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Abstract

Timeline-based planning is a paradigm that models tempo-
ral planning domains as sets of independent, but interact-
ing, components. The behavior of the components can be
described by means of a number of state variables whose
evolution and interactions over time are governed by a set
of temporal constraints. This paradigm is different from the
one underlying the common action-based formalisms à la
PDDL, where the focus is on what can be done by an exec-
utive agent. Although successfully used in many real-world
applications, little work has been done on the expressiveness
and complexity of the timeline-based formalism. The present
paper provides a characterization of the complexity of non-
flexible timeline-based planning, by proving that a general
formulation of the problem is EXPSPACE-complete. Such a
result extends a previous work where the same complexity
bound was proved for a restricted fragment of timeline-based
planning that was shown to be expressive enough to capture
action-based temporal planning. In addition, we prove that re-
quiring an upper bound to the solution horizon as part of the
input decreases the complexity of the problem, that becomes
NEXPTIME-complete.

1 Introduction
In the area of Automated Planning, most of the languages
used to represent planning problems, like, for instance,
PDDL (Fox and Long 2003; Gerevini et al. 2009), are
action-based as they focus on which actions can be per-
formed by an executive agent to act on its environment.
The purpose of the reasoning process is then that of find-
ing which actions are needed to obtain a given goal. Action-
based planning formalisms have been the subject of an ex-
tensive theoretical study, from both the expressiveness and
the complexity points of view. Classical Planning is known
to be PSPACE-complete (Bylander 1994), with a number of
tractable fragments (Bäckström et al. 2015), and a variety of
extensions have been compared to it, such as planning with
temporally extended goals (Bacchus and Kabanza 1998;
De Giacomo and Vardi 1999), conditional planning (Rinta-
nen 2004; 2012), and temporal planning (Rintanen 2007).
The latter problem, in particular, extends classical planning
by reasoning explicitly about time and the time duration of
actions, and it has been shown to be EXPSPACE-complete.
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A different paradigm, known as Timeline-based Planning,
has been proposed in the literature (Muscettola 1994). It
represents temporal planning domains as sets of indepen-
dent, but interacting, components, which are modeled by
state variables whose evolution over time (the timelines)
is constrained by a set of temporal constraints. Timeline-
based Planning has its origin in the space sector, where it has
been successfully applied to many complex real-world cases
(Muscettola 1994; Jónsson et al. 2000; Cesta et al. 2007). In
these complex applications, timelines provide a suitable way
to properly model temporal behaviors of systems composed
of a high number of components.

A remarkable research effort has been dedicated to de-
sign, build, and deploy software environments for the syn-
thesis of timeline-based planning and scheduling (P&S) ap-
plications, including EUROPA (Barreiro et al. 2012), ASPEN
(Chien et al. 2000), and APSI-TRF (Cesta et al. 2009).
Mostly related to these environments, several attempts have
been made to characterize the concept of timeline. Cesta
and Oddi (1996) propose a domain description language
able to suitably represent physical domains in order to solve
P&S problems. Frank and Jónsson (2003) present an inter-
val planning paradigm for representing and reasoning about
planning domains with time, resources, concurrent activi-
ties, and so on. Chien et al. (2012) develop a basic time-
line representation to model a set of states, resources, tim-
ing, and transition constraints, aiming at generalizing previ-
ous efforts made in a number of P&S systems designed for
space applications.

All the above contributions aim at properly describing
the exploited concepts, languages, and tools, but they do
not provide a formally-grounded definition for them. De-
spite its practical relevance, indeed, the theoretical proper-
ties of timeline-based planning have not been systematically
investigated yet. In particular, a general picture of compu-
tational complexity and expressiveness is still missing, and
little work had been done on this front until recently. A for-
malization of non-flexible timeline-based planning has been
given in (Cimatti, Micheli, and Roveri 2013), while the flex-
ible variant has been dealt with in (Cialdea Mayer, Orlan-
dini, and Ubrico 2014) (flexible timelines provide a uni-
fied framework to reason on both planning and execution
under uncertainty). A complete formalization of the plan-
ning problem, including flexible timelines and controllabil-
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ity issues in timeline-based planning in the presence of un-
certainty, can be found in (Cialdea Mayer, Orlandini, and
Umbrico 2016). In (Gigante et al. 2016), we identify an
EXPSPACE-complete restriction of non-flexible timeline-
based planning and we show it to be expressive enough to
capture the action-based temporal planning problem, pro-
viding a first expressiveness comparison between the dif-
ferent approaches. Besides the confinement to non-flexible
timelines, interpreted over a discrete time domain, it forbids
the use of unbounded interval relations in the definition of
temporal constraints, and it does not allow the input to spec-
ify an upper bound on the solution horizon.

While these restrictions were important for this expres-
siveness comparison, here we pursue the more general goal
of providing a computational complexity characterization
of the problem. Thus, in this paper we relax some restric-
tions by allowing unbounded interval relations, showing that
they can be included among the syntactic features of the
language at no computational cost, as the problem remains
EXPSPACE-complete. Subsequently, we allow the specifi-
cation of an upper bound on the plan horizon as part of the
problem input, a feature often used in practice, and we show
that this additional constraint decreases the computational
complexity of the problem, which becomes NEXPTIME-
complete. Together, these results proceed towards the com-
pletion of the computational complexity picture of non-
flexible timeline-based planning over discrete time.

The paper is organized as follows. Section 2 introduces
some basic definitions of the considered timeline-based
planning problem, and shows that some of its features,
that are usually considered as primitives, can be expressed
on top of unbounded interval relations. The EXPSPACE-
completeness of the problem is then shown in Section 3.
Section 4 proves the NEXPTIME-completeness of the prob-
lem when we admit the specification of a fixed horizon as
part of the input. Finally, Section 5 summarizes the achieved
results and discusses future research directions.

2 Timeline-based Planning Problems
In this section, we first introduce notation and terminology
of timeline-based planning, mostly borrowed from (Gigante
et al. 2016). Then, we show that the addition of unbounded
interval relations makes it possible to simplify the formula-
tion of the problem in various respects, thus easing the study
of its computational complexity.
Definition 1 (State variable). A state variable x is a triple
(Vx, Tx, Dx), where:
• Vx is the finite domain of the variable x;
• Tx : Vx → 2Vx is the value transition function, which

maps each value v ∈ Vx to the set of values that x can
take immediately after v;

• Dx : Vx → N×N is a function that maps each v ∈ Vx to
a pair (dmin, dmax), with dmin ≤ dmax, where dmin and
dmax are respectively the minimum and maximum dura-
tion of an interval over which x has value v.

To specify the values that a state variable x actually takes
over time and the duration of the validity intervals, we make
use of the notion of token.

The relation holds if

a≤s,s
[l,u] b l ≤ sb − sa ≤ u

a≤e,e
[l,u] b l ≤ eb − ea ≤ u

a≤s,e
[l,u] b l ≤ eb − sa ≤ u

a≤e,s
[l,u] b l ≤ sb − ea ≤ u

a≤s
[l,u] t l ≤ t− sa ≤ u

a≥s
[l,u] t l ≤ sa − t ≤ u

a≤e
[l,u] t l ≤ t− ea ≤ u

a≥e
[l,u] t l ≤ ea − t ≤ u

Table 1: Interval and time-point relations involving interval
a = (sa, ea), interval b = (sb, eb), and time point t ∈ N.
Bounds l ∈ N and u ∈ N∪{+∞} are given to each relation.

Definition 2 (Token). Let x = (Vx, Tx, Dx) be a state
variable. A token for x is a pair (v, d), where v ∈ Vx,
Dx(v) = (dmin, dmax), and dmin ≤ d ≤ dmax (d ∈ N

is called the duration of the token).

The time-varying behavior of a state variable is repre-
sented through a finite sequence of tokens called a timeline.

Definition 3 (Timeline). A timeline for a state variable
x = (Vx, Tx, Dx) is a non-empty finite sequence T =
〈(v1, d1), . . . , (vk, dk)〉 of tokens for x, where, for all i =
1, . . . , k − 1, it holds that vi+1 ∈ T (vi).

It is worth noticing that the values of a variable x in two
consecutive tokens do not need to be different.

Any token τi = (vi, di) in a timeline T = 〈τ1, . . . , τk〉
can be associated with a time interval by means of the pair
of functions start time(τi) =

∑i−1
j=1 dj and end time(τi) =

start time(τi)+di. The end time of the last token of a time-
line is called the horizon of the timeline. In the following,
when there is no ambiguity, we will interchangeably refer to
a token and to the time interval associated with it.

The behavior of state variables is constrained by a set
of synchronization rules, which relate tokens, possibly be-
longing to different timelines, through temporal relations
among intervals or among intervals and time points. Interval
and time-point relations that can be exploited in synchro-
nization rules are those commonly used in timeline-based
planning formulations, e.g., (Cialdea Mayer, Orlandini, and
Umbrico 2016). To express them, we adopt the compact
notation proposed in (Gigante et al. 2016). For instance,
given two tokens (intervals) a and b, we write a ≤s,s

[l,u] b for
a starts before start[l,u] b. The set of possible relations be-
tween (the endpoints of) a pair of intervals and between (the
endpoints of) an interval and a point are given in Table 1
where, for the sake of brevity, we write sa and ea instead of,
respectively, start time(a) and end time(a).

Definition 4 (Synchronization rules). Let Σ be a finite set of
token names. An atom is an expression of the form a ρ b or
a ρ t, where a and b are token names, t ∈ N, and ρ is one of
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the temporal relations of Table 1. An existential statement is
a statement of the form:

∃a1[x1 = v1] . . . an[xn = vn] . C

where n ≥ 0, C is a conjunction of atoms, a1, . . . , an are
token names, x1, . . . , xn are state variables, and v1, . . . , vn
are values from the domains of x1, . . . , xn, respectively.

A synchronization rule is a clause of the form:

a0[x0 = v0] −→ E1 ∨ E2 ∨ . . . ∨ Ek, or
� −→ E1 ∨ E2 ∨ . . . ∨ Ek

where a0 is a token name, x0 a state variable, v0 a value
from the domain of x0, and E1, . . . , Ek are existential state-
ments where only a0 may appear free.

The a0[x0 = v0] part of rules of the first form is called the
trigger; rules of the second form are called trigger-less.

A formal account of the semantics of synchronization
rules can be found in (Cialdea Mayer, Orlandini, and Um-
brico 2016). Intuitively, the left part (the trigger) is a univer-
sal quantifier, which says that for all the tokens a0, where
the variable x0 takes the value v0, at least one of the exis-
tential statements Ei must be true. The existential statements
in turn assert the existence of tokens a1, . . . , an, where the
respective state variables take the specified values, that sat-
isfy the interval relations given by C. Trigger-less rules just
assert the satisfaction of the existential statements.

A timeline-based planning domain is specified by the set
of state variables and the set of synchronization rules rep-
resenting their admissible behaviors. As shown in (Cialdea
Mayer, Orlandini, and Umbrico 2016), the initial conditions
and the goal of the problem can be expressed by means of
a set of trigger-less rules, and thus we do not need to treat
them differently from other kinds of rules, that is, we assume
them to be included in the set of synchronization rules.

Definition 5 (Planning problem). A timeline-based planning
problem is a pair P = (SV, S), where SV is a set of state
variables and S is a set of synchronization rules involving
variables in SV . A solution plan π for P is a set of timelines,
one for each state variable in SV , such that the horizon of
all the timelines is the same and all the synchronization rules
in S are satisfied.

Some useful relations can be defined on top of the syn-
chronization rules of Definition 4. As an example, the thir-
teen Allen’s ordering relations between pairs of intervals
(Allen 1983) can be defined in terms of the basic interval re-
lations of Table 1. In particular, the equality interval relation
a = b can be defined as a≤s,s

[0,0]b∧a≤
e,e
[0,0]b. Moreover, in the

following, any temporal relation devoid of explicit bounds
will be provided with the bounds [0,+∞].

We now show that the formalism can actually be simpli-
fied in various respects, without reducing its expressiveness.
In (Gigante et al. 2016), we proved that, in the restricted case
of timeline-based planning devoid of unbounded interval re-
lations, any problem P can be rewritten using only binary
state variables. It is easy to show that that proof immediately
transfers to the general case.

Proposition 1. Every timeline-based planning problem can
be rewritten, with at most a polynomial increase in size, into
an equivalent one that only uses binary state variables.

Additionally, here we show that some syntactic features
of synchronization rules, as formulated in Definition 4, can
be treated as syntactic sugar.
Theorem 1. Every timeline-based planning problem P =
(SV, S) can be rewritten, with at most a polynomial increase
in size, into an equivalent problem P ′ = (SV ′, S′) such
that: (i) it does not make use of time-point relations, and (ii)
it does not make use of trigger-less rules.

Proof. The thesis follows from Lemmata 1 and 2 below.

Lemma 1. Every timeline-based planning problem P =
(SV, S) can be rewritten, with at most a polynomial increase
in size, into an equivalent one that does not make use of time-
point relations.

Proof. To rewrite time-point relations, we add a fresh vari-
able x, with domain Vx = {0, 1}, duration function
Dx(0) = Dx(1) = (1, 1) and transition function T (0) =
T (1) = {1}. The timeline for the variable x can only con-
tain a chain of unit-sized tokens all holding x = 1, through-
out the entire timeline, excepting the first token which can
hold x = 0. By asking for the existence of such a token, we
can position other tokens relatively to the start of the time-
line without using time-point relations. Thus, all existential
statements of the following form:

∃ . . . ai[. . .] . ai ≤x
[l,u] t ∧ . . . , or

∃ . . . ai[. . .] . ai ≥x
[l,u] t ∧ . . .

can be replaced respectively as follows:
∃ . . . ai[. . .]a[x = 0] . a≤s,x

[t−u,t−l] ai ∧ . . . , or

∃ . . . ai[. . .]a[x = 0] . a≤s,x
[t+l,t+u] ai ∧ . . .

where u = min(t, u) and t+∞ = +∞. It is worth noticing
that the existence of the anchoring token is not requested by
a trigger-less rule, since we want to avoid them as well, as
shown by Lemma 2 below. Rather, its existence is ensured
by the existential statements of each translated rule.

Lemma 2. Every timeline-based planning problem P =
(SV, S) can be rewritten, with at most a polynomial increase
in size, into an equivalent one that does not make use of
trigger-less synchronization rules.

Proof. The purpose of trigger-less rules is to require the
existence of some tokens regardless of any other one. To
simulate a trigger-less rule with a triggered one, it is suf-
ficient to use a trigger that is satisfied for sure at least once
in the solution. Thus, let x be the auxiliary state variable
from the proof of Lemma 1. A trigger-less rule of the form
� −→ E1 ∨ . . . ∨ Ek can be replaced by the equivalent rule:

a[x = 0] −→ E1 ∨ . . . ∨ Ek
a[x = 1] −→ E1 ∨ . . . ∨ Ek

Note that the rule can be possibly triggered multiple times,
but this does not change the meaning of the rules, as they
simply ask for the existence of the tokens described in the
existential statements.
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3 Complexity of Timeline-based Planning

with Unbounded Interval Relations

In this section we provide an exponential space algorithm to
solve timeline-based planning problems as defined in Sec-
tion 2, thus proving that the problem belongs to EXPSPACE.
The hardness of the problem for the same class follows di-
rectly from (Gigante et al. 2016, Theorem 1), since the ex-
tension considered here is a direct generalization. Hence, the
problem turns out to be EXPSPACE-complete.

The proposed algorithm is a nondeterministic guess-and-
check procedure, running in nondeterministic exponential
space, that gives us also a deterministic exponential space
procedure thanks to the well known fact that EXPSPACE =
NEXPSPACE. The procedure, outlined in Theorem 2, non-
deterministically guesses a solution of at most doubly ex-
ponential size, and then is able to check its correctness us-
ing a singly exponential amount of space. This works thanks
to Lemma 3, a small model result showing that any satis-
fiable problem has a solution at most doubly exponentially
long. The exponential space algorithm shown in (Gigante et
al. 2016) for the restricted problem works in a similar way,
but the proof of the small model result cannot be directly
adapted to the case of unbounded interval relations.

Let P = (SV, S) be a timeline-based planning problem
and let |P| be the size of the input representation of P .
W.l.o.g., by Proposition 1 and Theorem 1, we can assume
that P only makes use of binary variables and features nei-
ther trigger-less rules nor time-point relations. W.l.o.g., we
also assume that all the token names used in synchronization
rules in S are unique, and call N the set of such names.

A solution plan for P , as a set of timelines, describes sep-
arately the evolution of each variable on its own. It will be
useful, however, to reason about the solution as a whole, as a
sequence of events which mark the time points when some-
thing is changing, i.e., when some token ends and the fol-
lowing one starts.

Definition 6 (Events). Let < be an arbitrary ordering over
state variables. An event sequence σ associated with a solu-
tion plan π is a sequence of events e1, . . . , em, where each
event is a tuple of the form ei = (ti, fi, xi, vi), where ti ∈ N,
fi ∈ {start, end}, xi ∈ SV , and vi ∈ Vx. The events in the
sequence represents the starting and ending endpoints of all
the tokens in π, as follows:

• for each token τ in a timeline of π, there are two events ei
and ej , with i < j, fi = start, and fj = end;

• t0 = 0 and for each 1 ≤ i ≤ m:

time(ei) =
i∑

j=0

tj = start time(τj) if fi = start,

time(ei) =
i∑

j=0

tj = end time(τj) if fi = end,

where τj is the token associated with the event ej;
• for each pair of events ei and ej , if time(ei) = time(ej)

and xi < xj , then i < j.

An event sequence is a flattened representation of the
timelines in π, with the endpoints of each token placed on
the same line and timestamped by the difference in time with
regards to the previous event. The third condition in Defini-
tion 6 ensures that there is only one canonical sequence to
represent a given solution. Moreover, using relative rather
than absolute timestamps is needed to keep the memory
footprint of an event sequence under control in Theorem 2.

Definition 7. Given a set of events E = {ei1 , . . . , eik} from
an event sequence σ, the span of E is the maximum distance
in time between two events of E in σ.

Let π be a solution plan for P and σ be its associated
event sequence. The main tool in the proof of Lemma 3 will
be the witness set of π (see Definition 8), namely, a set of
graphs that describes the way in which the solution satis-
fies the constraints of the problem. This additional structure,
which is built on top of the event sequence, will be useful
to look at the problem from a more abstract perspective. In
particular, the witness set will allow us to keep under con-
trol the combinatorial complexity of the problem. We will
indeed show that, among all the witness graphs of π, we can
focus on a very small number of non-isomorphic ones. Such
a number is bounded above by the number and the size of
the synchronization rules of P .

Let τ be a token from a timeline in π, let Rτ be the set
of all the synchronization rules triggered by the existence of
τ , and let ξτ be the set of existential statements belonging to
rules in Rτ and satisfied by π.

Definition 8 (Witness graph). Given an existential state-
ment E ∈ ξτ , the witness graph of E over τ is a labeled
undirected graph GE,τ = (V,E, λ), where V ⊆ σ is a set
of events, and λ : V → N is a labeling function assigning a
token name to each event. The graph is built as follows.

1. Given the events esτ , eeτ representing the start and the end
of τ , esτ , e

e
τ ∈ V .

2. Let C be the conjunction of atoms of E . Since E is satisfied,
there must be a mapping between the atoms in C and the
events in σ that witnesses this satisfaction, mapping each
atom a≤x,y

[l,u] b to two events representing the x and y end-
points of the tokens that interpret a and b. For each pair of
events ei and ej belonging to the image of such mapping,
let e′i and e′j be the events representing the opposite end-
points of the tokens of ei and ej . Then ei, ej , e

′
i, e
′
j ∈ V ,

and the labeling function λ assigns each event to the cor-
responding token names, i.e., λ(ei) = λ(e′i) = a and
λ(ej) = λ(e′j) = b.

3. Given the events ei and ej of the previous point, there is
an edge between them if and only if either they are the
endpoints of the same token, or the atom satisfied by the
two events uses a bounded interval relation, i.e., of the
form a≤x,y

[l,u] b where u �= +∞.

Definition 9 (Witness Components). Given a witness graph
G built on a token from π, consider the decomposition of G
into connected components g1, . . . , gm. Each gi is called a
witness component of π.
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a[x = 0] −→ ∃b[y = 4]c[x = 1] . a≤s,s
[0,12] c ∧ a≤s,s

[0,4] b ∧ c≤e,e
[0,0] b

x

y

a
x = 0

c
x = 1

b

y = 4

x = . . . x = . . .

y = . . . y = . . .

(a) Set of timelines satisfying the example rule.

esa esc

esb

eeb eec

eea

(b) The witness graph GE,a from token a of Figure 1a.
Highlighted in gray are its three witness components.

Figure 1: An example of a witness graph.

The witness set of π, denoted by Gπ , is the set of all the
witness graphs that can be built from the tokens of π. An ex-
ample of set of timelines and a corresponding witness graph
is shown in Figure 1. The single witness components rep-
resent the patterns of events that can appear in the solution,
and are bound together by bounded interval relations. By
grouping events in this way we abstract from the high num-
ber of possible ways in which a single group of bounded
atoms can be satisfied, and we can handle the satisfaction of
unbounded atoms by viewing them as unbounded temporal
constraint between the whole witness components.

Definition 10 (Related events). If ei and ej are two events
from a witness graph GE,τ , then ei and ej are said to be re-
lated if the two events are the endpoints of the same token,
or if they satisfy an unbounded atom, i.e., one of the form
a≤x,y

[l,+∞] b, contained in E . If ei must happen before (after)
ej , then ei is left-related (right-related) to ej . A witness com-
ponent is (left-/right-) related to another if any of its events
are (left-/right-) related to any of the events of the other.

The structure of a given witness graph gives us useful in-
formation about the locality of the problem, i.e., how many
different pieces of a solution can interfere with the satisfac-
tion of a single rule, and which is the size of such pieces.

Definition 11 (Window). Given a problem P = (SV, S),
the window of P , denoted w(P), is the product of all the
finite coefficients greater than zero that appear as bounds in
the interval relations of synchronization rules in S.

Proposition 2. The span of the events belonging to a witness
component is at most w(P).

Proof. Let gi be a witness component of π, from a witness
graph G. For each pair of adjacent nodes (events) ei and
ej , the distance in time between ei and ej is bounded by
some coefficient ui,j , i.e., the upper bound appearing in the
corresponding satisfied atom. So the distance between any
two non adjacent events cannot be greater than the sum of
all the bounds uk,l for each adjacent ek and el, which is less
than the product of such bounds, i.e., less than w(P).

The grouping of events into the connected components of
the witness graphs allows us to reason about the combinato-
rial aspects of the problem from a coarser point of view.

Definition 12 (Witness class). Let W be a set of witness
components. By W∼ we denote the quotient of W over the

labeled graph isomorphism relation. Any element [g] ∈ W∼
is called a witness class of W .
Proposition 3. Let W be a set of witness components. The
number of witness classes of W is less than the size of the
input problem. In other words:

|W∼| < |P|
Proof. Given how witness graphs are constructed in Defini-
tion 8, it can be seen that the structure of the graph is a direct
consequence of the syntactic structure of the rules. In partic-
ular, all the witness graphs built from the same existential
statement are isomorphic to each other, hence the different
connected components in each are also determined. At most,
we can have two witness components for each token name,
and each token name is used at least twice in describing P ,
so the total number must be less than |P|.

We can say that a problem is connected if all the witness
graphs in any possible solution plan are always connected,
i.e., with only one connected component each. This property
was defined in (Gigante et al. 2016) in a different, more syn-
tactic way by looking at the structure of the synchronization
rules, but the two definitions coincide in the restricted case
with only bounded relations. Then, only connected problems
were admitted, while here the general case is considered.

The size of the window w(P) is the fundamental building
block to reason about the length of a solution, and forms the
basis of our argument. As a first step, it is useful to count
how many different combinations of different subsegments
of a solution can fit into a time span of w(P) time steps.
Proposition 4. Let π be a solution for the problem P , and
σ be its associated event sequence. The number of possible
subsequences of σ of span k > 0 is at most:

22k|P|

Proof. Consider P = (SV, S) and let σw be a subsequence
of σ of span k. Such sequence of events represents the evo-
lution of the state variables in SV in a time interval of k time
steps. In addition to the values of the variables, we need to
also keep track of the start and the end of the tokens, even
when a token begins with the same variable value as the pre-
ceding one, as this is a different situation than a single longer
token. Thus, to represent the state of the variables at a single
time step we need a state word of 2|SV | bits, two for each
variable: one for the value of the variable and one used to
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mark the boundaries of the tokens, by flipping between zero
and one each time a token ends and the subsequent one be-
gins. There are 22|SV | possible state words, and the number
of a possible sequences of k state words is thus:

(
22|SV |)k = 22k|SV | < 22k|P|

Observe that the number of possible valid subsequences of
an event sequence spanning k time steps cannot be greater
than the possible combinations of k state words.

After proving a couple of simple facts that will be used
later, Lemma 3 will show the main fact that will allow us to
devise an exponential-space algorithm for the problem, i.e.,
a doubly exponential bound on the span of the solution.

Proposition 5. Consider a finite non-empty set Γ, a word
w ∈ Γ∗, and an integer m > 0. If |w| ≥ (|Γ| + 1)m, then
there is an element γ ∈ Γ repeating at least 2m times in w.

Proof. Proceeding by induction on m, in the base case
where m = 0, if |w| > 1 we are trivially sure to find
an element which appears a single time. If m > 0, and
|w| ≥ (|Γ| + 1)m, then w is formed by the juxtaposition
of k = |Γ| + 1 blocks w1, . . . , wk of length (|Γ| + 1)m−1.
In each wi, by the inductive hypothesis, we find an element
σi which repeats 2m−1 times in wi. But having |Γ|+1 such
blocks, there must be at least two i and j such that γi = γj ,
which thus globally repeats 2 · 2m−1 = 2m times in w.

Proposition 6. Let Σ be a finite set, and let 〈Σ1, . . . ,Σm〉 be
a sequence of subsets of Σ, i.e., Σi ⊆ Σ for all 1 ≤ i ≤ m.
If m ≥ (2|Σ|+1)2, there exist three integers 0 ≤ i, j, k ≤ m

such that Σj ⊆
⋃j−1

�=i Σ� and Σj ⊆
⋃k

�=j+1 Σ�.

Proof. By Proposition 5, after (2|Σ| + 1)2 elements in the
sequence we are sure to find four repetitions of the same
subset Σi ⊆ Σ. Chosing the middle one of any three of them
is sufficient to find the needed subset.

Lemma 3. Let P = (SV, S) be a timeline-based planning
problem. If the problem admits a solution, then there exists a
solution such that the span of its associated event sequence
is at most doubly exponentially long.

Proof. Denote w(P) as w, let n = |P|. Let π be a solu-
tion with associated event sequence σ, W the set of witness
components of Gπ , and Γ the set of all the possible subse-
quences of span k = 2w. Now, observe that w < 2n and
k < 2n+1, and that |Γ| ≤ 22kn, by Proposition 4. Now, let
m = (2|W

∼| +1)2 +1, and suppose that σ spans more than
β(P) = k(|Γ|+ 1)�log2 m� time steps. It can be verified that
β(P) ∈ O(22

n

), since |Γ| ∈ O(22
n

) and m ∈ O(2n).
Then, by Proposition 5 we know there must be at least

m repeated subsequences σ1, . . . , σm, each of span k, cen-
tered over m time points t1, . . . , tm. Now, let Wi,j be the
set of all the witness components of any witness graph from
Gπ completely included between ti − w and tj + w. Then,
Proposition 6 implies that the number m of such repetitions
is enough to ensure that we can find four repeated subse-
quences σi, σj , σk and σh, centered at the corresponding

ti

2w

tj

2w

tk

2w

th

2w

g′h′ f g h h′′ g′′ h′′′

Figure 2: Situation described in the proof of Lemma 3. Gray
segments are the four repeated subsequences. The contrac-
tion cuts the events between tj and tk. Some relation be-
tween components is broken (solid arrows), but can be re-
composed (dashed arrows).

time points ti < tj < tk < th, such that W∼
j,k ⊆ W∼

i,j and
W∼

j,k ⊆ W∼
k,h, i.e., for any witness component between σj

and σk, there are other two isomorphic witness components,
one between σi and σj , and one between σk and σh.

Being this the case, we can now claim that removing from
σ every event included between j and k would lead to a
shorter event sequence σ′ associated to a shorter solution
plan π′. To show this, we have to show that any synchroniza-
tion rule, triggered by anything outside tj and tk, that was
satisfied by something inside the cut segment, will still be
satisfied after the cut. The situation is pictured in Figure 2.
First of all, observe that the cut respects the structure of the
single witness components, i.e., the cut cannot result into
partially built witness components. To see this, consider a
witness component g that contains at least an event between
tj and tk. Either all its events are contained in the cut, and
thus it is going to disappear completely, or it spans across tj
(or tk). In the latter case, we know from Proposition 2 that
the events of g cannot span outside σj (or σk). But σj and σk

are equal, so all the events on the left (right) of tj can be sub-
stituted by those on the left (right) of tk. In other words, any
bounded atom satisfied before the cut will be satisfied after
it, and we only have to reason about which witness com-
ponents are removed from the solution, as a whole, without
care about the single events. Note that this also implies that
the cut respects the structure of single tokens, i.e., the paren-
thesis structure of start/end events is not disrupted, and the
duration function of the tokens, as the relation between the
endpoints of a token is represented by an edge in the witness
graph exactly as another kind of bounded relation. With a
similar reasoning, it can be seen that the cut cannot result
into violations of the transition functions.

Now, consider a witness graph GE,τ with some witness
component g ∈ Wj,k, with E its original existential state-
ment. We have to ensure that, after the cut, E is still satisfied.
Observe that there are not one but two isomorphic copies of
g, i.e., g′ ∈ Wi,j and g′′ ∈ Wk,h, hence the simple ex-
istence of the events required by E , and the satisfaction of
bounded atoms between them, are ensured. However, some
of the components outside the cut might be left- or right-
related with g, and we must ensure that some other compo-
nent can be used, instead, to satisfy E . Thus, consider any
other component f of GE,τ that was related to g. After re-
moving g, either g′′ or g′ can satisfy the unbounded atoms
that were satisfied by f and g. Note that the presence of two
copies of g is important. If we only had one copy, the cut
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may not preserve some unbounded relation if g′ was placed
between g and its only copy (like f which is between g and
g′ in Figure 2). Looking at the relation between only two
components at the time might not be sufficient, though, since
the whole GE,τ must be reconstructed. In particular, rela-
tions between two removed components are not necessarily
satisfied by their surrounding copies alone (e.g., the relation
between g and h in Figure 2). However, since the copies
are part of their own complete witness graphs isomorphic to
GE,τ , it can be shown that there always exist other copies
suitable to reconstruct GE,τ (e.g., h′′′ in Figure 2).

Thus, provided σ is longer than the doubly exponential
upper bound shown above, we can remove everything from
ti to tj and still obtain a valid solution event sequence.

It is now possible to prove the final result, by giving an
exponential-space algorithm to solve the problem, thus prov-
ing it to be EXPSPACE-complete.

Theorem 2. Let P be a timeline-based planning problem.
The problem of finding whether there exists a solution plan
for P belongs to EXPSPACE.

Proof. We will sketch an algorithm that can be executed by
a nondeterministic Turing machine using exponential space.
Then the thesis will follow from the well-known fact that
NEXPSPACE = EXPSPACE. The algorithm at first non-
deterministically guesses and keeps in memory a sequence
of events δk of span k = 2w, with time(e1) = 0, that will
be used as a scrolling window over the solution. A counter
t is initialized to w and will count up to the doubly expo-
nential upper bound of Lemma 3. If t reaches its maximum
value and no solution has been accepted yet, the algorithm
returns a negative answer. At each step, an internal check is
done to ensure that the current sequence δw does not con-
tain violations to the synchronization rules of the problem.
To perform this check, we keep track of all the possible wit-
ness components that were found in the solution before the
current window, including which left- or right-relations were
satisfied among them, and of which classes of witness com-
ponents are required to be found in the future.

Thus, the algorithm keeps a set P ∈ 2W
∼

of subsets of
W∼, such that a set of witness classes J belongs to P if and
only if an instance of each witness class has been found, sat-
isfying all the left- and right-relations between them. Other
two similar sets F and C are kept to track which sets of com-
ponents have been found in the current window and which
are still pending. Then, at each step, the algorithm proceeds
as follows. For each subset J of W∼, a mapping is nonde-
terministically guessed between the token names used in the
corresponding existential statements and the events in the
current window δk. If the guessed events correctly compose
the components in J while satisfying all the left- and right-
relations among them, then J is added to C, otherwise the
computation branch is rejected. After this stage of collection
of components, all the elements of C are removed from F .

Then, each token τ contained in δw is considered. For
each rule triggered by τ , an existential statement E is
guessed, and a similar procedure as before is used to look
for witness components of GE,τ in the current window. If

the witness component which mentions τ (if any) is not
correctly present in the current window, the branch is re-
jected. Then, a set J is guessed of other components con-
tained in the current window preserving all the required left-
and right-relations among them. Among the missing witness
components, if all of them are not either only left- or only
right-related to the components in J , the branch is rejected,
since they should have been found in the current window.
Otherwise, if all of them are left-related to the components
in J , then they should have appeared before: if J �∈ P , the
branch is rejected. Finally, if all of them are right-related to
the components in J , J is added to F for the next step.

When all the tokens of the current window have been
checked, elements from C are added to P , t is incremented,
and a new event is guessed and added to the end of the se-
quence, while the first event of the sequence is discarded if
the span of δw become greater than k. If, after any step, the
set F is found empty, the computation is accepted. It can
be verified that this procedure answers correctly using expo-
nential space, as the set F , P , C are exponential in size.

4 Complexity of Timeline-based Planning

with Constrained Horizon

In this section, we consider the timeline-based planning
problem where an upper bound on the size of the solution,
usually called horizon, is included in the input. This is a
common component in usual formulations of timeline-based
planning problems (Cialdea Mayer, Orlandini, and Umbrico
2016, for example), because real-world applications often
need control over the time needed to fulfill the goal (uncon-
strained planning is often unrealistic).

Definition 13 (Timeline-based problems with horizon). A
Timeline-based planning problem with horizon is a pair
H = (P, h) where P is a timeline-based problem and
h ∈ N. A solution plan π for H is a solution plan for P
whose horizon is at most h.

Expressing a maximum length for the solution as part
of the input significantly changes the expressive power and
computational complexity of the problem. In fact, as shown
in (Gigante et al. 2016) and in the previous section, timeline-
based planning problems can encode problems that admit
doubly-exponentially long plans. However, if we restrict the
problem to those solutions of length at most h, the problem
loses all the solutions more than exponentially long with re-
gards to |P|. This implies the following two facts.

Proposition 7. Any timeline-based problem with horizon
H = (P, h) can be rewritten into another equivalent one,
with at most a polynomial increase in size, which does not
make use of unbounded interval relations.

Proof. Any atom made of an unbounded interval relation,
i.e., of the form a ≤x,y

[l,+∞] b can be replaced by one of the
form a≤x,y

[l,h] b, without loosing any solution.

Proposition 8. Given a timeline-based planning problem
with horizon H, the problem of finding whether there exists
a solution plan for H belongs to NEXPTIME.
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Proof. The same nondeterministic algorithm proposed in
the proof of Theorem 2 can be used to solve horizon-
constrained problems. Note, in fact, that each single step
of the algorithm runs in nondeterministic exponential time.
Thus, by looking for solutions of length at most h instead
of the doubly exponential bound of Lemma 3, we obtain an
algorithm of nondeterministic exponential running time, as
only an exponential number of steps is done.

Proposition 7 essentially tells us that unbounded in-
terval relations are trivial syntactic sugar in the horizon-
constrained case, on the contrary of what we saw earlier
for the unconstrained case. Proposition 8 shows the unsur-
prising fact that adding an horizon causes the computational
complexity to decrease. We will now show that this up-
per bound is tight by showing that the problem is hard for
NEXPTIME with a reduction from a classic tiling problem.

Definition 14 (Exponentially bounded tiling problem).
Consider the tuple T = (T, t0, H, V, n), consisting in a
set T of tiles, an initial tile t0 ∈ T , two binary relations
H,V ∈ T × T , specifying the horizontal and vertical tiling
constraints, and a positive n ∈ N

+, encoded in binary. Let
[n] = {1, . . . , n}. Then, the exponentially bounded tiling
problem is the problem of finding whether there exists a
tiling f : [n]× [n] → T of the square of size n× n, with t0
in the origin, that respects the tiling constraints, i.e.:

• f(0, 0) = t0
• for all x ∈ [n− 1] and y ∈ [n], f(x, y) H f(x+ 1, y)

• for all x ∈ [n] and y ∈ [n− 1], f(x, y) V f(x, y + 1)

Theorem 3. Given a timeline-based planning problem with
horizon H, the problem of finding whether there exists a so-
lution plan for H is NEXPTIME-complete.

Proof. The proof consists in a reduction from the expo-
nentially bounded tiling problem of Definition 14, which
is known to be NEXPTIME-complete (Johnson 1990). Let
T = (T, t0, H, V, n) be an instance of the problem. We
build a suitable timeline-based planning problem with hori-
zon H = (P, h), with P = (SV, S), such that T admits a
tiling if and only if H admits a solution plan.

The timeline-based problem has a single state variable x
with domain Vx = T , i.e., one possible value for each tile
type in T . The transition function is Tx(v) = Vx, for each
v ∈ Vx, and the duration function constrains every token
to have unitary duration, that is, Dx(v) = (1, 1) for each
v ∈ Vx. By setting the horizon h = n2, the values of t over
time represent the tilings of the n×n square in a row-major
layout. The synchronization rules can encode the tiling con-
straints as follows. First of all, the initial tile is put into place:

� −→ ∃a[x = t0] . a≤s
[0,0] 0

The horizontal tiling relation H is represented by the fol-
lowing rules. For each tile t ∈ T , there is a rule for the
consistency of the H relation on the right:

a[x = t] −→ a≤s
[0,0] n

2 ∨
t′∈T∨

tHt′
∃b[x = t′] . a≤s,s

[1,1] b

and one on the left:

a[x = t] −→ a≤s
[0,0] 0 ∨

t′∈T∨

t′Ht

∃b[x = t′] . b≤s,s
[1,1] a

These rules handle the satisfaction of the horizontal con-
straints in both directions. Both handle the special case for
respectively the first/last tile, which cannot have anything on
the right/left side. The encoding of vertical tiling constraints
is similar. For each t ∈ T , the following rules are added:

a[x = t] −→ a≤s
[0,n] n ∨

t′∈T∨

tV t′
∃b[x = t′] . a≤s,s

[n,n] b

a[x = t] −→ a≤s
[0,n] n

2 ∨
t′∈T∨

t′V t

∃b[x = t′] . b≤s,s
[n,n] a

It can be verified that this timeline-based problem with hori-
zon correctly encodes the original tiling problem. Moreover,
the encoding can be produced in polynomial time, since it
produces a polynomial-sized problem and it only involves
trivial loops over the elements of the tiling set T and the
relations H and V .

5 Conclusions and future work

In this paper, we showed that the computational complex-
ity of a general formulation of the non-flexible timeline-
based planning problem over discrete time is EXPSPACE-
complete. This result extends the one given in (Gigante et al.
2016) for a restricted variant of the problem, excluding un-
bounded interval relations, which was shown to be already
EXPSPACE-complete. The good news is that the addition of
unbounded interval relations does not increase the computa-
tional complexity of the problem, despite the greater model-
ing flexibility it provides. A more general formulation, that
removes the specification of bounds on the length of tokens,
can also be considered. However, it has not been treated here
because it can be shown that this additional feature can be
used to force a solution of non-elementary length.

In Section 4, we also proved that the problem becomes
NEXPTIME-complete when we require the input to spec-
ify an upper bound on the solution horizon, as it happens
in many application contexts, closing another question that
was left open by the aforementioned work.

Future work should try to complete the complexity picture
for timeline-based planning, e.g., by studying the problem
with the addition of flexible timelines (timelines with tem-
poral uncertainty over token endpoints) and/or by looking at
dense or continuous time domains. Other open theoretical
questions about the timeline-based planning paradigm con-
cern the expressiveness of the formalism, both in compari-
son to other planning paradigms and from a logical perspec-
tive. In (Gigante et al. 2016), we showed that non-flexible
timelines can capture action-based temporal planning, but
no comparison has been done with other extensions of clas-
sical planning, e.g., adding uncertainty. Moreover, the for-
malism lacks a temporal logic counterpart, unlike e.g., clas-
sical planning, which has been shown to be captured by Lin-
ear Temporal Logic in (Cialdea Mayer et al. 2007).
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