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Abstract

There has recently been an increased emphasis on reducing
energy consumption in manufacturing, driven by the fluctu-
ations in energy costs and the growing importance given to
environmental impact of manufactured goods. Lots of atten-
tion has been given to the reduction of machine tools energy
consumption, as they require large amounts of energy to per-
form manufacturing tasks.
One area that has received relatively little interest, yet could
harness great potential, is reducing energy consumption by
planning machine activities between manufacturing opera-
tions, while the machine is not in use. The intuitive option –
which is currently exploited in manufacturing– is to leave the
machine in a normal operating state in anticipation of the next
manufacturing job. However, this is far from optimal due to
the thermal deformation phenomenon, which usually require
an energy-intensive warm-up cycle in order to bring all the
components (e.g. spindle motor) into a suitable (stable) state
for actual machining. Evidently, the use of this strategy comes
with the associated commercial and environmental repercus-
sions.
In this paper, we investigate the exploitability of automated
planning techniques for planning machine activities between
manufacturing operations. We present a PDDL 2.2 formula-
tion of the task that considers energy consumption, thermal
deformation, and accuracy. We then demonstrate the effec-
tiveness of the proposed approach using a case study which
considers real-world data.

Introduction

Machine tools are complex mechantronic system used in
both subtractive and additive manufacturing. Much of their
performance is due to their mechanical rigidity. Machine
tools come in a large variety of sizes and configurations,
but a common feature is their ability to position their tool
in a three-dimensional space relative to the workpiece ei-
ther to remove (cut, grind, etc.) or add material. Accuracy
is often a primary commercial driver in the advancement
of machine tools for precision, high-value manufacturing
to micrometre-level tolerances. However, maintaining such
high levels of accuracy requires strict control of the many
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factors which can cause a change in accuracy. For example,
the effect of temperature change on the machine’s structure
can have a dramatic impact on the accuracy of the tool.

Energy efficiency is also becoming an increasingly impor-
tant factor in machine tool development both to reduce man-
ufacturing costs (Draganescu, Gheorghe, and Doicin 2003;
Diaz, Redelsheimer, and Dornfeld 2011), as well as reducing
environmental impact (Diaz et al. 2010).

The use of machine tools has been identified as the largest
consumer of energy during the manufacturing of parts. It
has been established that machine tools use 63% of the to-
tal energy required to manufacture a part (Hesselbach and
Herrmann 2011). Additionally, energy consumption occu-
pies over 20% of the operating costs of machine tools per
year, in excess of £10,000 for a medium-sized manufacturer.
Many researchers have investigated the potential of reduc-
ing energy consumption during the manufacturing process
itself (Vijayaraghavan and Dornfeld 2010; Liu et al. 2014a;
2015; Diaz, Redelsheimer, and Dornfeld 2011).These works
have largely been motivated by the fact that large forces are
required to cut material, and any reduction at this stage can
therefore be significant. Furthermore, researchers have stud-
ied the Job Shop scheduling problem to reduce energy con-
sumption and improve manufacturing throughput (Fang et
al. 2013). However, such approaches often ignore the rela-
tionship between energy consumption, thermal deformation
and the machine tool’s accuracy. This is of significance as
the desire to improve machining capabilities to a sub-micron
level cannot be achieved without thorough thermal analysis.

One area that has received less attention is the consump-
tion of energy between manufacturing operations, when the
machine is not actively working on a piece, and is therefore
nominally idle. In the first instance it may appear that if the
machine is idle it will consume no energy. On the contrary,
many electrical components of a machine tool will continue
to use energy. Furthermore, once the machine is required
to operate again, an energy-intensive warm-up cycle is usu-
ally required to bring all the subsystems (e.g., spindle motor)
into a suitable (stable) state for actual machining. However,
a warm-up cycle will only be necessary should the heat-
generating subsystem and surrounding structure decrease
below an identified temperature. Currently, machine activ-
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ities between manufacturing operations are not planned, i.e.
machines are left on idle, and warm-up cycles are performed
before the next operation. This creates an interesting possi-
bility for automated planning. It can automatically decide to
keep some of the machine subsystems active, at a reduced
level, to generate sufficient heat to maintain the thermal sta-
bility of the machine tool’s structure and remove the need
for a warm-up cycle, thus reducing the overall energy con-
sumption. The number of electrical subsystems, the different
operational levels, the current state of the machine tool, and
the required initial state of the next manufacturing operation
make it challenging to consider all possible options and min-
imise energy consumption whilst maintaining a desired level
of accuracy, that allows the machine tool to effectively starts
the next operation.

Although planning techniques have not yet been exploited
for planning machine activities between manufacturing op-
erations, previous works (see, e.g., (Parkinson et al. 2012a;
2012b)) demonstrated the potential of using automated plan-
ning for optimising different aspects of using machine tools.
Remarkably, many researchers have studied the impact of
temperature change on the machine’s structure (Creighton
et al. 2010; Eberspächer, Lechler, and Verl 2015), as well
as energy consumption (Peng and Xu 2014; Abele et al.
2011). Other recent work also includes modelling machine
tool energy performance (Frigerio et al. 2013; Jeon and
Prabhu 2013) and the relationship between energy con-
sumption and temperature generation (Li and Kara 2011;
Li, Yan, and Xing 2013; Mayr et al. 2012). Work has also
been conducted on using scheduling techniques for manu-
facturing job which does take some consideration to energy
consumption (Wang et al. 2015).

In this work we investigate the use of AI planning for per-
forming the interval planning task. Specifically, we engineer
a PDDL 2.2 planning domain model that takes into consid-
eration the relation between temperature, energy consump-
tion and accuracy. We then demonstrate the effectiveness
of the planning-based approach using real-world case stud-
ies. Generated plans have been validated by human experts,
and their feasibility assessed using the actual manufacturing
tools.

Background

In this section, we motivate the importance of considering
interval activity, and briefly introduce the language used for
encoding the domain model.

Importance of Interval Activity

Figure 1 (coloured) provides a graphical illustration of two
manufacturing operations with an interval between. The fig-
ure illustrates the relationship between increasing energy
consumption (green), heat generation (red), and increasing
machine error (blue) through a simplified representation.
Note that although the figure is for illustration purposes, the
data is a realistic, if simplified, representation of what oc-
curs. In the figure, it can first be seen that energy consump-
tion is at its lowest when the machine is idle, and its highest
when a new manufacturing job is started. This is because
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Figure 1: Illustrating how the machine tool energy consump-
tion, structural temperature, and accuracy is changing during
manufacturing and interval periods.

a dedicated warm-up cycle is required to stabilise the ma-
chine’s structure, stabilise the machine error and avoid ther-
mal change during manufacturing. It is then noticeable in the
figure that as the energy consumption increases, so does the
temperature of the machine’s structure. The final relation-
ship presented is that the error of the machine tool increases
to a steady-state value and maintained when the temperature
is stable. In practice, the number of different operations that
occur during machining mean that the energy profile, and re-
sulting temperature and error trends, will display somewhat
more complex behaviour.

For the sake of readability, the graphical illustration in
Figure 1 shows data about a machine tool as a whole sys-
tem; however, each subsystem of the machine reacts differ-
ently, and has to be considered. A high-speed spindle motor
uses significantly more power than a linear axis servo motor.
For example, consider manufacturing an aluminium housing
with the dimensions of 150mm × 50mm × 20mm (Heiden-
hain 2010). The total energy needed for the machine tool
to produce the part is 20.4kW. A total of 4.8kW for the ma-
chine tool spindle, and 0.5kW for the three axes’ feed drives.
Other electrical subsystems (e.g controller, coolant pump,
etc.) make up the remainder. As both these components have
different levels of energy consumption, they generate differ-
ent amounts of heat. Moreover, the heat generated by ma-
chine subsystems transfers into the machine tool’s structure
causing distortion. The severity of the effect of changing
temperature is dependent on the material from which it is
constructed. For example, steel has a high coefficient of ther-
mal expansion (~12μm per ◦C ) compared to carbon fibre
(~2μm per ◦C ).

For the purpose of planning machine activity between
manufacturing operations, there are two important aspects
that have to be considered. First, the relationship between
energy consumption, generation of temperature profile, and
the effect on machining accuracy. Second, the effect that
changing machine tool temperature has on structural defor-
mation of the machine tool. Prior knowledge of these aspects
creates the potential to optimise machine tool use between
manufacturing operations. For example, in some situations,
it may be advantageous to keep the electronic components
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Figure 2: Heat generated by spindle motor during a two-hour
heating and cooling cycle. Spindle bottom, top and motor
indicate the normalised temperature for three surface tem-
perature sensors mounted around the spindle. Spindle RPM
reports the normalised spindle speed in RPM (0 to 9,000).

in use to maintain energy consumption, generate heat, and
thus maintain machine accuracy.

Figure 2 demonstrates the heat generated as the spindle
speed increases on a three-axis machine tool. The figure
shows the normalised spindle speed in RPM (0 to 9,000),
and normalised temperature for three surface temperature
sensors mounted around the spindle. There are: (1) spin-
dle bottom (21.8◦C to 27.4◦C), (2) spindle motor (21.6◦C to
26.2◦C), and (3) spindle top (21.7◦C to 33.1◦C). The graph
illustrates that when the spindle is used at its higher speed,
the temperature of the machine tool’s structure surround-
ing the spindle increases rapidly in temperature. Once high
speed usage has finished, it can be seen that the structure of
the machine tool begins to reduce in temperature.

Currently, machine operators do not plan any activity be-
tween manufacturing operations, and they rely on energy-
expensive warm-up cycles. This is also because planning for
the machine operator is complicated by the large number
of different machine activity actions that can be performed
and their potential implications on machine accuracy and en-
ergy consumption. For example, each axis and spindle can
be moved at different speeds sequentially or concurrently
for different periods of time. Moving a single linear axis
will transfer heat in the machine’s structure surrounding the
axis and would result in thermal distortion from that loca-
tion, whereas moving all three axes simultaneously would
transfer heat into more of the machine’s structure and poten-
tially result in more symmetrical expansion.

Automated Planning

Automated Planning deals with the problem of finding a to-
tally or partially ordered sequence of actions that transform
the environment from a given initial state to some of the goal
states (Ghallab, Nau, and Traverso 2004). In general, the en-
vironment and action description is represented by a plan-
ning domain model, and the description of the initial state
and the goal conditions is represented by a planning prob-
lem description. It is worth noting that more planning prob-

lem descriptions can be used with a single planning domain
model.

In this paper, we use PDDL 2.2 (Edelkamp and Hoffmann
2004), which is an extension of well known PDDL 2.1 (Fox
and Long 2003), a language for describing the planning do-
main model and planning problem descriptions. Notably,
the International Planning Competition1 has resulted in the
existence of a significant number of planners able to deal
with PDDL 2.2. The environment in PDDL 2.2 is described
by predicates and numeric fluents. Actions are specified via
their execution duration, preconditions which are logical ex-
pressions that must hold in order to make the action exe-
cutable, and effects which are sets of literals or fluent assign-
ments that take place when the action is executed. In PDDL
2.2, preconditions can take place just before the action is ex-
ecuted, during the action execution or just before finishing
execution of the action. Similarly, effects can take place just
after the action is executed, or just after finishing action ex-
ecution (Fox and Long 2003). Therefore, a planning domain
model consists of definitions of predicates, numeric fluents
and actions. A planning problem description consists of a set
of objects, an initial state (a set of grounded predicates and
fluent assignments), and a set of goals (logical expressions).
In the initial state we can use time initial literals that allow
facts to become true at predefined timestamps. A plan is a
set of triples in the form of 〈timestamp,action,duration〉 such
that executing these actions in the corresponding timestamps
for a given duration (it must always be possible) transforms
the environment from the initial state to some state where all
the goals are satisfied (i.e. a goal state).

The Interval Activity Domain Model

In this section, we introduce and specify the domain model
of interval activity planning. In the presented model, two
equations are used to determine energy consumption as well
as machine tool error (i.e., change of machine tool accu-
racy).

total error = total error+

(duration× deformation) (1)

total energy = total energy+

(duration× power) (2)

Equation 1 is used for updating the total error fluent by
duration in minutes, multiplied by the deformation (μm) per
minute. Equation 2 updates the total energy fluent by the
same duration (in minutes) multiplied by the a fluent rep-
resenting power (in kW) of a particular component when
being used in a predefined mode of operation.

These equations require specific data for each machine
component that can be acquired through performing an er-
ror mapping and energy monitoring audit. Information about

1http://www.icaps-conference.org/index.php/Main/Competi-
tions
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energy consumption per time unit, i.e., power is widely
available for many machine tool electrical subsystems, but
that from mechanical interaction (friction) is often less well
defined. However, in both cases the amount of heat released
into the machine’s structure and its affect on machine accu-
racy needs to be established. This can be acquired by record-
ing the temperature of the machine tool’s structure while
monitoring the deviation of the machine tool’s cutting point.
Once all the data has been acquired, Finite Element Analy-
sis can be used to computationally model the relationship
between heat generation and deformation of the machine
tool (Mian et al. 2011; 2013). This model can then be used to
derive a series of coefficients that describe the generation of
heat with increased energy consumption, and the change in
machine tool accuracy from the resulting different thermal
gradients.

Many machine subsystems, such as the spindle motor, can
be run at any speed between stationary and their maximum
RPM. In our domain model, we have adopted five predefined
machine tool modes, namely off, idle, normal, medium and
high. Also, the interval of interest (between scheduled jobs)
is divided into smaller subintervals such that exactly one ac-
tivity (predefined mode) per machine tool must be executed
in each subinterval. Applying such a discretisation reduces
the size of the problem and thus makes it easier to be han-
dled by state-of-the-art planning engines. Although intuition
might suggest that sacrificing the “continuous aspect” of the
domain model would have detrimental impact on quality of
plans, in practice, doing continuous changes to machine tool
subsystems (e.g. adjusting the speed of a spindle motor) is
not useful. This is because intervals between machine activ-
ities are long (tens of minutes) thus such a level of detail is
not needed. Moreover, continuous plans would be extremely
hard (or even impossible) to automatically execute. Instead,
“discrete” plans are easy to generate and execute, and thus
making a possible difference between what has been planned
and how the plan was executed negligible.

It should also be noted that the length of the interval
between manufacturing jobs –for which a plan has to be
generated– is known at the start of the interval itself, if not
well in advance. Manufacturing companies rely on a highly
optimised and very accurate scheduling, in order to max-
imise the use and exploitation of manufacturing tools and
minimise idle times. Intervals are due to some actions that
are required to be performed, such as removing a finished
workpiece from a machine or performing some routine con-
trols, for which a very strict time window is given.

Operators

In our domain model, there are five operators represent-
ing different levels of operation: off, idle, normal, medium
and high. These operators model the servo motor being
turned off as well as four discretised levels of utilisation.
For example, in terms of percentage utilisation this could
be 0% (off), 5% (idle), 25%(normal), 50%(medium) and
100% (high). These operators share the following aspects.
For each machine component ?c, we specify a time unit
(the (time unit ?c) fluent) for which each of the op-
erator has to be executed. For the purposes of our analysis,

(:durative-action normal

:parameters (?c - component ?a - axis)

:duration(= ?duration (time unit ?c))

:condition

(and

(over all (in interval))

(over all (belongs to ?c ?a))

(at start (not(in use ?c)))

(over all (>=(axis position ?a)

(axis lower limit ?a)))

(over all (<=(axis position ?a)

(axis upper limit ?a)))

)

:effect

(and

(at start(in use ?c))

(at end (not(in use ?c)))

(at end (increase(axis position ?a)

(*(axis movement normal ?c ?a)

(axis direction ?a))))

(at end (increase(looked at ?c)

(time unit ?c)))

(at end (increase(total accuracy axis ?a)

(*(time unit ?c)

(effect on accuracy normal ?c))))

(at end (increase(total energy axis ?a)

(*(time unit ?c)

(energy consumption normal ?c))))

))

Figure 3: The PDDL encoding of the normal operator, where
the machine component ?c on axis ?a is planned to remain
in a normal state of operation for a time unit.

here we consider that a time unit corresponds to a real-world
minute. The precondition requires the execution of each of
the operators to be performed in the time interval of interest
(between scheduled jobs), hence the in interval predi-
cate must be true during the operator execution. Notice that
in interval becomes false when another job arrives to
the machine, which is known in advance. Also, for a single
component only one operator has to be executed at a time.
This is ensured by introducing an (in use ?c) predicate
such that (in use ?c) must be false prior to the execu-
tion of any of the operators handling ?c, (in use ?c)
becomes true when any of of the operators handling ?c is
executed and becomes false again when the execution fin-
ishes. As an effect of each operator, total error and total en-
ergy are updated according to equations (1) and (2) respec-
tively. Notice that power as well as deformation are different
for each of the operators. Additionally, to ensure that there
will be no “gaps” (i.e., time spans where no operator is ex-
ecuted) we introduce a (looked at ?c) fluent which is
incremented by (time unit ?c) after any of the opera-
tors (handling ?c) is executed. Then, in the goal we require
for each component ?c, the value of (looked at ?c) to
be equal to the time interval of interest, i.e., between sched-
uled jobs.
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We also encode in our domain model the relationship be-
tween the use of electronic components and the physical
movement of the machine tool. This feature is available for
the normal, medium and high operators. This is essential
as a machine may have physical restrictions on its move-
ment which need to be considered to prevent accidental
damage. For example, there may be a workpiece currently
loaded on the machine tool ready for the next manufactur-
ing job. This workpiece would be located within the ma-
chine’s working volume and would limit axis movement. To
account for this, we introduce a (belongs to ?c ?a)
predicate which is used to state which axis a component
belongs to and it used to determine which axis’ deforma-
tion should be updated due to its use. Then, for each axis,
we introduce (axis lower limit ?a - axis) and
(axis upper limit ?a - axis) fluents, and also
an (axis position ?a - axis) fluent. All are in
millimetre units. Both lower and upper limits are used to de-
termine whether the position of the axis is in range, and the
current position is updated by a specified movement speed of
the axis depending on the level of component use and type of
operator (normal, medium or high). The movement is mul-
tiplied by an (axis direction ?a - axis) fluent
which represents the current direction of travel (1 for pos-
itive, -1 for negative). Figure 3 details the normal operator
where the machine error, energy usage and axis position are
adjusted based on a normal mode of operation.

For handling the change of direction once an axis reaches
the limit, we introduce two instant operators. Figure 4 pro-
vides the operator which is in charge of changing an axis’
direction from forward to reverse. The operator does not
contain a precondition to determine whether the axis is at
its limit or not as the operation action’s precondition (Fig-
ure 3) requires that the axis position is within the limits. In
our encoding, we decide to leave to the planner the decision
of whether a change of direction should be applied or not. A
good strategy can also avoid reaching the limits, and main-
taining the movements inside the given axis range.

Initial and Goal State

The initial state specifies energy consumption and ef-
fect on machine accuracy for each predefined level of
operation through the use of numeric fluents. For ex-
ample, (power idle ?c) and (deformation idle
?c) represent the power and the deformation for a compo-
nent ?c in the idle mode. In addition, (time unit ?c)
fluent is introduced to specify a predetermined duration of
an action that should occur to bring about a change in accu-
racy and energy consumption. The (total error) and
(total energy) fluents are used in the initial state to en-
code information regarding the machine’s current state after
finishing manufacturing. In addition, timed initial literals are
also used to encode the duration of the interval of interest.
Using timed initial literals restricts the makespan to the du-
ration of the interval, overcoming some planner’s inability
to handle concurrency in durative actions.

The (belongs to ?c ?a) is used to state which axis
a component belongs to and it used to determine which axis’
deformation should be updated due to its use. The limits of

(:durative-action change-to-reverse
:parameters(?c - component ?a - axis)
:duration(= ?duration 0)
:condition
(and
(over all(not(in use ?c)))
(over all (belongs to ?c ?a))
(at start (forward ?a)))

:effect
(and
(at end
(assign(axis direction ?a)-1))

(at end (assign(axis position ?a)
(axis upper limit ?a)))

(at end (not(forward ?a)))
(at end (reverse ?a))))

Figure 4: The PDDL encoding of the reverse operator, where
the direction of a machine’s axis is reversed

axes’ positions, movement speeds (with respect to different
operators) and their initial directions are also defined in the
initial state.

The goal requires that, for every considered component
and every available time unit, an action has been selected.
This is achieved using the (looked at ?c) functions.

Plan Metric

We introduce three different metrics that can be considered
by planners for optimising the quality of generated plans:

1. (:metric minimize (total error))

2. (:metric minimize (total energy))

3. (:metric minimize
(/(+(total error)(total energy))2))

The first two metrics aim to minimise the values held in
the total error and total energy fluent, whereas the third met-
ric is used to minimise the arithmetic mean of both. This
creates the potential to perform multi-objective optimisa-
tion where both error and total energy consumption are min-
imised for a given weighting.

Experimental Analysis

In this section, a case study is provided where interval plan-
ning is performed for two real-world machine tools when
considering different interval scenarios. This includes both a
three- and five-axis machine tool. A three-dimension model
of the three-axis machine tool is illustrated in Figure 5. Due
to the commercial sensitivity of machine tool performance
data, we are unable to include a photo (or name and model)
of the actual machine used in this experimentation. How-
ever, as illustrated in the provided figure, the machine is a
typical C-frame three-axis machine tool. Data that can be re-
leased and that are relevant for the considered interval plan-
ning task –i.e., those related to power and deformation–, are
presented in Table 1. As interval duration is in minutes, the
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Figure 5: Three-dimensional model of the case study ma-
chine tool

data presented in Table 1 has been normalized into minutes
as well. These are kW for the power and the deformation in
micrometres per minute. The five-axis machine tool consid-
ered in this paper is a modification of the three-axis machine
with two additional rotary axes which are located on the ma-
chine’s table.

The machine-specific data presented in Table 1 is now
used in the creation of several PDDL problem files to simu-
late a number of different interval scenarios. Problem defini-
tions are created with a duration of 30, 60, and 120 minutes.
These are typical intervals duration faced by the modelled
machine when operating 24 hours per day. Considering the
combination of each of these scenarios results in the creation
of 6 different problem instances. In addition, each problem
instance will be solved using each of the three metrics stated
in the domain modelling section, resulting in a total of 18
different PDDL problem definition files. As planning engine
we selected LPG-td (Gerevini, Saetti, and Serina 2006), due
to its exploitation in real-world planning applications, and
its generally good performance. Experiments were run on
a quad-core 3.0 Ghz CPU, with 4GB of available RAM.
It has been given a 5 CPU-time minute cutoff for solving
each problem, and optimise the quality according to the pro-
vided metric. The decision to allow a 5 minute time-frame
was taken as, in an actual deployment of the planning-based
proposed technique, planning for interval machine activities
may be required to be done online, i.e. as soon as the ma-
chine is paused between manufacturing operations: in this
scenario, waiting for more than five minutes would have a
negative impact on machine accuracy. On the other hand, in
cases where the length of an interval is known in advance,
a higher cutoff time can be enforced. LPG-td has been used
in “anytime” configuration; it keeps increasing the quality of
plan, for a given problem instance, until the available CPU-
time is over.

Electrical
Item

Off
kW,
μm

Idle
kW,
μm

Normal
kW,
μm

Medium
kW,
μm

High
kW,
μm

X
Servo

0, 0.01 0.02,
0.01

0.01,
0.01

0.02,0.2 0.04,
0.03

Y
Servo

0, 0.01 0.02,
0.01

0.01,
0.01

0.02,0.2 0.04,
0.03

Z
Servo

0, 0.05 0.03,
0.01

0.01,
0.025

0.05,0.3 0.07,
0.1

Spindle
Motor

0, 0.1 0.02,
0.01

0.1,
0.05

0.2,0.1 0.4,
0.2

C
Servo

0, 0.1 0.04,
0.04

0.2,
0.02

0.4,0.04 0.08,
0.08

A
Servo

0, 0.1 0.05,
0.042

0.3,
0.021

0.5,0.04 0.08,
0.09

Table 1: Case study data for a three-axis machine tool
demonstrating power, deformation per item and mode.
Power is described in kW, and deformation in μm per
minute.

Table 2 provides the total error (Er) and energy consump-
tion (En) values when using plans optimised for the three
metrics. Plans were validated by experts, that confirmed they
sound and they can be easily executed on the machine tools
considered in our case study. As a further validation step, in
order to check whether the encoded domain model is a rea-
sonable abstraction of the considered physics dynamics, we
executed the generated plans on the case study machines and
measured –through available sensors for measuring energy
use and positional deviation– the overall energy consump-
tion and final total error. We discovered that as the data used
in the domain models was acquired from repeatable mea-
sures, the measured results are in line with those shown in
Table 2. This confirms that the PDDL 2.2 model has a suf-
ficient level of detail to capture the important aspects of the
relation between accuracy, energy consumption and defor-
mation.

From Table 2 it is evident that all the problem instances
were solved within the given cutoff time. LPG takes on av-
erage 76 and 83 seconds to generate the plans shown in the
table, for both 3-axis and 5-axis problem instances. Lower
quality plans are generated in less than 5 CPU-time seconds.

From analysing the results presented in Table 2, it is also
noticeable that optimising for a single metric is often at the
expense of the other. In addition, when optimising the en-
ergy the total consumption is 0. This is because the planner
is able to identify a plan where the machine is off. How-
ever, as the components are off and the machine’s structure
begins to cool, the deformation is higher, resulting in ex-
tremely high machine error values. Intuitively this may seem
of no benefit to a manufacture; however, it is worth high-
lighting that not all manufacturers are operating to such tight
tolerances and may be content with such error values. Typi-
cally, for the machine tools considered in our case-study, an
accuracy of at most 30 μm is required.

Table 2 also provides de facto standard “strategies” which
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Standard Metric: Error Metric: Energy Metric: Er + En

Instance En(kW) Er(μm) En(kW) Er(μm) En(kW) Er(μm) En(kW) Er(μm)

3-30 6.6 4.0 9.0 0.0 0.0 5.5 1.8 0.5
3-60 7.5 4.6 14.9 0.1 0.0 11.0 3.6 1.1
3-120 9.2 5.7 31.6 0.6 0.0 22.0 7.1 2.1

5-30 8.4 5.9 11.5 0.1 0.0 6.5 2.1 0.6
5-60 9.6 6.7 18.7 0.2 0.0 12.0 3.9 1.2
5-120 11.9 8.3 34.3 1.0 0.0 22.0 6.9 2.1

Table 2: Energy and error values for the considered scenarios when exploiting the standard strategy, and the plans generated
using the proposed approach while optimising for the three different metrics. Problem instances are in the format of a the
number of axes and the interval duration. E.g 3-30 represents a 3 axis machine with a 30 minute interval.

are constructed based on current industry standard practises.
Note that such strategies consist of having all the machine’s
electrical subsystems in idle, and then running the warm-
cycle if needed. Given the considered time window, an in-
tensive warm-up cycle –constituting a 10 minute period– is
always performed, in order to keep all the subsystems at the
required temperature. Remarkably, the warm-up cycle effect
is different, according to the length of the interval: the longer
the interval, the lower the accuracy at the start of the subse-
quent manufacturing operation.

When comparing the results from the automatically con-
structed plans with the de facto standard strategies, it is easy
to see that the improvement in energy and error given by
using the multi-object plan is on average of 54% and 79%,
respectively. For example, consider the 5-30 instance, the
generated plans will reduce the energy consumption and in-
crease the accuracy of 66% and 90%, respectively, with re-
gards to the current industry practise. Clearly, a dramatic re-
duction in energy consumption can be achieved when opti-
mising for the energy metric only, and a similar figure can be
observed when focusing on accuracy. However, the multi-
objective metric results in plans that show a very valuable
compromise. It should be noted that the machine error meets
the threshold requirements for the considered machine tools
in all automatically generated plans –and should be empha-
sised that for manufacturing purposes, it is pivotal to keep
accuracy within the given threshold: further accuracy re-
duction is appreciated, but not critical. The comparison re-
sults demonstrate the suitability and potential impact of util-
ising automated planning for considering interval activity.
Results presented in Table 2 clearly indicate that the pro-
posed planning-based approach is useful for stabilising the
machine error whilst reducing estimated energy consump-
tion, and shows a significant improvement over the current
standard strategies exploited in the manufacturing field.

Figure 7 demonstrates the total-energy and
total-error fluents throughout the produced plans for
the 3-30 problem instance when optimising for the three
different metrics. The provided graphs show the cumulative
evolution of error and energy of the 3 components of the
machine. The results clearly demonstrate how the values

0:(IDLE X SERVO X) [1.0000]
0:(OFF Z SERVO Z) [1.0000]
1:(IDLE X SERVO X) [1.0000]
1:(OFF Z SERVO Z) [1.0000]
2:(IDLE X SERVO X) [1.0000]
2:(OFF Z SERVO Z) [1.0000]
3:(IDLE X SERVO X) [1.0000]
3:(HIGH Z SERVO Z) [1.0000]
4:(NORMAL X SERVO X) [1.0000]
4:(OFF Z SERVO Z) [1.0000]

Figure 6: Plan excerpt generated by considering two compo-
nents involved in the 3-30 instance. The plan is optimised for
the trade-off between energy consumption and overall error.
For the sake of conciseness, only the first four minutes are
shown, for two of the three subcomponents.

are changing depending on the scheduled action. The first
graph (left) illustrates that when optimising for energy
consumption, the planner selects to switch all the electrical
components off resulting in a continuous increase of ma-
chine error. Conversely, when optimising for error (middle),
it can be seen that the planner selects actions which have
a minimal impact on the error at the expense of energy.
As already observed in Table 2, the multi-object approach
(right) is interesting as it demonstrates a combination
whereby a series of actions is selected to keep both metrics
at a reduced value.

Figure 6 provides a plan excerpt where the metric is to
minimise the arithmetic mean of both the total error and en-
ergy. This excerpt is interesting as it illustrates how the ac-
tions can be scheduled to maintain a desired level of heat
generation while reducing energy consumption. It can be
noticed how initially the electrical subsystem x servo is
turned idle to save energy, and as there is enough resid-
ual heat within the machine’s structure, stability of the ma-
chine is maintained. It is then noticeable how gradually the
electrical subsystem is turned back on and left to normal,
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Figure 7: (Coloured) Evolution of error (μm) and Energy consumption (kW) when executing the plans generated by the
proposed approach for the 3-30 instance, optimised according to the introduced metrics: minimising energy consumption (left),
minimising error (centre), and minimising both aspects at the same time (right).

allowing heat to be generated. The plan then demonstrates
that the planner decided to exploit a different approach for
maintaining the temperature of the z servo subsystem: the
spindle is initially set at a off level as is cooling, until
the third minute where it is run at a high level, and then
turn off again. Optimising the same problem instance for
energy would result in a plan where the machine is left off,
and when optimising for error, result in a plan where the ma-
chine’s motors are kept normal to maintain a minimal level
of error.

Is it possible to assess the financial impact of exploiting
the generated plans, instead of the de facto standard, for a
manufacturing company? Assuming that the machine will
be operating 24 hours a day, it is reasonable to state that
there would be six 3-30 intervals, six 3-60 intervals, and two
3-120 intervals during shift changes. This corresponds to the
average usage figure of a typical C-frame three-axis machine
tool. These values are influenced from research into optimis-
ing job throughput on machine tools (Lee and Kim 2012;
Liu et al. 2014b). Using automatically constructed inter-
val plans would result in a total annual energy saving of
340KWh. If we assume the energy price to be 0.15£, the an-
nual saving would be £52. If we also assume that the man-
ufacturer is of medium size and has 50 machine tools, the
total energy reduction would be £2,600 This is significant as
not only is the energy usage and cost reduced, the improve-
ment in machine accuracy will also minimise the probability
of manufacturing defective parts, resulting in additional cost
reduction.

Conclusion

This paper presented the use of automated planning to plan
for machine tool activity between manufacturing operations.
This is a novel application with a great potential to re-
duce energy consumption in manufacturing. We introduced
a PDDL 2.2 model of the task, that allows to consider at the
same time accuracy and energy consumption. Three differ-
ent metrics have been introduced, that can be used for gener-
ating plans optimised for accuracy, energy consumption, or
both at the same time.

In order to test the proposed approach, we designed a

case-study using real-world data of typical three-axis and
five-axis machine tools. Plans have been generated for three
different intervals length, which corresponds to common
lengths in manufacturing companies. We then compared the
quality of the plans generated by our approach with the de
facto standard. The results of the comparison shows that the
proposed approach can effectively be used for planning the
activities between planning operations, and the different in-
troduced metrics can result in very different plans. In gen-
eral, the multi-objective metric –that considers at the same
time accuracy and energy consumption– leads to valuable
plans, with an average improvement of 54% (79%) in terms
of accuracy (energy consumption).

We see several avenues for future work. We plan to inves-
tigate the use of the introduced planning model on different
manufacturing machines. We are also interested in assess-
ing the impact of the granularity and temperature-accuracy
discretisation on plans’ quality and solvability. We envisage
an analysis of the performance of different planning engines:
recent International Planning Competitions have fostered the
development of efficient domain-independent planners. Fi-
nally, further work should be spent to remove reliance on
the machine operator for providing information (tolerance
requirements, etc.) and for converting the PDDL output into
code which can be directly executed on the machine tool’s
controller. This would increase the usability of the presented
technique and increase its impact in the manufacturing com-
munity.
Availability. The full domain model and problem instances
are available at: http://selene.hud.ac.uk/scomsp2/interval.
zip It should be noted that in the provided version, some
details about the case study machine tools have been modi-
fied due to the commercial sensitivity of the corresponding
information.
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Knapp, W.; Härtig, F.; Wendt, K.; Moriwaki, T.; Shore, P.;
Schmitt, R.; et al. 2012. Thermal issues in machine tools.
CIRP Annals-Manufacturing Technology 61(2):771–791.
Mian, N. S.; Fletcher, S.; Longstaff, A. P.; and Myers, A.
2011. Efficient thermal error prediction in a machine tool us-
ing finite element analysis. Measurement Science and Tech-
nology 22(8):085107.
Mian, N. S.; Fletcher, S.; Longstaff, A. P.; and Myers, A.
2013. Efficient estimation by FEA of machine tool distortion
due to environmental temperature perturbations. Precision
engineering 37(2):372–379.
Parkinson, S.; Longstaff, A.; Crampton, A.; and Gregory, P.
2012a. The application of automated planning to machine
tool calibration. In Proceedings of the twenty-second inter-
national conference on automated planning and scheduling
(ICAPS).
Parkinson, S.; Longstaff, A. P.; Fletcher, S.; Crampton, A.;
and Gregory, P. 2012b. Automatic planning for machine tool
calibration: A case study. Expert Systems with Applications
39(13):11367–11377.
Peng, T., and Xu, X. 2014. Energy-efficient machining sys-
tems: a critical review. The International Journal of Ad-
vanced Manufacturing Technology 72(9-12):1389–1406.
Vijayaraghavan, A., and Dornfeld, D. 2010. Auto-
mated energy monitoring of machine tools. CIRP Annals-
Manufacturing Technology 59(1):21–24.
Wang, S.; Lu, X.; Li, X.; and Li, W. 2015. A systematic
approach of process planning and scheduling optimization
for sustainable machining. Journal of Cleaner Production
87:914–929.

408




