.71
ib2 - 0.68 0.69 0.69 0.69

PROBE 86.5 all 0.72 - - 0.61 0.63
ib2 0.67 - - 0.51 0.60

LAMA 97.5 all 0.46 0.58 0.70 0.70 0.71
ib2 0.44 0.56 0.69 0.69 0.69

Table 2: AUROC for different difficulty cut-offs in the prob-
lem set of Barman. Following Table 1, the three planners are
evaluated

or random forest. The feature ranker evaluates the worth of
an attribute by measuring the gain ratio with respect to the
class.

Performance Modelling

In this section we present the results for the performance
modelling on the selected problem sets and the planners of
interest. The AUROC results are presented grouped by do-
mains. The results are shown only for the best classifier (i.e.,
one of the 4 Weka algorithms considered for the study) ob-
tained from a 10-fold cross validation process. The baseline
of comparison is the random classifier, which will achieve
0.5 as AUROC by definition. We include the results for:
• ib2: models trained using the IBACOP2 feature set (Cen-

amor, de la Rosa, and Fernández 2016)
• all: the previous feature set plus the additional set of fea-

tures presented in this work
In addition to different cut-off points we include, in the

case it makes sense, the results of the “real” proportion of
easy/hard problems, computed as the solved/unsolved tasks
within the 1800 seconds time-bound. At the end of the sec-
tion we present the results for the feature rankings and we
report an overall analysis with the insights we have found
during the process.

Barman

This domain represents a waiter robot that makes cocktails
manipulating drink dispensers, glasses and a shaker. The
problem set has the following size: 1 shaker, 2 hands, 15
shots, 5 ingredients, 10 cocktails, 5 dispensers. The goals
consist of preparing 14 shots. Table 2 shows the AUROC
results of the best model for all tested configurations. For
LAMA the bad result on the real problem set is expected,
given that 5 problems labeled as unsolved is not enough to
give at least one instance to test in the 10-fold cross valida-
tion scheme. The rest of models show a performance above
a random classifier validating the existence of the search
space discrimination for these EPMs. The use of the new
features slightly increases AUROC values of most models
trained with IBACOP2 features. PROBE did not solve 27 of
the 200 problem. That is the reason why the cut-offs of 90%
and 95% do not make sense.

Depots

This domain is a combination of a transportation domain and
the Blocksworld domain. The transportation part involves

Planner Solved f-set Real 75% 66%

MERCURY 87.0% all 0.84 0.98 0.78
ib2 0.84 0.82 0.78

LAMA 89.5% all 0.80 0.78 0.75
ib2 0.71 0.79 0.78

Table 3: AUROC for different profile cut-offs in the problem
set of Depots. Following Table 1, only Mercury and Lama
are evaluated

Planner Solved f-set Real 95% 90% 75% 66%

LAMA 96.5% all 0.34 0.53 0.50 0.53 0.54
ib2 0.34 0.50 0.50 0.53 0.52

Table 4: AUROC for different profile cut-offs in the problem
set of Elevators. Following Table 1, only Lama is evaluated

moving crates around different locations using trucks. Then,
at each location, crates are stacked on pallets using hoists.
Goals indicate the final position of each crate. The problem
set was generated with the following input parameters to the
generator: 1 depot, 2 distributors, 2 trucks, 6 pallets, 3 hoists
and 20 crates. The results are shown in Table 3. The per-
centage of solved problem for both LAMA and MERCURY
is below 90%, therefore the first two cut-off points do not
make sense. For the real class proportion, as well as for rest
of cut-off points, the AUROC is very high, achieving the
outstanding value of 0.98 for Mercury in the 75% cut-off.
The models trained with all features achieved equal or better
AUROC than the models using IBACOP2 features.

Elevators

This domain represents a set of elevators in a building that
move people between different floors. There are slow eleva-
tors that stop at each floor within a range of floors and fast
elevators that stop every x floors of the building. The goal is
to deliver a list of persons to their destination floors. The in-
put parameters of the problem set are: 33 floors, 54 persons,
4 fast elevators stopping at floor numbers multiple of 8, and
8 slow elevators. The AUROC results corresponding to the
models trained for LAMA are presented in Table 4. Differ-
ent from previous domains, these results show a poor pre-
diction performance. For the real proportion, bad results are
expected due to the scarcity of negative examples. However,
for all cut-off points the performance is still equal or very
close to a random classifier. As shown in Table 1, PROBE
and specially MERCURY, achieved very low variation on
their runtime, and even Lama obtained a specially low value
(only 1.03). Those results suggest that these problems are
quite similar even in their search space structure.

Floortile

This domain represents a set of robots that paint color pat-
terns on floor tiles. However, robots can only paint the tile
that is in front (up) and behind (down) them, and once a tile
has been painted a robot can not stand on it. The goal con-

430

Planner Solved f-set Real 95% 90% 75% 66%

MERCURY 100% all - 0.73 0.69 0.77 0.76
ib2 - 0.68 0.69 0.76 0.74

Table 5: AUROC for different profile cut-offs in the problem
set of Satellite. Following Table 1, only Mercury is evaluated

sists of painting a chess-like floor. The problem set was gen-
erated with 2 robots on 5x4 grids. The last line is not painted,
so robots can stand on it at the end. In this domain we only
analyzed the performance of PROBE, following the resuls of
Table 1. The problem set was quite challenging for the plan-
ner given that it only solved 28% of the problems. Thus, only
the problem set with the real cut-off is evaluated. The AU-
ROC for the all-features and ib2-fueatures models were 0.56
and 0.57 respectively. This means that, although the models
created are better than a random classifier, it is still difficult
to create feasible performance models in this domain. We
can not find any further insights from the results given that
smaller grids become too easy for all planners, therefore we
were unable to set input parameters to the generator to make
the problem set interesting.

Satellite

This domain simulates the schedule of observations for a
set of satellites. Observation are taken using on-board cam-
eras that support different capture modes. Goals can also in-
clude the final pointing direction for each satellite. The set
or problems was generated with the following input param-
eters: 10 satellites with 16 instrument divided among them,
12 capture modes and 122 directions. The only problem set
of interest was for the Mercury planner. Results are shown
in Table 5. For all cut-off points the AUROC is better than
a random classifier. The models trained with all features are
equal or better than the models trained only with IBACOP2
features.

TPP

In the Traveling Purchase Problem (TPP) domain a set of
trucks have to select a subset of markets to go and purchase
a set of goods in order to satisfy a given demand that is spec-
ified in the goals. The training set was generated with the
following size: 16 goods, 6 trucks, 7 depots and 22 mar-
kets with 6 levels (i.e., to represent quantity) of goods. Both
LAMA and MERCURY solved the 200 instances within 1800
seconds. Table 6 shows the AUROC of the best model for
different cut-offs. All models present AUROCs consistently
higher than a random classifier. In this domain the benefits
of new features is more evident than in the rest of domains
given that in all cases AUROC increased in at least 3 per-
centage points.

Ranking of Features

For each combination of domain/planner we have selected
the 75% cut-off problem set to analyze the relevance of fea-

Planner Solved f-set Real 95% 90% 75% 66%

MERCURY 100% all - 0.79 0.76 0.78 0.84
ib2 - 0.75 0.72 0.75 0.77

LAMA 100% all - 0.86 0.79 0.76 0.73
ib2 - 0.81 0.66 0.68 0.69

Table 6: AUROC for different profile cut-offs in the problem
set of TPP. Following Table 1, only Mercury and Lama are
evaluated

tures. The gain ratio ranker was executed on a 10-fold par-
tition and then the average rank for each feature was com-
puted. In Table 7 we present a summary of the results, which
lists the features that achieved an average rank ≤ 5.0 in
at least one performance dataset. Blank values represent a
null contribution to the gain ratio and therefore a position
with no meaning in the ranking. Indeed, this is a tie with
all other features that do not provide useful knowledge. The
Best column shows the best average rank over all datasets,
and N column computes the number of times (performance
datasets) a feature provides useful knowledge. The features
are grouped by category. The Floortile/PROBE combination
is not included because there is no performance data for the
75% cut-off. Results for the Elevator/LAMA dataset is not
shown either because all features have a null contribution to
the gain ratio. This makes sense given the bad results shown
in Table 4.

As expected, none of the PDDL features appear in the list.
In fact, the only feature that does not have a null contribu-
tion to the gain ratio in the number of goals. However its
contribution is not significant, as its best average rank was
22.6 in the Depots/LAMA data. Number of goals in Depots
and Satellite can have small variations due the list of goals is
created by the generators with additional source of random-
ness. Five features from the Causal Graph appear as relevant,
specially in Barman. The first interesting observation is that
even these problems are quite similar at instantiation level,
there are several features that are different enough to help in
the discrimination of hard problems. Five fact balance fea-
tures also appear as relevant. The new footprint features are
more informative than previous ones, as we can see that for
instance the balancedRP contributes to discrimination in 6
out of 8 possibilities. The best average rank for DistortedRP
was 10.3 in Depots/LAMA.

The heuristic values of the initial state are also recognized
as relevant features. The red-black heuristic gave some infor-
mation in six times, included all modelling for Mercury, but
its contribution was very relevant only for TPP/LAMA. Here
we can see that features not necessarily contribute in the
performance of planner they are related. The best average
rank of the FF heuristic was 8.3 in Lama/TPP. Surprisingly,
the goal count heuristic was relevant in Depots. The reason
is that random selection of final destination for crates can
coincide with their initial state, and therefore problems are
partially discriminated by the number of unachieved goals
in the initial state. Note that this is different from the num-
ber of goals at PDDL level, which makes a syntactical count
of goals. Four of the new features from the landmark graph
are listed as relevant. Having a average rank of 1.0 from a

431

Barman Depots Satellite TPP
Type Attribute New Mercury Lama Probe Mercury Lama Mercury Mercury Lama Best N
CG & DTG totalEdgesCG - 2.9 5.9 - - - - 30.7 2.9 3

variable/edges ratio - 4.6 4.5 - - 16.0 - 22.2 4.5 4
varWeight/edges ratio - 6.1 3.3 - - - - 22.0 3.3 3
inputEdgeCG avg - 2.1 4.4 - - 6.7 - 23.9 2.1 4
outputEdgeCG avg - 3.9 4.6 - - 6.9 - 23.6 3.9 4

Fact Balance fact balance avg - - - 3.7 41.4 - - - 3.7 2
goal balance avg - - - 13.9 3.8 - - - 3.8 2
goal balance var - - - 20.6 3.4 - - - 3.4 2
balancedRP � 6.7 - - 70.1 60.2 73.3 2.5 2.4 2.4 6
unbalanceRP � 20.4 - - 21.9 - 68.2 4.1 63.1 4.1 5

Heuristic Additive 7.4 - - 5.8 59.0 - 9.5 4.8 4.8 5
Causal graph 12.2 - - 1.9 3.6 - 11.2 6.5 1.9 5
Goal count - - - 5.3 2.4 46.2 - - 2.4 3
Landmark cut - - - 28.0 66.6 30.7 5.0 8.5 5.0 5
Red-black � 23.9 - - 29.4 38.7 28.9 17.7 2.7 2.7 6

Landmark Graph numberEdges � 1.0 - - 10.6 16.5 7.0 4.6 38.8 1.0 6
landm/edges ratio � 4.7 - - 25.4 - 61.3 11.9 - 4.7 4
inputEdges max � 5.9 - - 56.7 - 1.0 - - 1.0 3
inputEdges std � 10 - 70.1 2.4 - 17.2 19.1 - 2.4 5

Table 7: Results of the gain ratio ranker for features that achieved an average rank ≤ 5.0 in at least one domain/problem
configuration.

10 fold partition is a clear evidence that the number of edges
and maximum number of incoming edges of the landmark
graph are relevant features for the space search discrimina-
tion when modelling Mercury’s performance. After an over-
all review of this result we can conclude that features are
more or less relevant depending on the planner and the prob-
lem set. For this reason we think that there is room for in-
cluding additional features that can improve the overall pre-
diction capabilities on homogeneous problem sets.

Conclusions and Future Work
The main objective of this work was to verify whether
known features for characterizing planning tasks are able
to encode knowledge for the classification of hard tasks in
scenarios where performance models have to discriminate
between problems of the same input configuration. Results
have shown that considering the ten most diverse perfor-
mance data from a set of planners and domains, the per-
formance models systematically behave better than random
classifiers. In addition, we have extended the IBACOP2 fea-
ture set and verified empirically that the new features im-
proved the prediction power of performance models. Most
of EPMs trained on homogeneous problem sets are still far
from perfect classifiers, so we think there is room for ag-
gregating additional features that characterize other aspects
regarding the search space discrimination. As we saw, the
relevance of the features is not dominant across different
domains and planners, therefore new features could add ro-
bustness to EPMs.

As future work we want to include other features ex-
tracted from search probes, without compromising too much
the computational cost of computing them. Moreover, we
will make the problem sets generated for the study avail-
able to the public for further analysis and comparisons. We
also have the interest of developing random generators of

hard problems. The idea consists of making a wrapper of the
available problem generators and produce only the instances
that are considered above certain cut-off of difficulty as pro-
vided by the corresponding model prediction.

Acknowledgments. This work has been partially sup-
ported by the Spanish projects TIN2014-55637-C2-1-R and
TIN2015-65686-C5-1-R.

References

Bouckaert, R. R. 2006. Efficient auc learning curve calcu-
lation. In Australasian Joint Conference on Artificial Intel-
ligence, 181–191. Springer.
Cenamor, I.; de la Rosa, T.; and Fernández, F. 2012. Mining
ipc-2011 results. In Proceedings of the Third Workshop on
the International Planning Competition.
Cenamor, I.; de la Rosa, T.; and Fernández, F. 2013. Learn-
ing predictive models to configure planning portfolios. In
Proceedings of the Workshop on the Planning and Learn-
ing.
Cenamor, I.; de la Rosa, T.; and Fernández, F. 2016. The
IBaCoP planning system: Instance-based configured port-
folios. Journal of Artificial Intelligence Research (JAIR)
56:657–691.
Domshlak, C.; Hoffmann, J.; and Katz, M. 2015. Red-black
planning: A new systematic approach to partial delete relax-
ation. Artificial Intelligence 221:73–114.
Fawcett, C.; Vallati, M.; Hutter, F.; Hoffmann, J.; Hoos,
H. H.; and Leyton-Brown, K. 2014. Improved features for
runtime prediction of domain-independent planners. In In
Proceedings of the 24th International Conference on Auto-
mated Planning and Scheduling (ICAPS-14).
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research 26(1):191–246.

432

Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Hoffmann, J. 2011. Analyzing search topology without run-
ning any search: On the connection between causal graphs
and h+. Journal of Artificial Intelligence Research 41:155–
229.
Lipovetzky, N., and Geffner, H. 2011. Searching for plans
with carefully designed probes. In In Proceedings of the
21st International Conference on Automated Planning and
Scheduling (ICAPS-11), 154–161.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks revisited. In Proceedings of the 23rd AAAI Confer-
ence on Artificial Intelligence, 975–982.
Richter, S.; Westphal, M.; and Helmert, M. 2011. Lama
2008 and 2011. The 2011 International Planning Competi-
tion 50.
Roberts, M., and Howe, A. 2009. Learning from planner
performance. Artificial Intelligence 173(5):536–561.
Roberts, M.; Howe, A. E.; Wilson, B.; and desJardins, M.
2008. What makes planners predictable?. In ICAPS, 288–
295.
Vidal, V. 2004. A lookahead strategy for heuristic search
planning. In In Proceedings of the 14th International Con-
ference on Automated Planning and Scheduling (ICAPS-04),
150–160.
Witten, I. H., and Frank, E. 2005. Data Mining: Practical
machine learning tools and techniques. Morgan Kaufmann.
Zhu, L., and Givan, R. 2003. Landmark extraction via plan-
ning graph propagation. In ICAPS Doctoral Consortium,
156–160.

433

