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Abstract

We investigate solvable-unsolvable phase transitions in the
single-machine scheduling (SMS) problem. SMS is at the
core of practical problems such as telescope and satellite
scheduling and manufacturing. To study the solvability phase
transition, we construct a variety of instance families param-
eterized by the set of the processing times, the window size
(deadline minus release time), and the horizon. We empiri-
cally establish the phase transition and look for an easy-hard-
easy pattern for this family using several common solvers.
While in many combinatorial problems a phase transition co-
incides with typically hard instances, whether or not that is
the case with SMS remains an open question, and merits fur-
ther study.

1 Introduction

Single-machine scheduling (SMS), in which a set of jobs
with release times, deadlines, and processing times are to be
scheduled on a single machine, forms the backbone of many
practical applications such as telescope scheduling, satellite
scheduling, and manufacturing. A phase transition is a sud-
den change in a global property of a family with respect to
an order parameter. For a number of NP-complete problems,
the phase transition from solvable to unsolvable problems as
a function of the number and tightness of constraints is of
interest. On average, instances near this phase transition are
typically exponentially harder than those that are not, and
this clustering of hard instances near the phase transition be-
comes more concentrated as problem size increases.

In contrast to the many problems for which a phase tran-
sition has been found, to date the existence of phase transi-
tions in SMS remains unexplored. In this paper, we explore
solvable-unsolvable phase transitions in the decision version
of the SMS problem. We construct a model for parameter-
ized families of SMS instances and identify the order param-
eters. Our significant findings are: 1) empirical evidence of
a rapid transition in solvability (phase transition) for SMS,
where none was previously characterized. 2) Evidence of
this transition in provably intractable SMS ensembles, where
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the transition is characterized by two parameters, which is
novel for phase transitions.

Where phase transitions have been identified in hard
problems, most published results have shown “easy-hard-
easy” behavior accompanying the phase transition, with the
notable exception of Hamiltonicity. Our empirical results
shows that for the intractable SMS family we study, the hard
instances are very rare and only loosely correlates with the
phase transition. While our results don’t rule out an easy-
hard-easy pattern in the NP-complete SMS family, they in-
vite further questions into the relationship between hardness
and phase transitions, and demonstrate the challenge of gen-
erating hard families of instances.

2 Related Work

In their pioneering work (Erdős and Rényi 1960), Erdős and
Rényi identified phase transitions of graph properties in their
eponymous model. For combinatorial optimization prob-
lems, phase transition was first identified in SAT in (Hooker
and Fedjki 1990). Later (Cheeseman, Kanefsky, and Taylor
1991) exhibited a connection between phase transitions and
the location of hard instances in a handful of NP-complete
problems (Hamiltonian cycle, graph coloring, k-SAT, and
TSP). Since then, phase transitions have been found in a
number of other combinatorial optimization problems such
as independent set (Gent and Walsh 1994), number partition-
ing (Gent and Walsh 1996a; Mertens 1998; Borgs, Chayes,
and Pittel 2001), and constraint satisfaction (Prosser 1996;
Smith and Dyer 1996). The characterization of phase transi-
tions in Cheeseman et al.’s original examples has later been
refined (e.g. Hamiltonian cycle (Vandegriend and Culber-
son 1998), graph coloring (Achlioptas and Friedgut 1999),
k-SAT (Mitchell, Selman, and Levesque 1992; Kirkpatrick
and Selman 1994), and travelling salesman problem (Gent
and Walsh 1996b)). Specifically, the typical solution time of
instances at the phase transition grows exponentially with
the problem size, and instances away from the transition are
typically easy.

There is also evidence that in some problems the hardest
instances suddenly emerge at some critical threshold below
the solvability one (Hogg and Williams 1994). The concen-
tration of hard instances near the phase transition is of prac-
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tical interest because it enables the generation of hard in-
stances for benchmarking algorithms and solvers (Rieffel et
al. 2014; Hoos and Stützle 2000).

The occurence of phase transitions is not limited to
hard problems; they occur in provably easy problems as
well, including graph properties such as connectivity (Erdős
and Rényi 1960), 2-SAT (Chvatal and Reed 1992; Goerdt
1996), XOR-SAT (Creignou and Daude 1999) and Horn-
SAT (Moore et al. 2005). For hard problems, the existence
of a solvability threshold does not necessarily imply an easy-
hard-easy pattern, though counterexamples are rare. One of
such counterexample is the phase transition of Hamiltonic-
ity in the Erdős-Rényi model (Vandegriend and Culberson
1998). Our work introduces the first analysis of the phase
transition for SMS instances in the literature.

3 Preliminaries

3.1 Single-Machine Scheduling

In this paper we consider the decision version of
(non-preemptive) single-machine scheduling with (integer-
valued) release times, deadlines, and processing times (i.e.
1|rjdj |Umax ), which we henceforth refer to simply as SMS.
An instance of SMS consists of a set of n jobs; each job j has
a release time, deadline, and processing time (rj , dj , pj ∈
Z
+
0 , respectively). The problem is to decide whether or not

there exists a schedule σ ∈ (
Z
+
0

)
on a single machine,

where σj indicates the starting time of job j, such that

• every job j starts no sooner than its release time, rj ≤ σj ;

• every job j finishes by its deadline, σj + pj ≤ dj ; and

• no two jobs i and j overlap, σi+pi ≤ σj or σj+pj ≤ σi.

We refer to the difference between the release time and the
deadline for each job as that job’s window wj = dj − rj .
More concisely, we write an instance as a tuple (rj , wj , pj).
The horizon T is a time no earlier than the latest deadline,
often exactly so.

In general, SMS is NP-complete, see (Pinedo 2002). It
can also be shown by reduction from bin packing. However,
there are numerous complexity results on refinements of the
SMS problem. For example, with unit processing time, the
greedy earliest-deadline algorithm suffices (Dürr and Hu-
rand 2011; Sgall 2012). More generally, a valid schedule
can be found in quasi-linear time when the processing times
are identical (Simons 1978; Garey et al. 1981) and in poly-
nomial time when the processing times are restricted to be
either one or some arbitrary but fixed constant (Sgall 2012).
When the processing times are restricted to two fixed con-
stants greater than one, SMS remains NP-complete (Elffers
and de Weerdt 2014).

3.2 Parameterized Ensembles

Unlike other problems in which phase transitions are stud-
ied, there is no generative model of SMS instances show-
ing a phase transition in the literature. While not com-
pletely general, SMS with two processing times is NP-
complete (Elffers and de Weerdt 2014) and constitutes the
target of our study. We find phase transition in solvability

characterized by two parameters, the scheduling horizon T
and the window size W . We limit the sets of possible pro-
cessing times to be P = {ps, pl} and the window lengths in
the range W = [pl+1, wmax]. We fix ps, pl, and study the en-
sembles of instances parameterized by the tuple (T,wmax).
For each job, pi and wi are uniformly sampled from P and
W , respectively. The release time ri is then uniformly sam-
pled from [0, T − wi].

We choose the problem family of parameters P =
{3, 19}, {7, 11}, and {3, 11}, and problem size n rang-
ing from 16 to 200. For each value of the tuple, 100 to 1000
instances are drawn.

We carefully chose processing times to reduce the chance
of creating easy instances: the processing times are coprime;
they are sufficiently different that for large window sizes
they are not effectively the same, but not so different that
the smaller one is effectively one.

3.3 Experimental Methods

We deployed a variety of solvers by mapping SMS to dif-
ferent canonical problems: Mixed Integer Linear Program-
ming (MILP), Satisfiability (SAT), and Constraint Program-
ming (CP). All the solvers we tried gave consistent answers
with respect to solvability when run on the same instances.
We found that IBM ILOG’s CP solver, CP Optimizer, sig-
nificantly outperforms the alternatives we tried, both map-
ping to MILP or SAT and using other CP solvers. This is to
be expected, given that the CP more naturally captures the
structure of SMS, whereas this structure is lost in the map-
pings to both MILP (because it requires ancillary variables
to account for the disjunction in the overlap constraint) and
to SAT (because integer variables must be encoded using
Boolean variables). We allowed a maximum running time
of 24 hours. The problem ensemble we study containes in-
stances not solved within this time limit, and very few at
that (fewer than one percent for every set of parameter val-
ues). These instances are negligible for computing the prob-
ability of solvability, but are counted when we examine the
hardness. We present only the results of CP optimizer, and
use the number of nodes explored in the constraint program-
ming search as a measure of the computational cost, which
is roughly proportional to the run time.

4 Results: Phase Transitions

Figure. 1 (a) shows the probability of solvability in the two-
dimensional parameter space (T,wmax), for P = {3, 19}
and n = 200. With a normalization of the parameters as
T/(np̄) and wmax/T , where p̄ = (ps + pl)/2, a clear tran-
sition is seen. On the bottom left of the scanning area, i.e.,
the time horizon is close to the sum of the processing times,
and the jobs have very little flexibility, few solution exists.
On the top right of the area, i.e., the horizon is ample to fit
all jobs loosely, and the windows apply almost no constraint
to the schedule and there are many solutions to the problem.
The same plots for P = {7, 11} are shown in Fig. 2 (a) and
(d) for n = 200 and 40, respectively. This transition gets
steeper as the problem size increases, as reflected by the re-
duction in width of the “dark (blue) band”. The transition
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Figure 1: P = {3, 19}. For each parameter tuple (T,wmax) 100 instances were drawn. (a) Contour plot of solvability probability
Pr(solve) for n = 200. The horizontal axis is the horizon, normalized by the average total processing time np, and the vertical
axis is the ratio of the maximum window length to the horizon wmax/T . The dark blue region marks the phase transition
frontier. (b) Contour plot of hardness where color encodes log10(Nx) for x = 99, where Nx is the x-th percentile of the
number of nodes for each parameter tuple (T,wmax). (c) Plot of Pr(solve) = 0.5 ± 0.05 for n = 40, 80, 160, 200. The
transition frontier is fit as Eq. (1). The shaded area shows 95 percent confidence interval. The fitted coefficients (a0, c0) =
(0.11, 0.91), (0.066, 0.93), (0.035, 0.96), (0.029, 0.96) for n = 40, 80, 160, 200, respectively.
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Figure 2: P = {7, 11}. Results on the top and bottom panels are for n = 200, and n = 40, with 100 and 1000 instances drawn
for each parameter tuple (T,wmax), respectively. The horizontal axis is the horizon, normalized by the average total processing
time np, and the vertical axis is the ratio of the maximum window length to the horizon wmax/T . (a) and (d) Contour plot of
solvability probability Pr(solve). The dark blue region is the phase transition frontier. (b), (c), and (e) Contour plot of hardness
where color encodes log10(Nx), where Nx is the x-th percentile of the number of nodes for each parameter tuple (T,wmax).
(f) Number of covers Ccover averaged over the top 5 hardest instances for each parameter.
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between these two regimes is a simple curve that is a func-
tion of T and wmax. The shape of the curves also suggests
that the transition region is converging as n increases. We
take a closer look in Fig. 1 (c) where for P = {3, 19}, nu-
merical data with Pr(solve) = 0.5 ± 0.05 is singled out as
the transition frontier, and fit as

T

np̄
=

a0
wmax/T

+ c0 (1)

As n increases, the fit parameters a0 decreases, and c0 ap-
proaches 1.

A similar pattern in the phase transition is observed for
the other set of processing times we studied, P = {3, 11}.

5 Results: Complexity and Empirical

Hardness

With two non-unit processing times and arbitrary window
lengths (that may grow with n), SMS is NP-complete. The
ensembles we investigate should therefore contain some
hard problems. We found that such instances are typically
easy, while rare hard instances exhibit a loose correlation
with the solvability phase transition.

To study the hardness of the problem family, for each pa-
rameter tuple (T,wmax), out of all instances generated, 50-
th to 99.8-th percentiles of the number of nodes explored
in the attempt to solve the problem instances are taken as a
measure.

5.1 Typical instances are easy

We first examine the median effort to solve problems. We do
not observe a clear correlation between the locations of rel-
ative hard instances and the regions of the phase transition.
Also, no evidence of an exponential increase in the median
hardness with problem size is observed. This indicates that
the median case for such generated problems are probably
easy. The same phenomenon appears in higher percentiles,
we observed no hard instances up to 95-th percentiles, see
the results for 95-th percentiles in Fig. 2 (b) for n = 200.

5.2 High percentiles: rare hard instances, weak
correlation with the phase transition

We then look at even higher percentiles of the number of
nodes explored. As shown in Fig. 1 (b) and Fig. 2 (c), (e),
relatively hard instances show up at these very high per-
centiles (e.g., 99-th percentiles for n = 200 and 99.8-th
percentiles for n = 40). In Fig. 2 (c), (e), high percentiles
of the nodes explored is plotted in logarithmic scale for pa-
rameter P = {7, 11}, and the phase transitions are shown
in parallel in (a), (d) for comparison. Hard instances are
scattered around the phase transition region, suggesting a
weak correlation. Due to the rareness of the hard instances
and large statistical fluctuations in the high percentiles, we
cannot quantify the correlation between the phase transition
and the hardness in high percentiles. Note that also because
the hard instances are rare, one would expect them to be
sparsely distributed, resulting in no clear boundary. The hard
instances do not correspond exactly with the solvability tran-
sition, but this is often the case with phase transitions.

To compare hardness for different problem sizes, due to
the diversion of hard instances in the parameter space, a re-
liable fitting for extracting the number of nodes of certain
percentiles is missing and the results are thus tempered by
large statistical fluctuations. Furthermore, for larger prob-
lem sizes, results of higher percentile is also limited by the
24-hour timeout of the solver. Therefore, we do not draw
conclusions on the empirical time complexity for such high
percentiles.

5.3 Structure of hard instances

What makes these instances hard? There are both solvable
and unsolvable instances that are hard. Define job j′ as a
cover of job j if 1) rj > rj′ and dj < dj′ and 2) the window
of job j cannot accomodate both jobs, i.e., dj−rj < pj+pj′ .
The underlying intuition is that when j′ covers j, then the
scheduler must decide if j′ is scheduled on the left or right
of the smaller window, forcing some amount of disjunctive
search. These disjunctions are more constrained than those
in which, for instance, the two windows overlap enough to
admit either ordering. We hypothesize that the more covers,
the higher the search cost. We found that the number of such
covers in an instance exhibits a weak correlation with the
hardness, as shown in Fig. 2 (f) for n = 40, P = {7, 11},
where, to capture the rare hard instances, for each parameter
tuple (T,wmax), the number of covers Ccover is averaged
over the hardest five instances instead of all instances (most
of them are easy).

6 Conclusions

Our work is the first study of phase transitions for the SMS
problem. We empirically identified solvable-unsolvable
phase transitions in an intractable parametrized family of
SMS instances. The main ensemble we studied is known to
contain hard problems, but typical problems are easy. The
rare hard instances correlated loosely with the phase transi-
tion region. Note that tractable SMS families can also show
solvable-unsolvable phase transition. One example is when
all jobs have the same processing time and the same window
size; the window size, after proper normalization, serves
as an order parameter for the phase transition. Other fam-
ilies include when the window lengths are either identical
or restricted to two constants that differ by one, for which
a greedy earliest-deadline algorithm solves the problem in
polynomial time. Analyzing the location and behavior of the
phase transition, starting with these simple tractable cases,
is part of our future work. Our results also indicate that it
is likely that instances with high number of job covers tend
to be harder. Hence constructing problem families where the
covers have a higher likelihood to exist could be helpful in
finding hard problems. While this work gives insight into
what makes certain SMS instances tractable and others not,
it also leaves many mysteries and tantalizing open questions
for further exploration: For SMS, are there effective ways of
locating hard problem instances? Are there ways of identify-
ing and efficiently generating one or more parametrized fam-
ilies of hard SMS instances? For combinatorial optimization
problems in general, under what circumstances should one
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expect there to be a close relation between a phase transition
and hard problem instances? Are there accessible features of
problem classes or properties of phase transitions that sug-
gest when one would expect to hard instances at the phase
transition?
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