Proceedings of the Twenty-Seventh International Conference on Automated Planning and Scheduling (ICAPS 2017)

Approximately-Optimal Queries for Planning in
Reward-Uncertain Markov Decision Processes

Shun Zhang, Edmund Durfee, Satinder Singh
Computer Science and Engineering
University of Michigan
shunzh,durfee,baveja@umich.edu

Abstract

When planning actions to take on behalf of its human oper-
ator, a robot might be uncertain about its operator’s reward
function. We address the problem of how the robot should
formulate an (approximately) optimal query to pose to the
operator, given how its uncertainty affects which policies it
should plan to pursue. We explain how a robot whose queries
ask the operator to choose the best from among k choices can,
without loss of optimality, restrict consideration to choices
only over alternative policies. Further, we present a method
for constructing an approximately-optimal policy query that
enjoys a performance bound, where the method need not enu-
merate all policies. Finally, because queries posed to the oper-
ator of a robotic system are often expressed in terms of prefer-
ences over trajectories rather than policies, we show how our
constructed policy query can be projected into the space of
trajectory queries. Our empirical results demonstrate that our
projection technique can outperform other known techniques
for choosing trajectory queries, particularly when the number
of trajectories the operator is asked to compare is small.

Introduction

When a computational agent (which we refer to as “the
robot”) plans actions to take in its environment, it needs
knowledge of the goals and preferences of the person who
deployed it (“the operator”). Circumstances can arise where
the robot can be uncertain about the operator’s goals or pref-
erences, such as when the operator omits preferences over
unlikely situations that end up arising. Since the operator
may be unaware of when the robot faces significant uncer-
tainty, we consider the question of how a decision-theoretic
robot can use what it knows, about what it might plan to do
and what the operator’s preferences for those plans might
be, to formulate a query that (approximately) optimally im-
proves its model of the operator’s preferences.

Our strategy directs the robot to query so as to resolve un-
certainty that most affects its plans, rather than maximally
reducing its overall uncertainty. To avoid distractions, in this
paper we assume uncertainty does not arise in other aspects
of the problem, and specifically that the operator is certain
of her true preferences, and certain about how to answer the

Copyright (© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

339

query to correctly reflect her preferences. To bound the rea-
soning demands on the operator for answering a query, we
assume that the query takes the form of a “multiple choice”
question, where the operator is asked to select the most pre-
ferred choice from & possible responses. Our approach does
not restrict k (other than that it is finite), but our empiri-
cal results suggest that our approach is particularly good for
smaller values of k, which arguably correspond to “easier”
queries to answer.

Note that this form of interaction to elicit operator prefer-
ences differs from learning from demonstration and inverse
reinforcement learning (Abbeel and Ng 2004), where the op-
erator initiates interaction by demonstrating a preferable be-
havior for the robot to learn. The operator may not know the
robot’s planning/learning algorithm, so she may not know
when the robot needs teaching signals (Torrey and Taylor
2013). Knox and Stone (2009) consider a setting where the
operator gives positive or negative feedback during a robot’s
demonstration, but again the responsibility is on the operator
to decide which behaviors to reinforce.

Our work instead draws inspiration from prior research
on a robot querying its operator to elicit preferences, e.g.,
(Wilson, Fern, and Tadepalli 2012; Zhang and Stone 2015;
Akrour, Schoenauer, and Sebag 2012). Like past work, we
consider queries comprised of trajectories, where the oper-
ator expresses her preference between alternative sequences
of actions over states. Past work, however, assumed the
robot could ask as many queries as it needed to to suf-
ficiently resolve its uncertainty. In contrast, here we as-
sume that for time and/or attentional reasons the robot is
limited to a single query (Viappiani and Boutilier 2010;
Cohn, Singh, and Durfee 2014) with a finite number & of
responses, and so must choose that query wisely.

Our contributions are twofold. First, drawing on pre-
vious results in recommendation settings (Viappiani and
Boutilier 2010; Cohn, Singh, and Durfee 2014), we observe
that, without loss of optimality, we can restrict the robot to
only considering k-response queries that ask the operator to
choose between policies. The previous results also specified
a greedy construction method for finding an approximately-
optimal query whose computational complexity is linear in
the number of choices (recommendations) to consider offer-
ing. In our setting, however, the number of choices (policies)
is intractably large, making it impractical to apply the previ-

ous methods directly. Our first major contribution is thus a
new method to greedily construct an approximately optimal
policy query without enumerating all policies.

Although the optimal k-response policy query is always
an optimal k-response query, past work on human-robot
interaction has not posed such policy queries directly to
operators, perhaps because a policy over the entire state
space is too large and complex for the operator to directly
reason about. Previous work has instead offered operators
choices between partial specifications of policies, such as
between alternative fixed-length trajectories from a chosen
state. (Essentially: “Starting here, which of these short plans
most resembles what you would want to do?”) Our sec-
ond contribution is to provide a process the robot can use
to efficiently find a k-response trajectory query based on
the approximately-optimal policy query, and to emprically
demonstrate that, under certain conditions, it can outperform
prior methods for finding trajectory queries (Wilson, Fern,
and Tadepalli 2012).

Background
Preference Elicitation in HRI

Preference elicitation in human-robot interaction (HRI) typ-
ically involves two agents, a human operator who knows the
true reward function r*, and a robot who takes actions on
behalf of the operator. The robot knows a set of possible re-
ward candidates R that includes r*, and a probability distri-
bution 1) over the reward candidates regarding which is r*.
The robot has a space of decisions, D = {dy,da,...,dn},
that it is choosing between; in our setting, each decision is
a candidate plan (policy) to pursue. The utility of a deci-
sion d € D under a reward candidate » € R is denoted by
V4. The robot wants to pick the decision with the highest
utility given r*, but since it only has probabilistic knowl-
edge ¢ about which reward candidate is r*, it maximizes
the expected utility given 1. Communication between the
operator and robot has the robot offering a choice over some
finite number & decisions, and the operator responding with
the decision with the largest utility value under her true re-
ward function. Usually, | D| is too large to offer all possible
choices, so the challenge is to select a (often much) smaller
subset of k decisions to best elicit the operator’s preferences.

Formally, a k-response decision query g is a cardinality
k set of decisions, ¢ = {dy,ds,...,d,} € DF. Following
accepted notation (Viappiani and Boutilier 2010), ¢ ~ d,
where d € ¢, denotes the event that the operator selects d
fromgq. ¢ ~ d = V& > V,.”i/,Vd’ € q. If multiple
decisions attain the optimal V.- value, the operator returns
the lowest indexed (Cohn 2016).

The goal of the robot is to find a ¢ that maximizes its
Expected Posterior Utility (EPU), defined as follows.

EPU(q,¢) =Y Plg~ d; ¢V, 0y (1)
deq
where V' ;. ,, = maxzep de > and g ~ d;1 is the

posterlor bellef about the reward function after observing
q ~- d, with the prior belief 1). We define how to compute it

340

later. A (k-response) decision query that optimizes the func-
tion above is called the optimal (k-response) decision query.
The optimal decision query maximizes the utility of the op-
timal decision after knowing the query response in expecta-
tion. Or equivalently, this maximizes the Expected Value of
Information (EVOI) (Cohn, Singh, and Durfee 2014), where
EVOI(q,9) = EPU(q,%) — V}; is the utility increase in
expectation by asking ¢. Queries that maximize £ PU also
maximize EV OI, since VJ is independent of q.

It is difficult to find a ¢ that maximizes EPU directly
since there is an extra max function inside £ PU (in VJ;).
Viapianni and Boutilier (2010) suggest that we can optimize
a different objective function, Expected Utility of Selection
(EUS), defined as follows.

EUS(q,¢) =Y Plg~ d;y]Vi oy)

deq

The query q that maximizes the function above is called the
optimal recommendation set. The difference is that EFUS
evaluates the response d under that posterior belief, rather
than finding the optimal decision under the posterior belief.
Theorem 2 in (Viappiani and Boutilier 2010) says if ¢ maxi-
mizes EUS(q,), it also maximizes EPU (g, v). We max-
imize EU S in this paper.

Reward-Uncertain MDPs

In our setting, the robot’s decisions are over action
policies for a reward-uncertain MDP, which is a tuple,
(S, A, T, (R,), s0), with state space S and action space A.
T is the transition function, where T'(s,a, s’) is the prob-
ability of reaching state s’ by taking action a in s. R =
{r1,...,rn} is a set of candidate reward functions and 1) is
the belief distribution over the candidates. sg is the initial
state. As in the general preference elicitation setting, r* is
only known to the operator and the robot only knows R and
.

The value of a policy 7 under reward function r is defined
as V™ (s) = ZtT:OE[r(st, ag)|so = s, 8¢, az ~ w]. When the
initial state is clear from the context, we abbreviate V.7 (s)
as V7. The optimal policy 7* for the reward function 7 is
defined as the policy that obtains the largest value, 7% =

argmax, V™.

The optimal policy under reward belief ¢ is the same
as the optimal policy under the reward function 7, where
7y is the mean reward under), defined as 7y(s,a) =
> rer PlriYlr(s,a),¥s € S,a € A (Theorem 3 in (Ra-
machandran and Amir 2007)).

Although there are popular methods like value iteration
that finds the optimal policy, we consider a linear program-
ming formulation (de Farias and Van Roy 2003) in this
paper. The following optimization problem finds the occu-
pancy measure of the optimal policy, where occupancy mea-
sure, x(s, a), is the expected number of times state s will be

reached and action a will be taken in state s.

m;lex(s, a)Ty(s,a)
s,a

s.t. Zx(s',a’) =
(1’/

x(s,a) > 0,Vs,a

where §(s,s’) = 1if s = s’. Otherwise 0(s, s") = 0.

3

Z x(s,a)T(s,a,s") + (s, s0), Vs

s,a

Querying in Reward-Uncertain MDPs

In the literature, the types of queries asked by robots to their
operators have included action queries (Cohn, Durfee, and
Singh 2011) and trajectory queries (Wilson, Fern, and Tade-
palli 2012). The robot updates its reward belief after receiv-
ing the response. It computes the posterior probability of a
reward candidate r being the operator’s true reward function,
P[r|q ~ j;], based on Bayes’ rule:

Plr|g ~ j;¢] ~ Plg ~ jlr|P[r; 9] “)

Policy Queries

The preceding section provides a straightforward but expen-
sive strategy for finding an optimal query: For every query
that could conceivably be asked, compute its £ PU (Eq. 1),
which for each query involves computing the probability of
each response, the posterior beliefs due to the response, and
the optimal policy to follow given those beliefs. Then ask
the query with the highest £ PU. We now consider ways to
find (approximately) optimal queries with much less com-
putation.

A fundamental result that we use is that, in a general
preference-elicitation setting, a robot can, without loss of
optimality, restrict the choices offered in k-response queries
to only the decisions it can actually act on (Cohn, Singh,
and Durfee 2014). Since the robot is deciding among poli-
cies, this means that, in reward-uncertain MDPs, a robot can
focus only on k-response policy queries. Formally, a policy
query, ¢ = {m,..., 7}, is a set of policies, and the re-
sponse is such that ¢ ~> 7 = V% > VT?ZI,VF/ €q.

We reapply the general result for decision queries in
(Cohn, Singh, and Durfee 2014) to assert the following the-
orem about policy queries.

Theorem 1. (adapted from (Cohn, Singh, and Durfee
2014)) For a reward-uncertain MDP, the optimal k-response
policy query is the optimal k-response query.

max FPU(q,v) = max FPU (q, 5
max EPU(q,0) = max EPU(.v) (5)
for any initial reward belief 1. Qy, is the space of all k-
response queries, and 11 is the space of all policies.

We do not repeat their proof of Theorem 1 here, but the in-
tuition is as follows. Suppose ¢* = {c1, ..., ¢k} is an opti-
mal query. We can construct a set of k policies, where m; =
argmax, Vi, .. Thatis, m; is the optimal policy under
the posterior belief of ¢* ~» ¢;;9. Let ¢ = {m1,..., 7k}
Then ¢ and ¢* have equal EPU.

Although the robot can, without loss of optimality, limit
its query search to k-response policy queries, there are still

341

many such queries because the space of k-ary policy query

candidates is of size (lf‘). Given the exponential number of
policies, we need a more efficient way to find an approxi-
mately optimal policy query.

Greedy Construction of Policy Queries

Since optimizing EPU directly is generally difficult, we
first consider the EU S of a policy query.

EUS(q7w) = ZP[Q ~r T ¢]Vqﬁww;w

TEq
=Y Plg~my] Y Plrlg ~ m VT
TEQ reR

(linearity of value function of a fixed policy)

= Z ZP[T,(] ~ 7T;1/1]Vrﬂ

reR TEq
= Z Plr;] max V,©
TEq
reR

(P[r,qg ~> m; 9] >0 < 7w = argmax,eq V")

This describes EU .S for a set of policies as the expectation
of optimal values (achieved by policies in the query) over all
possible reward candidates.

In a general preference elicitation setting, Viappiani and
Boutilier (2010) proposed a greedy construction method for
finding an approximately optimal query. Instead of find-
ing the k£ elements in the query altogether, the algorithm
incrementally adds decisions to the query. Concretely, in
the first iteration, q; = {dfb} contains the optimal deci-
sion under prior belief ¢. In later iteration ¢, where ¢ =
2...,k, the algorithm finds ¢; = ¢;—1 U {d;} where d; =
arg maxgep EUS(¢g;—1 U{d},). This algorithm performs
k passes over the decision space, so its computational com-
plexity is O(]D|k). In our setting, this is O(|II|k), which is
impractical given the size of II.

We now define our variation of this process for reward-
uncertain MDPs that avoids examining all of II. Initially,
q1 = {m},}, containing the optimal policy under 4. In itera-
tion i, ¢; = g;—1 U{m;} where m; = arg max, EUS(¢;—1 U
{n},). Consider the difference between EUS(g;—1 U
{r}, %) and BUS (g;—1,).

mTEriX EUS(qi—1 U{n},¢) — EUS(¢i—1,v)
= max 3 Blrs ¢

!’ ’
V7~ max V)
m'EGi—1

max
' E€qi—1U{T}

= max Z P[r; ¢ max(V," — max V" ,0) (6)

m'EGi—1

Eq. 6 is what we want to optimize at each iteration to find
m;. One step of the procedure is illustrated in Figure 1. In
the i-th iteration, we have ¢;_1 = {m,...,m—1}. We find
a policy 7; that maximizes the dark shaded area in the right-
most figure, which is the weighted (by) margin that the
added policy outperforms the policies already in the query.
The max operator inside the objective function makes this
equivalent to a mixed integer linear programming (MILP)
problem. Based on Eq. 3, we use z to denote the state-action

occupancy measure of 7;, and rewrite the optimization prob-
lem in Eq. 6 as follows.

max Plr; - 7

x?{yr}ﬂ{zT}; [d)}y ()
sty < Z[w(s,a)r(s, a)] — max v

+ M1 —-2z),VreRr (7a)

yr <0+ Mz ,Vr e R (7b)

Zm(s', a) = Zx(s,a)T(s, a,s’) +6(s',s0),Vs'

a’ s,a

(7¢)
z(s,a) > 0,Vs,a (7d)
zr € {0,1},Vr € R (7e)

We rewrite the max function of Eq. 6 as two constraints (cor-
responding to lines 7a and 7b), where at any given time only
one of them applies. M is an arbitrarily large positive num-
ber. We introduce binary variables z,. for each r € R so that
when z,. = 0, the first constraint (line 7a) is relaxed, since
Y- < M holds anyway, and the second constraint (line 7b) is
enforced. When z,, = 1, the first constraint is enforced and
the second constraint is relaxed. The constraints in lines 7c-
7e ensure that x is a valid state-action occupancy.

Analysis. The EUS of an approximately-optimal policy
query from this greedy process enjoys the guaranteed per-
formance EUS(qr,) 2 nEUS(q",¢) = nEPU(q",),
where 7 = 1— (#1)¥ and ¢* is the optimal k-response pol-
icy query (Viappiani and Boutilier 2010). Building a policy
query with k£ elements requires solving £ MILP problems.
The complexity is polynomial in the number of state and
action pairs, but combinatorial in the number of reward can-
didates in the worst case. For problems with many reward
candidates, other approximation methods like policy gradi-
ent methods could be tried in the future.

Now we consider how we can characterize the policies we
found by solving the optimization problem in Eq. 7. At the
i-th iteration, let x, {y, }, {2} be solutions. 7; is the policy
that occupancy « represents. Then:

;= argmax > Pl ey

reR
= arg max Z P[r; 4]z (V" — max V)
™ T Eqi—1
reR
= arg max Z Plr;)z V,*
reER

That is, 7; maximizes the mean reward) . P[r;¢]z,r,
which is the mean reward of a subset of the reward candi-
dates. Note that this is not a way to find 7, since {z,} are
outputs of the optimization problem. The MILP problem de-
cides the mean reward of which subset of reward candidates
to optimize, leading to the following theorem.

Theorem 2. Any policy in the optimal recommendation set
must be the optimal policy under the mean reward of a sub-
set of reward candidates.

342

Gi-1 ={m1,..., i1} ¢ = gi-1 U{m}

maXreg,_; Vi©
maXreq; V;'

r. I

1 2 3

Figure 1: Greedy policy construction illustration.

Proof Sketch. If a policy in the optimal recommendation set
is not an optimal policy under the mean reward of any subset
of reward candidates, we can always find a subset of reward
candidates R C R and replace this policy with the optimal
policy of the mean reward of R. Then, the EU S of this pol-
icy query can only monotonically increase. O

Thus, to construct the approximately optimal k-response
policy query, iteratively apply the MILP (Eq. 7) k times to
generate k subsets of the reward candidates, and then find the
optimal policy for the mean reward function of each subset.
The query is composed of these k policies, and, importantly,
the process avoids searching over all policies.

Projecting to Trajectory Queries

While the preceding is an effective approach for construct-
ing approximately optimal policy queries, the size and com-
plexity of policies can make queries about them hard for an
operator to understand and answer. HRI settings thus often
draw from a simpler set of askable queries, which we re-
fer to as @. It is impractical to compute the EPU of all of
the queries in @ and select the best one when |Q)| is large.
The strategy we advocate for more efficiently finding a good
askable query from @) is to exploit our method for find-
ing an approximately-optimal but possibly unaskable policy
query. We do this using query projection (Cohn 2016). With
gy being the approximately-optimal policy query found by
the greedy construction method, and @ the set of askable
queries, we find the query ¢ € @ to ask as follows (Cohn
2016):

= arg min H(¢f 8
g = argmin H(qgnq) (8)
where H(q'|q) is the conditional entropy, defined as
H(d'lg) = e Pla ~ 5ylH(lg ~ J) =

PUNN

— g Bla ~ Ji0) Y ey Bld > il ~ jllogBly’
j'lg ~ j]. This approach uses the approximately-optimal
policy query as a target for finding a good askable query.
Concretely, we want the askable query that minimizes the
robot’s uncertainty about which response would have been
chosen if the desired policy query could have been asked and
answered. While the query found this way is not necessarily
the optimal query in) (because there might be no askable
query that is a good proxy for asking ¢f), it often does well
(as is shown empirically later) and avoids extensive compu-
tation.

We apply this projection technique in a setting where an
askable query from the robot consists of a set of trajectories

(Wilson, Fern, and Tadepalli 2012) where, to ease compar-
ison by the operator and to stay consistent with the litera-
ture, all of the trajectories begin from the same state and
extend to the same finite horizon. Formally, a trajectory,
u = {(s1,61),...,(s1,a;)}, is a sequence of state action
pairs, where s, is reached after taking a; in s¢, and [is
the length of each trajectory. A trajectory query is a set of
trajectories, qu = {u1, ..., U}

Using the query projection method described in Eq. 8, the
robot finds the start state for the trajectory query based on
gy; as the state maximizing the heuristic value:

hP(s) = Byt (s) Z P(qu ~ w;) H (qrilqu ~ u;¢)

uequ

©)
where U(s) is a set of policies constructed in the following
way. For each m € ¢y, the robot identifies the set of reward
candidates that 7 performs better on than other 7’ € 1> and
then one reward candidate is chosen from this set. The robot
adds the optimal policy of this reward candidate to U(s).
qu is a set of [-length prefixes of the trajectories starting
from s drawn from the policies in U (s). Note that a policy
could have many different trajectories if the transition func-
tion is stochastic. Similar to (Akrour, Schoenauer, and Sebag
2013), the robot chooses a state that will generate good tra-
jectory queries in expectation. The trajectory query that the
robot actually asks is a set of trajectories, each of which is
generated by following one policy in U(s).

There are certainly other query projection methods in tra-
jectory queries besides our straightforward choice. Note we
did not use the greedily constructed policies themselves as
U(s) to generate trajectories. Those policies optimize over
mean rewards of subsets of reward candidates, and thus may
look very different from the optimal policy of any reward
candidate.

Also, instead of first greedily forming policy queries and
then projecting them to the trajectory query space, one could
ask why we don’t just greedily generate trajectory queries
directly, which is what the Expected Belief Change and
Query by Disagreement strategies of others (and that we
soon describe) do. The reasons are two-fold. First, since
trajectory queries are not decision queries, the greedy con-
struction procedure applied to trajectories does not enjoy the
near-optimality guarantee for policy queries, and thus could
be arbitrarily suboptimal. We instead project from the k-ary
policy query that the robot provably would want to ask (if
it could) to find the k-ary trajectory query that best matches
it. The second reason is that our projection technique gen-
eralizes to any spaces of“askable queries,” while heuristics
for greedily constructing trajectory queries don’t necessarily
generalize.

Empirical Evaluation

In the preceding, we have claimed the following: (1)
Greedily-constructed policy queries can approximate opti-
mal policy queries in performance while being computed
more cheaply; and (2) Good trajectory queries can be found
through projection of greedily-constructed policy queries.
We now empirically test these claims.

343

Our evaluation assumes that the operator will respond to a
query offering %k choices with her most-preferred response,
but we need to be more precise about exactly how that re-
sponse is chosen. Given k policies (or trajectories) to choose
from, there might be none that corresponds to what the oper-
ator would choose (particularly when the number of reward
candidates n is larger than k). For policy queries, we have
defined the response model to be that the operator responds
with the policy that has the largest value under her reward
function. We could do something similar for [-length trajec-
tories, but the accumulated rewards up to a finite horizon
may not well reflect the operator’s preference (the operator
may want to follow a trajectory to collect a distant reward).
So, like (Wilson, Fern, and Tadepalli 2012), we assume the
operator responds with the choice that is most similar to
what she would do. To determine similarity, we assume a
distance metric between two states s; and so, denoted by
d(s1, s2). This metric also applies to two trajectories w1, s
of equal length: d(uy,us) = Zizl d(u1,,ug,), where u; ¢
is the state reached at the ¢-th time step in trajectory u;. With
this metric, the response model of a trajectory query gy can
be defined as follows: gy ~» v = Ey«or-d(u,u*) <
Eysmsd(u',u*),VYu' € qu. In this paper, we assume that,
when computing the posterior distribution over reward can-
didates based on the operator’s response (Eq. 4), the robot
knows how the operator selects a response. Confusions that
could arise if the robot incorrectly models the operator are
left for future work.

Greedy Policy Queries

We compare the performance of our greedy construction
method for policy queries against optimal policy queries in
a version of the well-known Rock Sample domain (Smith
and Simmons 2004), which we call rock collection, which
we have purposely made to be sufficiently small for us to
be able to exhaustively compute the optimal policy query.
The robot navigates in a 5 x 30 gridworld, where it starts
in the middle of the southern border and its actions are con-
strained to moving straight north, diagonally north-east, or
diagonally northwest. The transition function is noisy: with
probability 0.05, the robot reaches one of its north, north-
east and north-west states uniformly randomly regardless of
the action it takes. When the robot hits the boundary on
either side, it will only move north rather than off the do-
main. The length of the trajectories it can follow is 4. There
are m rocks randomly distributed in the grid, and the robot
knows that the operator’s true reward function is one of n
equiprobable reward function candidates. We use the Man-
hattan distance as the distance metric between two states:
d((z1,91), (x2,y2)) = |21 — 22| + |y1 — Y2l-

To generate the reward function candidates, we partition
the m rocks into n subsets, and each reward candidate cor-
responds to a different partition containing rocks that the
operator wants collected (positive reward), while all of the
other rocks have rewards of —1. We consider three settings
for the positive rewards, illustrated (using smaller grids) in
Figure 2. Reward setting #1: The positive rewards of all
the reward candidates are 1. Reward setting #2: The posi-

@ @ [— [—
) ©) OO ©)
O O) O/ O] []
O 1G] OO GO

1 [s Ty fom] L s fy

@

ImO O

r

Figure 2: Reward settings of the rock collection domain. The
locations of rocks are randomly assigned.

tive rewards of half of the reward candidates are 2, and the
others are 1. Reward setting #3: The positive rewards of
one reward candidate is 5, and the others are 1. An optimal
query distinguishes the reward candidate with reward 5 from
the other reward candidates.

To confirm that the greedy construction method for pol-
icy querying can be effective, we compare it to optimal pol-
icy querying both in terms of FPU and computation time
for k = 2. As we have discussed, searching in the policy
space to find the optimal policy query is computationally in-
tractable. We found in Theorem 2 that the optimal policy
query maximizes the different subsets of the reward candi-
dates. So, we enumerate all possible k subsets of reward can-
didates to find it. Note that although this avoids searching the
policy space directly, it is only feasible for domains with a
small number of reward candidates.

A natural question to ask is whether we really need to
solve the MILP problem to find a policy query close to the
optimal one. Can we randomly sample some policy queries
and pick the best one among them? We consider a sampling
approach that is similar to APRIL (Akrour, Schoenauer, and
Sebag 2012). Inspired by Theorem 2, we randomly sample
optimal policies of some mean reward R, where R C R,
and then pick the set of policies that has the largest EUS.
This avoids solving the MILP problem. We will refer to this
method as “Sampling” in the following figure, and give the
number of random samples NV it considered.

Figure 3 shows that a greedy policy query is considerably
cheaper to find, computationally, than any of the other ap-
proaches. Its £V OI is comparable to the other approaches,
always outperforming Sampling for N = 10, and even out-
performing Sampling when N = 50 (and matching the opti-
mal query) in reward setting #3 where the odds of randomly
generating a policy that collects the few “good” rocks is
small. This performance gap is caused by the fact that our
approach finds a policy query by solving the optimization
problem, rather than by sampling policy queries and hoping
to find a good one.

Projecting to Trajectory Queries

Having established the existence of problems for which
greedy policy query construction is warranted, we now turn
to the question of whether projecting such queries into the
trajectory space is effective. To answer this question, we
compare our projection technique to two heuristic tech-
niques from the literature. Both methods that we introduce
below assume binary response queries and a general reward
belief distribution where the optimal policies can be sampled
from. We adapt their methods to our problem as follows.

B Goocya

- Sampling N=10
Sampling N=20
Sampling N=50

35
30
25

LN

#1 #2 #3

1!

0.5

o

0

#1 #2 #3

(a) EVOI vs. Reward Settings (b) Computation Time (sec.) vs.
’ " Reward Settings.

Figure 3: Comparison of methods for finding policy queries
in the rock collection domain. n = 10,k = 2.

Expected Belief Change is the heuristic with the best per-
formance in (Wilson, Fern, and Tadepalli 2012). In our nota-
tion, the state it chooses for starting trajectories maximizes
the following heuristic function.

hBC(s) = By nv(s) B mw (w00 Z i — s (10)

where U (s) is a set of optimal policies of k reward candi-
dates starting from s, which are sampled according to ¥. As
in the projection method, qy; is a set of [-length prefixes of
trajectories starting from s drawn from the policies in U (s).
U (1), qu) is the set of posterior beliefs by asking gy with the
prior belief 1. This heuristic function estimates how much
the belief distribution changes.

Query by Disagreement is another method proposed in
(Wilson, Fern, and Tadepalli 2012), and the heuristic can be
expressed in our notation as follows.

WP(s)= Y Euemwerdu,u) (11)
m,mw'eU(s)

where U(s) is a set of optimal policies of k reward candi-
dates starting from s, which are sampled according to .
This heuristic function maximizes the expected distance be-
tween trajectories generated by the optimal policies of dif-
ferent reward candidates.

Using the same rock collection experimental setup as be-
fore, we compare the following algorithms.

1. Optimal ¢} is the optimal policy query.

2. Greedy gy is the policy query found by our greedy con-
struction algorithm.

3. Query Projection finds a trajectory query using A" in
Eq. 9.

4. Belief Change finds a trajectory query using
Egq. 10.

5. Disagreement finds a trajectory query using h” in Eq. 11.

hBC in

6. Random Query uniformly randomly picks a state and
generates random trajectories from it.

Finding the optimal trajectory query is infeasible even for
a small domain, so we use the optimal policy query as an
upper bound.

The rock collection problem lets us adjust the number of
reward candidates n and query choices k, so we can learn
more deeply about the strengths and limitations of our pro-
jection approach. We report the results in Figure 5. Although
we consider EPU as the objective so far, we evaluate our
performance by FVOI, which is always nonnegative and
best to measure the value of the query. The left column
shows the case of 5 reward candidates (n = 5), and the right
column has 10 (n = 10). From top to bottom, we increase
the number of responses, k. The locations of rocks are ran-
domly generated and different in different trials. 40 trials
are run for each data point. To estimate the heuristic value
for one state, we sample trajectories for 20 times to approx-
imate the expectation (E,,,) in the heuristic functions. The
error bars represent 95% confidence intervals. The variance
of the results is caused by sampling trajectories from poli-
cies and the different initial configurations of the domain.

The cases where the number of reward candidates is 5
(n = 5) reinforce that greedy construction can perform
well since the gap between the optimal policy query and
the greedily constructed policy query is small. Once again,
though, the time needed to find the optimal policy query is
much longer (Figure 6). In fact, we can only find the optimal
policy for the cases of n = 5 in this domain.

We next consider the cases with fewer responses (the top
row,n = 5,k = 2 and n 10,k = 2). We see that
the query projection method outperforms the other heuristic
methods. The reason is that our approach is aware of what
the robot should ask given how few choices should be of-
fered. Furthermore, the performance gap grows for reward
settings #2 and #3 because the query projection method is
aware of which reward candidates to distinguish from the
others, while the other heuristic methods focus on reducing
uncertainty of reward beliefs more broadly.

The advantage our query projection method has over the
other methods decreases as the number of responses k grows
relative to the number of reward candidates n: it is easier to
elicit the operator’s true reward function by asking queries
with more responses, so being discriminating about which
responses to offer matters less. We also observe the perfor-
mance gap between the greedily constructed policy query
and the rest grows because trajectory queries are less expres-
sive than policy queries. For example, when n = 10,k = 8§,
it is difficult to find 8 trajectories starting from the same state
that are as informative as an 8-policy query.

Now we compare the computation time between these
methods in Figure 6. Clearly, optimal g7; has the longest run-
ning time, and we can only afford computing it for n = 5.
Greedy ¢p is much faster. Query projection is slightly slower
than Greedy g, since it needs to project the policy query it
finds to the trajectory query space. Belief Change and Dis-
agreement only need to compute a heuristic function for all
states, which are both faster than query projection.

In summary, our experiments confirm that there exist do-
mains where projecting into trajectory-query space can out-
perform previous strategies for trajectory query selection.

345

Furthermore, they suggest that the projection technique’s ad-
vantages are most pronounced when the number of query
responses k is small relative to the number of reward candi-
dates n, and when the space of trajectories is rich enough
to highlight distinctions between policies for different re-
ward candidate partitions. While much more efficient than
searching in the trajectory query space directly, query pro-
jection runs longer than the previous methods. In some do-
mains, a few more seconds of deliberation by the robot could
be a worthwhile tradeoff for asking the operator a simpler
(smaller k) and more enlightening query.

Multiple queries. As mentioned earlier, another perfor-
mance metric is how the policy improves with more queries
asked: the robot should elicit the human’s true preference
with the fewest queries possible (Akrour, Schoenauer, and
Sebag 2012; Zhang and Stone 2015). We have instead as-
sumed the robot asks only one query and should use it to
elicit the most valuable information about the true prefer-
ences. If multiple queries can be asked, our projection tech-
nique can be applied iteratively, and we have empirically
seen that when a few queries can be asked our technique still
works best. However, as the number of queries grows, other
approaches can be better at exploiting iterative querying.
For example, if the robot can ask multiple binary response
queries sequentially, then as the number of the queries ap-
proaches log, |R|, a good strategy is to select a query that
rules out about half of the remaining reward candidates.
Empirically, we have seen that the Expected Belief Change
heuristic approximates such binary search. And as the num-
ber of queries nears the number of reward candidates, all the
non-random approaches converge on the true preferences.

Discrete driving domain. The previous experiments were
in a parameterized domain that we could flexibly modify to
test our method under different conditions; we now briefly
consider our method’s performance in a less manipulable
domain. The discrete driving domain we use is based on the
driving domain of (Abbeel and Ng 2004). We consider five
reward candidates. The human operator can be nice (avoid
hitting other cars), nasty (prefer hitting other cars), danger-
ous (changing lanes right before hitting other cars), nice but
prefer to stay in the left-most lane, or nice in the right-most
lane. If the human is a nice driver, there is a large punishment
(negative reward) for hitting another vehicle. All of these are
from (Abbeel and Ng 2004), except the “dangerous driver”
whom we added to increase the variety of the behaviors.
More details of our implementation are omitted, but are
left out here because the main takeaway is that we, reassur-
ingly, see similar results as before (Fig. 7). The query projec-
tion method has the same performance as the greedily con-
structed policy query. The Expected Belief Change heuris-
tic has worse performance when k£ = 2, but it catches up
when we increase k. Like Reward Setting #3 in the rock col-
lection problem, distinguishing different reward candidates
may yield significantly different £ PU than heuristics that
focus on reducing overall reward uncertainty. For example,
we want to build a binary response query by considering

I orta

- Greedy q I

- Query Projection
Belief Change
Disagreement
Random Query

Figure 4: Legend for Figures 5, 6 and 7.

C©)n=>5k=4.
EVOI vs. Reward Settings

(d)n=10k=S8.

Figure 5: Comparison in the rock collection domain. Note
that Opt ¢f; in the settings with n = 10 cannot be computed
so only placeholders are plotted.

the trajectories in the illustration in Figure 7. A good query
would select the middle query and either one on the side to
decide whether the human wants to hit another car. How-
ever, the competing methods do not discern such distinc-
tions. Query by Disagreement selects the left-most and the
right-most trajectory, and Expected Belief Change does not
have a strong bias over these trajectories since the posterior
beliefs are all changed.

Related Querying Work

The APRIL algorithm (Akrour, Schoenauer, and Sebag
2012) also looks at trajectory queries, but uses an iterative
querying process where, instead of presenting k trajecto-
ries at once, it presents one trajectory at a time and essen-
tially asks the operator a binary (k = 2) query: whether the
new trajectory is preferred to the best trajectory shown so
far. Furthermore, in that work the length of the trajectory is
the full task horizon, rather than a shorter, specifiable hori-
zon length [used in this paper. Subsequent work by those
researchers considered the case where the operator might
answer mistakenly (Akrour, Schoenauer, and Sebag 2013),
which was not addressed in this paper.

Other querying methods are geared towards other types
of operator models. If the operator has a specific rewarding

346

N oW A o o
[T R UG -3

#1 #2 #3 #1 #2 #3
(@n=>5k=2. (b)n =5k = 4.
Computation Time (sec.) vs. Reward Settings

Figure 6: Computational time of trajectory query selection
methods in the rock collection domain.

Number of Responses

Figure 7: The driving domain and the evaluation. n = 5,k =
2. Opt ¢f; cannot be computed.

goal state, for example, the robot might query to directly
elicit the goal rather than rewards of intermediate states
(Zhang and Stone 2015). Or the nature of a query response
might differ, such as when the operator can answer by ma-
nipulating the robot to demonstrate a desired trajectory,
rather than selecting from among offered trajectories (Jain et
al. 2013). Demonstration from the operator can also improve
aspects of the robot’s model of the operator besides rewards,
such as eliciting how to reach states, rather than prefer-
ences over states (Subramanian, Isbell Jr, and Thomaz 2016;
Mohan and Laird 2014).

Conclusion

When planning actions to please its operator, a robot may be
uncertain about its operator’s preferences. The robot should
ask the query that most improves its plan. We have formu-
lated a method for greedily constructing an approximately-
optimal policy query that avoids enumerating all policy
choices, and empirically shown that the approach can be
particularly effective when randomly finding an informa-
tive policy option to offer is unlikely. We also presented
an approach for projecting a policy query into a more eas-
ily askable space of trajectory queries, and showed em-
pirically that the query found can be better than other
trajectory-query selection strategies, particularly when the
query should limit the trajectory choices to a small number.
Future directions include introducing additional approxima-
tion techniques into the greedy construction method, finding
approximately-optimal sequences of queries, and investigat-
ing the impact of a noisy operator response model.

Acknowledgements: Rob Cohn shared insights and tech-
nical details from his dissertation research on query projec-
tion that benefitted this paper, as did the comments from
the anonymous reviewers. This work was supported in part
by the Air Force Office of Scientific Research under grant
FA9550-15-1-0039. Any opinions, findings, conclusions, or
recommendations expressed here are those of the authors
and do not necessarily reflect the views of the sponsors.

References

Abbeel, P., and Ng, A. Y. 2004. Apprenticeship learning
via inverse reinforcement learning. In Proceedings of the
Twenty-First International Conference on Machine learn-
ing, 1-8.

Akrour, R.; Schoenauer, M.; and Sebag, M. 2012. APRIL:
active preference learning-based reinforcement learning.
In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, 116-131.

Akrour, R.; Schoenauer, M.; and Sebag, M. 2013. Inter-
active robot education. In ECML/PKDD Workshop on Re-
inforcement Learning with Generalized Feedback: Beyond
Numeric Rewards.

Cohn, R.; Durfee, E.; and Singh, S. 2011. Comparing action-
query strategies in semi-autonomous agents. In Proceedings
of the Twenty-Fifth AAAI Conference on Artificial Intelli-
gence, 1102-1107.

Cohn, R.; Singh, S. P.; and Durfee, E. H. 2014. Character-
izing EVOI-Sufficient k-Response Query Sets in Decision
Problems. In AISTATS, 131-139.

Cohn, R. 2016. Maximizing Expected Value of Informa-
tion in Decision Problems by Querying on a Wish-to-Know
Basis. Ph.D. Dissertation, University of Michigan.

de Farias, D. P, and Van Roy, B. 2003. The linear pro-
gramming approach to approximate dynamic programming.
Operations Research 51(6):850-865.

Jain, A.; Wojcik, B.; Joachims, T.; and Saxena, A. 2013.
Learning trajectory preferences for manipulators via itera-
tive improvement. In Advances in Neural Information Pro-
cessing Systems, 575-583.

Knox, W. B., and Stone, P. 2009. Interactively Shap-
ing Agents via Human Reinforcement: The TAMER Frame-
work. In Proceedings of the Fifth International Conference
on Knowledge Capture, K-CAP *09, 9-16.

Mohan, S., and Laird, J. E. 2014. Learning goal-oriented
hierarchical tasks from situated interactive instruction. In
Proceedings of the Twenty-Eighth AAAI Conference on Ar-
tificial Intelligence, 387-394.

Ramachandran, D., and Amir, E. 2007. Bayesian inverse
reinforcement learning. In International Joint Conference
on Artificial Intelligence, 2586-2591.

Smith, T., and Simmons, R. 2004. Heuristic search value it-
eration for POMDPs. In Proceedings of the 20th Conference
on Uncertainty in Artificial Intelligence, 520-527.
Subramanian, K.; Isbell Jr, C. L.; and Thomaz, A. L. 2016.
Exploration from demonstration for interactive reinforce-
ment learning. In Proceedings of the 2016 International

347

Conference on Autonomous Agents & Multiagent Systems,
447-456.

Torrey, L., and Taylor, M. 2013. Teaching on a budget:
Agents advising agents in reinforcement learning. In In-
ternational Conference on Autonomous Agents and Multi-
agent Systems, 1053—1060.

Viappiani, P, and Boutilier, C. 2010. Optimal Bayesian
recommendation sets and myopically optimal choice query

sets. In Advances in Neural Information Processing Systems,
2352-2360.

Wilson, A.; Fern, A.; and Tadepalli, P. 2012. A Bayesian
approach for policy learning from trajectory preference
queries. In Advances in Neural Information Processing Sys-
tems, 1133-1141.

Zhang, S., and Stone, P. 2015. CORPP: commonsense rea-
soning and probabilistic planning, as applied To dialog with
a mobile robot. In Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, 1394—1400.

