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Abstract

Pruning techniques based on strong stubborn sets have re-
cently shown their potential for SAS+ planning as heuristic
search. Strong stubborn sets exploit operator independency
to safely prune the search space. Like SAS+ planning, fully
observable nondeterministic (FOND) planning faces the state
explosion problem. However, it is unclear how stubborn set
techniques carry over to the nondeterministic setting. In this
paper, we introduce stubborn set pruning to FOND planning.
We lift the notion of strong stubborn sets and introduce the
conceptually more powerful notion of weak stubborn sets to
FOND planning. Our experimental analysis shows that weak
stubborn sets are beneficial to an LAO* search, and in partic-
ular show favorable performance when combined with sym-
metries and active operator pruning.

Introduction

During the execution of operator sequences, an agent may
face situations where she has no control over certain aspects
of the world. To handle such situations, it can be helpful to
capture the nondeterminism of the world’s dynamic within
the domain model. Fully observable nondeterministic plan-
ning (FOND) formalism achieves that by allowing operators
to have multiple outcomes. That is essentially its key differ-
ence from classical planning. Solutions to FOND planning
tasks are policies that map states to actions. A policy de-
termines the next action in the final plan, depending on the
actual outcome of the previously applied action.

Like in classical planning, a key challenge in FOND plan-
ning is the state explosion problem, i.e., the exponential
blowup of the state space induced by a compact descrip-
tion of planning tasks. In classical planning, and specifically
in SAS+ planning (Bäckström and Nebel 1995), the state
explosion problem is often tackled by state pruning tech-
niques (Alkhazraji et al. 2012; Wehrle et al. 2013; Wehrle
and Helmert 2014; Domshlak, Katz, and Shleyfman 2012;
Chen and Yao 2009). Out of these, strong stubborn sets are
of a particular interest. Roughly speaking, strong stubborn
sets can prune operators in a state if there is an alternative
“permutation” plan starting in the same state, and the first
operator in the alternative plan is preserved. For example,
two operators that work on entirely different state variables
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can be permuted, and if both are applicable in a state s, both
application orders in s will result in the same state. Strong
stubborn sets will recognize this property of such indepen-
dent operators, and only allow for applying one of them in
s, hence pruning states in the induced transition system.

Although SAS+ and FOND planning tasks are syntacti-
cally similar, differing only in whether operators may have
multiple outcomes, the semantics of these formalisms is dif-
ferent. In particular, “classical” state spaces induced by
SAS+ tasks (OR graphs) differ from the more complex state
spaces represented by AND/OR graphs induced by FOND
planning tasks. This difference poses a challenge for car-
rying the state pruning techniques from classical planning
over to fully observable nondeterministic planning. Re-
cently, symmetry based techniques were adapted in a rather
straight-forward way to FOND planning (Winterer, Wehrle,
and Katz 2016). Strong stubborn sets, however, cannot be
carried over to FOND planning in a straight-forward way. It
is an open question how strong stubborn sets can be lifted
to deal with AND/OR graphs, and in particular, how an ac-
curate notion of operator interference for nondeterministic
operators would look like.

In this paper we develop the theoretical basis for stubborn
sets in FOND planning. We empirically evaluate these prun-
ing techniques, exploiting stubborn sets for pruning LAO∗

search in AND/OR graphs. Further, we evaluate whether
stubborn sets can contribute on top of other pruning tech-
niques, such as symmetry elimination and active operators
(Winterer, Wehrle, and Katz 2016; Wehrle et al. 2013). In
more detail, the paper provides the following contributions.

• We generalize the theory of stubborn set pruning from
SAS+ planning to FOND planning. The generalization
is based on a corresponding notion of interference.

• We introduce weak stubborn sets for FOND planning.
Like strong stubborn sets, weak stubborn sets (Valmari
1989) have been originally introduced for model check-
ing Petri nets (Petri 1962). Weak stubborn sets potentially
allow for more pruning than strong stubborn sets, but re-
quire a more involved description for the original formal-
ism used by Valmari (1989). Unlike strong stubborn sets,
weak stubborn sets have not been investigated for plan-
ning before. We also introduce a nondeterministic variant
of strong stubborn sets for FOND planning.
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• We empirically evaluate the practical potential of stub-
born set pruning to FOND planning with LAO∗. In par-
ticular, inspired by recent work for classical planning that
combines strong stubborn sets and symmetry elimination
(Wehrle et al. 2015), we combine weak stubborn sets with
structural symmetries for FOND tasks (Winterer, Wehrle,
and Katz 2016) and with active operators pruning (Chen
and Yao 2009; Wehrle et al. 2013). Our empirical inves-
tigation shows that the combination of all these pruning
techniques yields promising performance gains on top of
the respective baselines.

Preliminaries

We use an SAS+ based notation to model fully observable
nondeterministic planning tasks with a finite set of finite-
domain state variables V . Every variable v in V has a finite
domain dom(v). An assignment v = d for v ∈ V and d ∈
dom(v) is called a fact. A partial state s is a function from
variables vars(s) ⊆ V to values in the domains of vars(s),
whereas all variables in V \ vars(s) have an undefined value
⊥. We denote the value of v in s with s[v] (including s[v] =
⊥ if v ∈ V \ vars(s)). A state is a partial state where all
values are defined, i.e., with vars(s) = V . We consider
fully observable nondeterministic (FOND) planning tasks.
As a key difference to classical planning, operators in FOND
planning tasks can have several effects. Only one of these
effects is applied when the operator is executed. Formally,
FOND planning tasks are defined as follows.

Definition 1 (fully observable nondeterministic planning
task). A fully observable nondeterministic (FOND) plan-
ning task is a tuple Π = 〈V ,O, s0, s�〉, where

• V is a finite set of finite-domain state variables,
• O is a finite set of nondeterministic operators,
• s0 is the initial state,
• s� is a partial state, called goal state.

A nondeterministic operator o ∈ O has the form 〈pre(o) |
effs(o)〉, where pre(o) is a partial state that denotes the pre-
condition of o and effs(o) is the set of effects of o, where
each effect eff i(o) ∈ effs(o) is a partial state. The degree of
an operator o, denoted as deg(o), is the number of its non-
deterministic effects. Deterministic operators have degree of
1, i.e., effs(o) = {eff 1(o)}. For simplicity, we write eff (o)
instead of eff 1(o) for deterministic operators. Throughout
this paper, we assume unit costs for all operators.

In the following, we will denote a nondeterministic op-
erator as an operator unless stated otherwise. The all-
outcome determinization of nondeterministic operator o is
o[1], . . . , o[k] (k = deg(o)) where o[i] = 〈pre(o), {eff i(o)}〉
for 1 ≤ i ≤ k is called an outcome of o. We use Odet

to denote the set of all outcomes of operators in O. An
operator o is applicable in a state s iff s[v] = pre(o)[v]
holds for all v ∈ vars(pre(o)). If o has an empty pre-
condition (i.e., it has no precondition), then o is applicable
in every state. The empty precondition is denoted by �.
If operator o is applicable in s, the set of successor states
o(s) := {o[i](s) | i ∈ {1, . . . , deg(o)}} of s is obtained

from s by applying the outcomes o[i] in s, where the state
o[i](s) is obtained from s by setting the values of variables
in vars(eff i(o)) to their values in eff i(o) and leaving the
remaining variable values unchanged. For simplicity of no-
tation: If o(s) includes a single state, we refer to it as a state
rather than a set of states. We denote the set of applicable
operators in s by app(s).

Solutions to FOND planning tasks are policies subsuming
the plan notion of plans in classical planning (Cimatti et al.
2003). Formally, a policy is a mapping π : S 	→ O ∪ {⊥},
which maps states to operators or π is undefined (i.e. π(s) =
⊥). We denote the sequential application of the operators
determined by π as following π. A policy π is called weak
if π defines at least one path from the initial state to a goal
state when following π. In this case, π is called a weak plan
for Π. A policy π is closed if following π either leads to
a goal state, or to a state where the policy is defined. It is
proper if from every state visited following π, there exists a
path to a goal state following π. A policy that is closed and
proper is called a strong cyclic plan for Π, the plan notion
of interest thorough this paper. Furthermore, π is acyclic if
it does not revisit already visited states. A closed and proper
acyclic policy is called a strong plan for Π.

Informally, a weak plan is a sequence of operators which
leads to the goal if all nondeterministic operators’ outcomes
were deterministic, which corresponds to the plan notion
in classical planning. A strong plan guarantees that a goal
state is reached, and an upper bound on the number of plan
steps exists. In contrast to strong plans, strong cyclic plans
reach a goal state after a number of steps, but no such upper
bound on the plan steps can be provided a priori. However,
strong cyclic planning is based on the fairness assumption,
i.e., there is a nonzero probability that a goal state can be
reached when following a strong cyclic plan.

Stubborn Sets for Classical Planning

The stubborn set method was originally introduced in
computer-aided verification and used for dead end detection
in Petri nets (Valmari 1989). Stubborn sets have been in-
vestigated and evaluated for optimal planning in the work
of Alkhazraji et al. (2012). In a nutshell, a stubborn set for
some state s is a sufficient subset of operators such that re-
stricting the successor generation to the applicable operators
within this stubborn set preserves a permutation of each plan
from s. In this section, we will introduce all necessary pre-
liminaries for stubborn sets in classical planning.

Definition 2 (disabling, conflicting, strong and weak inter-
ference). Let o1 and o2 be deterministic operators.

• o1 disables o2 if there exists some v ∈ vars(eff (o1)) ∩
vars(pre(o2)) with eff (o1)[v] 
= pre(o2)[v].

• o1 and o2 conflict if there exists some v ∈ vars(eff (o1))∩
vars(eff (o2)) with eff (o1)[v] 
= eff (o2)[v].

• o1 and o2 strongly interfere if o1 disables o2, o2 disables
o1, or o1 and o2 conflict.

• o1 weakly interferes with o2 if o1 disables o2, or o1 and
o2 conflict.
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In contrast to strong interference, weak interference is not
a symmetric relation. In other words, if operator o1 weakly
interferes with operator o2, it does not imply that o2 weakly
interferes with o1. The two interference definitions are ap-
proximations in the sense that they are state-independent
whereas the true operator dependencies depend on the cur-
rent state. There are two further ingredients for the stubborn
sets. Let s be a state. A disjunctive action landmark for a
partial state s′ in s is a set of operators with the property that
at least one operator from this set occurs in every operator
sequence that leads from s to any state that satisfies s′. A
necessary enabling set for an operator o in s is a disjunctive
action landmark for pre(o) in s.

Two variants of stubborn sets are known in the literature:
strong and weak stubborn sets. Their sole difference is the
interference relation. In planning, however, only the strong
variant of stubborn sets has been investigated so far. In our
work, we will also investigate weak stubborn sets. Based on
Definition 2, the notion of weak stubborn sets for classical
planning boils down to the following definition.

Definition 3 (weak stubborn sets). Let Π = 〈V,O, s0, s�〉
be a classical planning task and s be a state. A set Ts ⊆ O
is a weak stubborn set (WSS) in s if:

1. Ts contains a disjunctive action landmark for s� in s.
2. For each operator o ∈ Ts with o /∈ app(s), Ts contains a

necessary enabling set for o in s.
3. For each operator o ∈ Ts with o ∈ app(s), Ts contains

all operators o′ with which o weakly interferes.

If we exchange weak interference by strong interference,
we end up with a strong stubborn set. Obviously, weak stub-
born sets dominate strong stubborn sets in terms of pruning
power, in the sense that every strong stubborn set is a weak
stubborn set, but not vice versa. The proof of retaining com-
pleteness and optimality given by Alkhazraji et al. (2012)
directly generalizes to weak interference. We emphasize
that there is a difference in weak and strong interference
computation. While strong interference might be refined
by mutex reasoning (i.e., two operators o1 and o2 cannot
strongly interfere if there is a variable v ∈ vars(pre(o1)) ∩
vars(pre(o2)) and pre(o1)[v] 
= pre(o1)[v]), the mutex rea-
soning violates the completness of weak stubborn sets. We
refer to our technical report for details.

Stubborn Sets for FOND

For classical planning tasks, the solutions are consecu-
tive operator applications leading from the initial state to
one of the goal states. Hence, for an operator sequence
o1, . . . , on of pairwise independent operators, all permuta-
tions of o1, . . . , on lead to the same state. This property is
the core idea of stubborn sets. For FOND planning tasks,
however, solutions cannot be represented as consecutive op-
erator sequences and it is unclear how strong cyclic plans
permute. As a first idea to face this theoretical problem, we
might determinize the nondeterministic operators and use
the stubborn set theory from classical planning. More pre-
cisely: For a given nondeterministic planning problem Π,
a straightforward approach would be to directly apply the
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Figure 1: Postponing o1 in s0 only leads to policies with
dead-ends. The straightforward instantiation is incomplete.

original definition of strong stubborn sets on the all-outcome
determinization of Π, and additionally, to add for every out-
come o[i] of a nondeterministic operator o every other out-
come of o to the candidate stubborn set, in order to respect
o’s nondeterministic nature. However, as the following ex-
ample shows, such an approach is incomplete.

Example 1. Consider the following all-outcome deter-
minization Πdet = 〈V ,Odet, s0, s∗〉 of nondeterministic
planning task Π with variables V = {v1, v2} and the fol-
lowing operators:

• o
[1]
1 = 〈v1 = 0 | {v1 := 1}〉, o[2]1 = 〈v1 = 0 | {v1 := 2}〉

• o
[1]
2 = 〈v2 = 0 | {v2 := 1}〉, o[2]2 = 〈v2 = 0 | {v2 := 2}〉

• o
[1]
3 = 〈v2 = 0 | {v2 := 3}〉, o[2]3 = 〈v2 = 0 | {v2 := 4}〉

• o11 = 〈v1 = 1, v2 = 1 | {v2 := 5}〉
• o12 = 〈v1 = 1, v2 = 2 | {v2 := 5}〉
• o23 = 〈v1 = 2, v2 = 3 | {v2 := 5}〉
• o24 = 〈v1 = 2, v2 = 4 | {v2 := 5}〉

The initial state is s0 = {v1 = 0, v2 = 0}, and the goal is
s� = {v2 = 5}. The set {o11, o12, o23, o24} is a disjunctive
action landmark in s0 which we add to the candidate stub-
born set Ts0 . As all operators in this set are inapplicable in
s0, we have to add a necessary enabling set for all of them.
A valid choice for these necessary enabling sets is based on
selecting the unsatisfied conditions v2 = 1, v2 = 2, v2 = 3
and v2 = 4 in the preconditions of o11, o12, o23, o24, respec-
tively, and to add the determinized operators that set these
conditions to true. These achieving operators correspond to
all outcomes of o2 and o3, which are applicable in s0 but
not weakly interfering with any operator not in Ts0 . Hence,
we finally get Ts0 = {o11, o12, o23, o24, o[1]2 , o

[2]
2 , o

[1]
3 , o

[2]
3 }.

However, Ts0 is insufficient for our purpose because every
strong plan from s0 has to start with o1: Depending on the
nondeterministic outcome of o1 (v1 := 1 or v1 := 2), o2 or
o3 can be applied to satisfy the precondition of an operator
to reach the goal. In contrast, starting with o2 and apply-
ing o1 afterwards might lead to outcomes where no goal is
reachable any more (e.g., v1 = 2 and v2 = 2). The analo-
gous situation occurs when starting with o3 and applying o1
afterwards (Figure 1).
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o2 π ⇒
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Figure 2: Adding o1 to the front of the operator transforms
weak plan o2π into weak plan o1o2π.

We observe: Weak interference in the all-outcome deter-
minization is an insufficient criterion for the coupling be-
haviour of nondeterministic operators and the stubborn sets
cannot be carried over to FOND planning in a straightfor-
ward way. Hence, other ideas are needed. We follow a step-
wise approach. First, we give a new criterion based on de-
terministic operators. Then we prove a syntactic version of
the criterion. Finally, we adapt the criterion to the FOND
setting and use it as a basis for our pruning technique.

We introduce the idea of an operator being attached to the
front of a weak plan in a given state such that the resulting
sequence remains a weak plan from that state (Figure 2).
Formally, the following definition reflects this idea.

Definition 4 (attachable operator). Let o1 and o2 be opera-
tors in Odet, π be an operator sequence, and s be a state.
Operator o1 is attachable to o2 in state s if for every weak
plan o2π from s, o1o2π is a weak plan from s.

Checking the attachability property is computationally in-
tractable. To be precise, this property is state-dependent, i.e.,
it needs to be checked in each visited state. Moreover, ver-
ifying this property amounts to finding two weak plans for
s, one that starts with o2 and another one that starts with o1.
Therefore, it is necessary to come up with an approxima-
tion based on a syntactic check of operators which we for-
mulate using two new definitions. Let Π = 〈V,O, s0, s�〉
be a FOND planning task and o1 be an operator in Odet.
The disabled set dis(o1) is defined as the set of operator-
variable pairs (o2, v) ∈ Odet × V , such that o1 disables
o2 on v, i.e., v ∈ vars(eff (o1)) ∩ vars(pre(o2)) and
eff (o1)[v] 
= pre(o2)[v]. The negated goals set neg(o1) is
defined as the set of goal variables with which o1 conflicts,
i.e., eff (o1)[v] 
= s�[v].

Definition 5 (syntactic attachable operator). Let o1 and o2
be two operators in Odet. We say that o1 is syntactically
attachable to o2 if

1. o1 does not disable o2,
2. dis(o1) ⊆ dis(o2), and
3. neg(o1) ⊆ neg(o2).

The syntactic attachability property is state-independent
and does not suffice on its own to verify attachability since
it states nothing about the applicability of operators. For in-
stance, o1 can be inapplicable in state s in which o2 is appli-
cable, while all the conditions in Definition 5 hold. There-
fore, stipulating that o1 is applicable in s, in addition to be-
ing syntactically attachable to o2, is essential for implying
attachability.

Theorem 1. Let Π = 〈V,O, s0, s�〉 be a FOND planning
task, s be a state of Π, and o1 and o2 be operators in Odet ∩
app(s). If o1 is syntactically attachable to o2, then o1 is
attachable to o2 in s.

For the proof of Theorem 1 we again refer to the technical
report. In the following section we emphasize the difference
between weak interference and attachability.

Weak Interference vs. Attachability

According to weak interference, we obtain equivalent weak
plans by permuting weakly non-interfering operators. On
the other hand, attachability allows introducing new opera-
tors to the beginning of weak plans such that the resulting
sequence is a weak plan, too. As a first step towards a stub-
born set formalism for FOND planning, we clarify the re-
lationship between attachability and weak interference. At
first sight, it might seem that attachability subsumes weak
interference. However, as it turns out, both notions are in-
comparable, i.e., if operator o1 is syntactically attachable to
operator o2, this does not imply that o1 does not weakly in-
terfere with o2.

Example 2. Consider a FOND planning task Π with vari-
ables V = {v1, v2, v3, v4} and the following operators:

• o1 = 〈v1 = 0 | {v2 := 1, v4 := 1}〉
• o2 = 〈v1 = 0 | {v3 := 1, v4 := 2}〉

The initial state is s0 = {v1 = 0, v2 = 0, v3 = 0, v4 =
0}, the goal partial state s� = {v2 = 1, v3 = 1}. We
observe that operators o1 and o2 are mutually syntactically
attachable, i.e., dis(o1) ⊆ dis(o2) = ∅, and neg(o1) ⊆
neg(o2) = ∅. However, they also mutually weakly inter-
fere because they conflict on variable v4. This fundamental
difference of weak interference and attachability gives rise
to a new concept of state space pruning. We obtain a stub-
born set based solely on attachability by replacing rule 3 in
Definition 3 with the following rule:

3′. For each operator o ∈ Ts with o ∈ app(s), Ts contains
all operators o′ to which o is not syntactically attachable.

This yields a new notion of attachability-based stubborn
sets which is a completeness-preserving pruning technique
1. However, due to the nature of attachability, it can lead to
suboptimal weak plans. We further show, by the following
example, that stubborn sets based on weak interference and
stubborn sets based on attachability are two different prun-
ing techniques such that none of them dominates the other
with respect to pruning power.

Example 3. Consider a FOND planning task Π with vari-
ables V = {v1, v2, v3} and the following operators:

• o1 = 〈� | {v1 := 2, v2 := 1}〉
• o2 = 〈� | {v1 := 1}〉
• o3 = 〈v1 = 1, v2 = 1 | {v3 := 1}〉

The initial state is s0 = {v1 = 0, v2 = 0, v3 = 0} and the
goal state is s� = {v1 = 1, v2 = 1, v3 = 1}. Let Ta denote
a stubborn set that uses only syntactic attachability. Since

1We do not provide a formal proof, as it is an intermediate step
towards our contribution. However, it is easy to see that attachabil-
ity is a sufficient condition for completeness: dis(o1) ⊆ dis(o2)
guarantees that v4 does not occur in some operator’s precondition
s.t. o2 enables that operator w.r.t. v4 and o1 disables it. Hence,
conflicting on v4 is not critical in this case for preserving plans.

333



(a) (b) (c)

Figure 3: Generated nodes comparison for (a) NSSS vs. plain FF , (b) NWSS vs. plain FF , and (c) NWSS vs. NSSS .

{o2} is a disjunctive action landmark for s� in s0, we can
use it to initialize the stubborn set: Ta(s0) = {o2}. Because
o2 ∈ app(s0), we need to add the operators to which o2 is
not attachable. Since dis(o2) = ∅ and neg(o2) = ∅, o2 is
attachable to both o1 and o3. This means that the computa-
tion will terminate on Ta(s0) = {o2}. On the other hand, if
we compute Ts, the stubborn set based on weak interference,
the result is different. We initialize Ts(s0) with o2 as before.
o2 is applicable, which means we need to add operators with
which o2 weakly interferes. Obviously, o2 weakly interferes
with o1 because they conflict on variable v1. Therefore, o1
is added to Ts(s0). Also, o1 is applicable and it disables o3,
hence o3 is added to Ts(s0), which means all operators are
applied in s0 (Ts(s0) = {o1, o2, o3}).

Furthermore, each method can result in a different plan:
depending on the search algorithm, using only syntactic at-
tachability might result in plan o2o1o2o3, while using only
weak interference might lead to o1o2o3, which is optimal.

Example 4. Consider a FOND planning task Π with vari-
ables V = {v1, v2} and the following operators:

• o1 = 〈� | {v1 := 1}〉
• o2 = 〈� | {v2 := 1}〉
• o3 = 〈v1 = 0 | {v2 := 1}〉

The initial state is s0 = {v1 = 0, v2 = 0} and the goal
state s� = {v1 = 1, v2 = 1}. We compute Ta(s0): The set
{o1} is a disjunctive action landmark in s0, so we add it to
Ta(s0). Since o1 is applicable, we add operators to which it
is not attachable. Because dis(o1) = {o3} � dis(o2) = ∅,
o1 is not attachable to o2 and therefore o2 is added to Ta(s0).
In addition, o3 is added because o1 disables o3 and hence
not attachable to it, ending in Ta(s0) = {o1, o2, o3}. Us-
ing weak interference: we add o1 to Ts(s0) as a disjunc-
tive action landmark. It is applicable so we need to add
the operators with which o1 weakly interferes. We add
o3 only because o1 disables o3, but we do not add o2 be-
cause neither o1 nor o3 weakly interferes with o2. There-
fore, Ts(s0) = {o1, o3}. We conclude this section with the
following corollary, summarizing our observations.

Corollary 1. Stubborn sets based on weak interference and
stubborn sets based on attachability are incomparable in

terms of pruning power.

Nondeterministic Weak Stubborn Sets

While attachability is a sufficient criterion for stubborn sets
pruning, it could lead to unnecessary state explorations (e.g.
see plan length in Example 3). We propose a stubborn set
method based on a combination of attachability and weak
interference for FOND planning. The definition of a disjunc-
tive action landmark can be extended to FOND planning in
a straightforward way. In the context of FOND planning, a
disjunctive action landmark for a partial state s′ in a state s
is a set of nondeterministic operators with the property that
some outcome of an operator from this set occurs on every
path from s to any state that satisfies s′. A necessary en-
abling set for an operator o in s is a disjunctive action land-
mark for pre(o) in s. The following definitions extend syn-
tactic attachability and weak interference to nondeterminis-
tic operators. Let o1 and o2 be two operators in O. We say
that o1 accords with o2 if outcome o

[i]
1 is syntactically at-

tachable to outcome o[j]2 for all i ∈ {1, . . . , deg(o1)} and all
j ∈ {1, . . . , deg(o2)}. Let o1 and o2 be two operators in O.
We say that o1 weakly interferes with o2 if some outcome o[i]1
weakly interferes with some o

[j]
2 , with i ∈ {1, . . . , deg(o1)}

and j ∈ {1, . . . , deg(o2)}. Based on these definitions we
define weak stubborn sets for FOND planning.
Definition 6 (nondeterministic weak stubborn set). Let Π =
〈V ,O, s0, s�〉 be a nondeterministic planning task, and s be
a state. A set Ts ⊆ O, is a nondeterministic weak stubborn
set (NWSS) in s if the following conditions hold:

1. Ts contains a disjunctive action landmark for s� in s.
2. For each operator o ∈ Ts with o /∈ app(s), Ts contains a

necessary enabling set for o in s.
3. For each operator o ∈ Ts with o ∈ app(s), Ts con-

tains all nondeterministic operators o′ (deg(o′) > 1) with
which o does not accord.

4. For each operator o ∈ Ts with o ∈ app(s), Ts contains
all operators with which o weakly interferes.

Nondeterministic weak stubborn sets can be seen as hy-
brid notion combining attachability with weak interference.
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(a) (b) (c)

Figure 4: Generated nodes comparisons for NWSS on top of other pruning techniques (a) active operators, (b) symmetries, and
(c) both active operators and symmetries.

Points (1) and (2) of Definition 6 are the same in Defini-
tion 3. Accordance, in point (3), is a necessary property for
changing the application order of nondeterministic operators
in AND/OR graphs. However, in some cases, pruning can
be performed by merely permuting operator sequence (e.g.
if the involved operators are deterministic) without the need
to attach extra operators, which cannot be guaranteed by ac-
cordance alone. For this reason, we have chosen to make the
distinction between deterministic and operators with degree
at least two and use only weak interference when processing
deterministic operators (point 4), i.e., if a planning task has
only deterministic operators, then only points (1), (2), and
(4) of Definition are relevant. In the following theorem we
state the main result of this paper.
Theorem 2. Restricting the successor generation to an
NWSS in every state is completeness-preserving for strong
cyclic planning.

Proof. Let s be a state from which a strong cyclic plan exists
and let π be one such plan. Let Ts be a nondeterministic
weak stubborn set for s. We show that either (i) the operator
π(s) is in Ts, or (ii) there exists o ∈ Ts such that o ∈ app(s)
and there exists a strong cyclic plan from each s′ ∈ o(s).

Let π′ = o1 . . . on be any sequence of operators from
π that defines an acyclic weak plan from s. Ts contains
a disjunctive action landmark for s� in s and thus it con-
tains an operator from π′. Let oi be such an operator with
smallest index. Then oi ∈ app(s) (otherwise its neces-
sary enabling set would be contained in Ts, mandating an
operator from the necessary enabling set to appear on π′
before oi). If i = 1, we are done. Otherwise, consider
two cases. If the operator oi is deterministic, we see that
o
[j]
i o1 . . . oi−1oi+1on is a weak plan from s and thus a strong

cyclic plan. If oi is a strictly nondeterministic operator, for
every outcome o[j]i , o[j]i π′ is a weak plan as o[j]i accords with
every operator of smaller index within π′. We thus obtain
a strong cyclic plan by first applying oi in s, followed by
applying π′ in every possible outcome in oi(s).

We also provide a nondeterministic strong variant of stub-
born set (NSSS ) by modifying Definition 6 as follows: In

point 3, all operators that are do not mutually accord with o
are added to the stubborn set. In point 4, all operators that
strongly interfere with o are added to the stubborn set.

Corollary 2. NSSS inherit the completeness property from
NWSS .

Proof. The definition of NSSS subsumes the definition of
NWSS ; hence, the proof of Theorem 2 shows also that
NSSS is a completeness-preserving pruning technique.

Experimental Evaluation

In this section, we empirically investigate the potential of
nondeterministic stubborn sets when applied as the only
pruning technique or on top of other pruning techniques
such as structural symmetries and active operators pruning.
For our investigation, we have implemented both strong and
weak stubborn set variants, as well as active operators on
top of an adaptation of Fast Downward (Helmert 2006) to
FOND planning (Winterer, Wehrle, and Katz 2016), which
already included symmetry based pruning. Our code is
available upon request.

As baseline for our investigations, we employ LAO∗ us-
ing FF heuristic (Hoffmann and Nebel 2001) (based on all-
outcome determinization of FOND planning tasks). All con-
figurations are built on top of this baseline. For all stubborn
sets approaches, the disabling relation and achievers were
entirely precomputed, while the interference relation was
computed during the search and then cached for later use.
The benchmark set consists of all IPC-08 FOND domains,
scaled-up versions of these domains by Christian Muise and
other FOND domains commonly used in the literature. All
our experiments were conducted on a cluster equipped with
Intel Xeon E5-2650 v2 CPUs running at 2.6 GHz . For each
run, the time limit and memory bound were 30 minutes and
2 GB respectively.

Stubborn Sets for FOND

First of all, we want to find out whether nondeterministic
strong and nondeterministic weak stubborn sets lead to no-
ticeable performance improvement. To that end, we com-
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Coverage FF NSSS NWSS PRP
BLOCKSWORLD (30) 22 21 21 30
CHAIN-OF-ROOMS-FIXED (10) 10 10 10 10
EARTH-OBSERVATION (40) 33 33 33 40
FAULTS (55) 55 55 55 55
FIRST-RESPONDERS (100) 98 97 98 100
FOREST (90) 8 10 13 75
BLOCKSWORLD-NEW (50) 16 15 15 37
ELEVATORS (15) 14 14 15 15
EX-BLOCKSWORLD (15) 8 8 8 9
FAULTS-NEW (190) 190 190 190 190
FIRST-RESPONDERS-NEW (95) 30 30 31 94
FOREST-NEW (90) 7 7 8 88
TIDYUP-MDP (10) 10 10 10 10
TIREWORLD (15) 15 15 15 15
TRIANGLE-TIREWORLD (40) 7 7 7 40

Sum (845) 523 522 529 808

Table 1: Coverage of baseline (FF ), strong stubborn sets
(NSSS ) and weak stubborn sets (NWSS ) and the state of
the art FOND planner (PRP ).

pare the configurations applying pruning with each of the
stubborn sets on top of the baseline (FF ). The per domain
coverage is depicted in Table 1 and per instance generated
nodes are shown in Figure 3, pairwise comparing the three
configurations. The configurations applying nondeterminis-
tic strong and weak stubborn sets are denoted by NSSS and
NWSS , respectively. First, note that NSSS performs simi-
larly to FF , loosing one task each in three domains, and in-
creasing coverage by two tasks in one domain. In total, cov-
erage is reduced by one instance which goes along with only
slight reductions in node generations: In Figure 3a, most of
the tasks appear on or near the diagonal.

Comparing NWSS to FF , it looses one task each in two
domains and gains five tasks in one domain and one task
each in three domains, overall increasing coverage by six
tasks. Looking at Figure 3b, indeed pruning helps in most
cases to reduce the number of generated nodes, in a number
of cases the decrease almost reaching two orders of magni-
tude. Note that there is an exponential reduction in generated
nodes on a part of the FIRST-RESPONDERS domain. Figure
3c shows that this gain carries over to the comparison with
NSSS , reflecting the theoretical dominance of nondetermin-
istic weak stubborn sets over the strong variant. It should be
pointed out that due to the non-optimal nature of the LAO∗

algorithm, the theoretical dominance does not necessarily
translate to a dominance in the number of generated nodes.
To summarize, nondeterministic weak stubborn are bene-
ficial to an LAO∗ search whereas nondeterministic strong
stubborn sets are benefical to a lesser extent.

It is worthwhile to mention, in domains where no pruning
is possible, the stubborn sets computation can slow down
the search on certain instances. We observe such an effect
in the domains BLOCKSWORLD and PRP-BLOCKSWORLD-
NEW where less instances are solved by stubborn sets than
without (see Figure 5). On the other hand, as IPC planners
using stubborn sets have demonstrated such coverage losses,
can be easily avoided (e.g. by stopping the stubborn sets
computation after a predefined threshold of unsuccessfully

Figure 5: Total time for NWSS vs. the baseline (FF ).

pruning attempts is exceeded).

Combination with other Pruning Techniques

Recently, it has been shown that structural symmetries and
stubborn sets can be successfully combined for classical
planning (Wehrle et al. 2015). Hence, a natural question
arises: Do we get similar results when combining weak stub-
born sets with structural symmetries for FOND planning?
And more generally, to which extent can we observe syn-
ergy effects when combining pruning techniques for FOND
planning? To take a step towards these questions, we inves-
tigate combinations of nondeterministic weak stubborn sets
with the following two pruning techniques.
• Symmetry Elimination: Symmetry elimination consid-

ers equivalence classes of symmetrical states and allows
for using representative states of each equivalence class.
Many approaches have shown their potential in several
contexts in classical planning. We use the variant of struc-
tural symmetries for FOND planning, recently proposed
by Winterer, Wehrle, and Katz (2016).

• Active operators pruning: The pruning technique was in-
troduced by Chen and Yao (2009) and further investigated
by Wehrle et al. (2013). In a nutshell, given a state s, an
operator o is considered active if there exists a weak plan
from s starting with o. A sufficient criterion can be for-
mulated based on domain transition graph. The successor
generation in a state s is restricted to active operators.

We remark that combining these pruning techniques in a
straightforward fashion results in a combined pruning tech-
nique that is safe. For our investigation, we consider all
possible combinations of symmetry elimination and active
operators pruning with and without nondeterministic weak
stubborn sets. We report the overall coverage results in Ta-
ble 2. Going beyond the overall coverage, Figure 4 depicts
the generated nodes comparison. We observe that all non-
combined pruning techniques improve coverage. Further,
nondeterministic weak stubborn sets is the most beneficial
configuration out of those (529 solved instances), followed
by symmetry elimination (526 solved instances) and active
operator pruning (524 solved instances). Especially, the con-
figuration with additional active operator pruning leads to a
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Coverage

Pruning Technique all ops active ops
FF 523 524
NWSS 529 527
SYM 526 527
NWSS + SYM 532 538

Table 2: Coverage results for all combinations of NWSS ,
SYM and active operator pruning (all ops vs active ops).

.

substantial coverage increase of 15 additionally solved in-
stances (compared to the baseline FF ) which reflects the
fact that this configuration is also clearly generating the least
nodes (see Figure 4). As another insight, we see that apply-
ing NWSS on top of symmetry reduction (SYM ) leads to a
clear performance increase, both with and without additional
active operators pruning. Evaluating the gain from apply-
ing active operators pruning, this pruning technique is only
moderately beneficial both as a single pruning technique and
when combined with symmetry reduction and nondetermin-
istic stubborn sets.

To investigate the anytime performance of our ap-
proaches, we provide a plot in Figure 6, reflecting for each
time point the number of tasks solved by each of the config-
urations up to that time. Observe that the combination of all
three methods dominates all other configuration. Also it can
be seen that combining nondeterministic weak stubborn sets
with symmetry elimination improves the runtime behavior,
which makes them worth using in a practical setting.

Related Work

Pruning techniques in classical planning are directly related
to this work. Beside stubborn sets, there is a variety of par-
tial order reduction methods that have been applied to plan-
ning (Coles and Coles 2010; Nissim, Apsel, and Brafman
2012; Chen and Yao 2009). Moreover, symmetries have
been investigated for classical planning as well (Fox and
Long 1999; 2002; Rintanen 2003; Coles and Coles 2010;
Pochter, Zohar, and Rosenschein 2011; Domshlak, Katz,
and Shleyfman 2012; 2013; Shleyfman et al. 2015).

Our work is also related to various approaches in FOND
planning. The LAO∗algorithm was also used for FOND
planning by Mattmüller et al. (2010) and was originally
introduced in the context of MDPs (Hansen and Zilber-
stein 2001). As a key difference to the LAO∗algorithm,
determinization-based approaches work on the all-outcome
determinization of FOND planning tasks. The current state
of the art is represented by determinization-based planner
Planner for Relevant Policy (PRP) by Muise, McIlraith, and
Beck (2012). PRP uses multiple runs of a classical planner
and regression to find a strong cyclic plan for a given FOND
problem. Another recent regression-based FOND planner
is GRENDEL (Ramı́rez and Sardiña 2014). Unlike PRP,
GRENDEL does not rely on determinization but combines
regression with a symbolic fixed-point computation. In addi-
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Figure 6: Number of planning tasks solved until timeout.

tion, approaches that generalize classical planning concepts
to FOND planning are particularly related to our work. For
example, conditional effects for FOND planning (Muise,
McIlraith, and Belle 2014), or pattern databases (Mattmüller
et al. 2010).

Conclusion

We provided the theoretical basis for stubborn sets pruning
in FOND planning by introducing two stubborn set variants
for FOND: nondeterministic weak and strong stubborn sets.
We empirically showed that nondeterministic weak stubborn
sets are beneficial to an LAO∗ search. Moreover, we showed
that the dominance of nondeterministic weak stubborn sets
over the strong variant carries over in practice. We also in-
vestigated the combination of nondeterministic weak stub-
born sets with symmetry elimination and active operators
pruning. The empirical results show that combining all three
pruning methods leads to the strongest configuration. For
future work, encouraged by this insight, it is particularly
interesting to investigate the potential of combining other
pruning techniques in the context of classical and FOND
planning. Moreover, as pruning techniques may slow down
the search on certain instances, it is beneficial to design al-
gorithms that can detect (prior to search) whether or not a
particular pruning technique should be used during search.
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