
The Limits of Strong Privacy
Preserving Multi-Agent Planning
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Abstract

Multi-agent planning using MA-STRIPS-related models is
often motivated by the preservation of private information.
Such motivation is not only natural for multi-agent systems,
but it is one of the main reasons, why multi-agent plan-
ning (MAP) problems cannot be solved centrally. In this pa-
per, we analyze privacy-preserving multi-agent planning (PP-
MAP) from the perspective of secure multiparty computation
(MPC). We discuss the concept of strong privacy and its im-
plications and present two variants of a novel planner, prov-
ably strong privacy-preserving in general. As the main contri-
bution, we formulate the limits of strong privacy-preserving
planning in the terms of privacy, completeness and efficiency
and show that, for a wide class of planning algorithms, all
three properties are not achievable at once. Moreover, we pro-
vide a restricted variant of strong privacy based on equiv-
alence classes of planning problems and show that an effi-
cient, complete and strong privacy-preserving planner exists
for such restriction.

Introduction

Classical planning is able to find plans for a single agent, but
also for multiple agents, vehicles, robots, etc. The difference
between classical planning for multiple agents and privacy-
preserving multi-agent planning is not only the physical
distribution of the planning process, but most crucially the
preservation of private information of the planning agents.
Consider for example a consortium of businesses, which
need to coordinate their actions in a joint project, but which
do not want to disclose all their inner information and pro-
cesses. Another example is a company working together
with a hospital which cannot disclose the data of its patients,
but wants to utilize the company’s know-how. Last, but not
least, consider a military coalition operation, which needs to
be coordinated without disclosing classified information.

Although privacy is an important aspect of multi-agent
planning it is often neglected in the literature. A rigorous
definition of privacy for PP-MAP was proposed in (Nis-
sim and Brafman 2014; Brafman 2015). Recently, there
have been a number of works aiming at PP-MAP. First of
all, a more secure version of the MAFS algorithm, Secure-
MAFS (Brafman 2015) and its implementation and gener-
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alization Macro-MAFS (Maliah, Shani, and Brafman 2016).
The two algorithms aim to communicate less states and thus
also reveal less information by learning the possible pub-
lic transitions of other agents. A recent work introduces
the concept of information leakage based on transition sys-
tems and also present a theoretical class of privacy pre-
serving algorithms (Stolba, Tozicka, and Komenda 2016a;
Štolba, Tožička, and Komenda 2016b).

Somewhat orthogonal are the works introducing novel
concepts of privacy, such as agent privacy (Maliah, Brafman,
and Shani 2016), where the number and identity of agents is
hidden, and object cardinality privacy (Maliah, Shani, and
Stern 2016), where the types of objects may be revealed, but
not the numbers of instances of each type. We do not include
these concepts in our current analysis.

Along the direction of the research of Secure-MAFS,
we focus on proposing a complete planner provably strong
privacy-preserving in any multi-agent planning problem
compatible with the MA-STRIPS model. Although we show
that such planner exists, we also show that only for the price
of either inefficiency, rendering it practically unusable, or in-
completeness which may be the only practical approach to
strong-privacy preserving planning. This result is a formal
reformulation and generalization of the statement by (Braf-
man 2015):

“A search-based approach in which intermediate search
nodes are shared among agents is unlikely to be
strongly private always.”

In this work, we prove the theoretical bounds of strong-
privacy preserving planning based on the most common
MAP paradigms, such as distributed state-space search. We
also propose a finer-grained definition of strong privacy,
where some aspects of the problem are known a priori
(e.g., that it is a logistics task) and only the details are left
strongly private. We show that a complete, efficient and
strong privacy-preserving planner exists for such restricted
notion of strong privacy.

Multi-Agent Planning (MAP)

Let us define the MAP problem based on the MA-STRIPS
(Brafman and Domshlak 2008) formalism. For a set of n
agents A, a MAP problem M = {Πi}ni=1 is a set of agents’
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local STRIPS problems. An agent problem of agent i is de-
fined as

Πi =
〈
Pi = P pub ∪ P priv

i , Ai, sI ∩ Pi, s� ∩ Pi

〉
,

where Pi ⊆ P is a set of propositions (facts) partitioned
into disjunctive sets P pub and P priv

i of public (common to
all agents) and private (of agent i) facts respectively. The
state sI ⊆ P is the initial state and s� ⊆ P pub represents
the goal condition (that is, all facts in s� must hold in any
goal state).

An action a ∈ Ai is defined using the classical STRIPS
syntax and semantics

a = 〈pre(a), add(a), del(a), lbl(a)〉 ,
where pre(a) ⊆ Pi, add(a) ⊆ Pi and del(a) ⊆ Pi are the
sets of preconditions, add effects and delete effects respec-
tively and lbl(a) is a unique action identifier. An action a ∈
Ai is public if either pre(a)∩P pub �= ∅, add(a)∩P pub �= ∅
or del(a) ∩ P pub �= ∅, otherwise a is private.

The set Ai of actions comprises of three pairwise disjoint
sets: a set Apriv

i of private actions of agent i, a set Apub
i of

public actions of agent i and a set Aproj
i of public projections

of public actions of other agents. Note that each private and
public action belongs to exactly one agent, formally Apriv

i ∩
Apriv

j = ∅ and Apub
i ∩ Apub

j = ∅ for all i �= j. A public
projection a� of an action a ∈ Apub

i is a with precondition
and effect restricted only to the facts in P pub and without the
label, that is

a� =
〈
pre(a) ∩ P pub, add(a) ∩ P pub, del(a) ∩ P pub

〉
.

The projected actions are shared among all agents except for
the owner of the original action. A public projection of M
is a STRIPS problem

M� =
〈
P pub, A�

i , s
�
I , s

�
�
〉
,

where

A�
i = Ai ∪ {a�|a ∈

n⋃
j=1

Apub
j s.t. j �= i}.

Local plan πi is a solution to Πi and a global plan {πi}ni=1
is a solution to the MAP problem M. A public plan π�

i is a
projection of πi such that all public actions a ∈ πi ∩ Apub

i
are replaced by their public projections a� and all private
actions a′ ∈ πi ∩Apriv

i are removed.
A public plan π�

j is i-extensible, if by adding private ac-
tions from Apriv

i to π�
j and replacing all projections a� s.t.

a ∈ Apub
i by a, we obtain a local solution to Πi. According

to (Tozicka et al. 2016), a public plan which is i-extensible
by all agents i ∈ 1, ..., n is a global solution to M (can
be extended by all agents to form {πi}ni=1). Note that for a
global plan {πi}ni=1, π�

i = π�
j holds for all i, j, that is, the

global plan is coordinated.
Based on (Tozicka et al. 2016), a set S of plans for a

(STRIPS) planning problem Π (that is, Πi or M�) can be
represented by a planning state machine (PSM).

Definition 1. (PSM) Let Π = 〈P,A, sI , s�〉 be a STRIPS
planning problem and S a set of solutions of Π. A plan-
ning state machine (PSM) Γ(S) = 〈Σ, N, sI , δ, F 〉 is a de-
terministic finite automaton (DFA) where the alphabet Σ
contains the STRIPS labels of the actions in a ∈ A s.t.
Σ = {lbl(a) : a ∈ A}, states are sets of facts N ⊆ 2P

with sI ∈ N , transitions satisfy that δ(s, lbl(a)) = s′ iff the
action a transforms the state s into another state s′ and ac-
cepting states are F = {s ∈ N : s� ⊆ s}. The PSM Γ(S)
accepts a sequence of actions π iff π ∈ S.

A plan π is accepted by Γ(S) if it is a solution to Π and
π ∈ S. If Γ(S) contains all solution to Π we call it a full
PSM and denote it Γ(Π). An important advantage of the
PSM structure over a set of plans is that a PSM remains fi-
nite even if S is infinite and it is also possible to construct
it in finite time, even though this time can be exponential in
the size of the problem.

A public projection of PSM Γ(S) is Γ(S)�, where each
state s is replaced with a public projection s� and each tran-
sition representing a private action is replaced with an ε-
transition. The ε-transitions are then eliminated using stan-
dard DFA algorithm and thus the PSM is minimized.

Secure Multiparty Computation (MPC)

Secure multiparty computation (MPC) (Yao 1982) is a sub-
field of cryptography, which studies computing a function
f by a set of n parties p1, ..., pn such that each pi knows
part of the input of f . The goal of MPC is to compute f in
such a way that no party pi learns more information about
the inputs of other parties than what can be learned from the
output of f . Clearly, PP-MAP is an instance of MPC, where
Πi are the respective inputs and the global plan is the desired
output.

In MPC, assumptions are typically placed on the partic-
ipating parties (agents in our case) and their communica-
tion and computation capabilities. We assume that there is
no trusted third-party and that the planning agents are semi-
honest (or honest but curious). This means, as opposed to
malicious agents that every agent follows the rules of the
computation protocol based on its input data, but after the
computation is finished, it is allowed to use any informa-
tion it has received during the protocol to compromise the
privacy. Regarding the communication model, we assume
asynchronous communication, where all messages between
each two agents retain the order in which they were sent.

The computation power of the agents (which can be used
to infer additional knowledge from the executed protocol)
is typically seen either as unbounded, in which case we are
talking about information-theoretic security, or polynomial-
time bounded, which is the case of computational security.
When applied to PP-MAP, the notion of polynomial-time
bounded adversary is somewhat less suitable, as the plan-
ning itself is not polynomial (but PSPACE-complete). Nev-
ertheless, for planning problems which can be practically
solved, we can keep the cryptographic assumptions (such
as that the factoring of large integers is hard), for which the
polynomial-time bound is typically used.

There are basically two approaches to multi-agent
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planning based on the MPC techniques. The first ap-
proach is to encode planning in some general MPC tech-
nique such as cryptographic circuits (Yao 1986), oblivious
RAM (ORAM) (Goldreich 1987) or blind Turing machine
(BlindTM) (Rass, Schartner, and Brodbeck 2015). Accord-
ing to (Boyle and Naor 2016), ORAM can be used to encode
MPC with at least superlogarithmic overhead. Nevertheless,
it is not clear how exactly PP-MAP would be encoded and
what the actual overhead would be. Similarly, it is not clear
how and with what overhead a BlindTM would encode PP-
MAP. For now, we leave this direction of research for fu-
ture work. The second approach is to devise a specific PP-
MAP algorithm based on MPC primitives. There is a number
of solutions for a related problem, shortest path in a graph,
e.g., (Brickell and Shmatikov 2005), which all have one ma-
jor flaw. They solve the shortest path problem for an explicit
graph (typically represented by a matrix), which is not fea-
sible for larger planning problems.

In this paper, we follow the second direction and pro-
pose a PP-MAP algorithm (or rather a family of algorithms)
based on private set intersection (PSI), which is a well
known primitive in MPC. Several approaches to computa-
tionally secure PSI has been proposed in (Pinkas et al. 2015;
Jarecki and Liu 2010). An information-theoretic approach
was proposed in (Li and Wu 2007) which provides uncon-
ditional security, as long as at least n/2 parties are semi-
honest. Another MPC primitive we utilize in the proposed
algorithms is a (computationally) privacy preserving inter-
section of deterministic finite automata (DFA) (Guanciale,
Gurov, and Laud 2014).

In PP-MAP literature, two notions of privacy formulated
in (Brafman 2015) prevail. The first notion is weak privacy,
which requires the agents not to communicate private ac-
tions and private parts of state and public actions directly,
that is, without encryption. This notion is assumed by a sig-
nificant portion of PP-MAP planners (see (Komenda, Stolba,
and Kovacs 2016) for a comprehensive overview), but does
not provide any real privacy guarantees, as information can
be deduced from the communicated (although encrypted) in-
formation. The second notion is strong privacy, which co-
incides with the cryptographic and MPC definitions of pri-
vacy and privacy preserving computation. That is, in strong
privacy-preserving MAP, no information can leak from the
computation, apart form what can already be deduced from
the public part of the input (M�) and of the output (π�). No
MAP planner strong privacy preserving on all MAP prob-
lems has been proposed in the literature up to date.

A Strong Privacy Preserving Planner

In this section, we present a class of PP-MAP algorithms,
based on the PSM structure1 and the generate and test
paradigm. The generic structure of a PSM-based planner is
listed in Algorithm 1.

If Si is finite, PSI can be used instead of a DFA inter-
section. By instantiating each step of this scheme we create

1The PSM structure and a planner based on it was originally
published in (Tozicka et al. 2016). The use of secure DFA intersec-
tion is novel as well is the One-shot-PSM planner.

Algorithm 1: Generic PSM-based Planner
Algorithm GenericPSM(M)

1. Each agent i ∈ {1, ..., n} generates a set Si of
local solutions of Πi, stored in a PSM Γ(Si).

2. Each agent i computes a public projection
Γ(Si)

�.

3. All agents compute together the intersection⋂n
i=1 Γ(Si)

� using a secure DFA intersection.

4. If
⋂n

i=1 Γ(Si)
� �= ∅, the intersection represents a

nonempty set of global solutions to M, continue
with Step 5. Otherwise, either terminate and report
no solution, or continue with Step 1.

5. Jointly and securely select one random solution
from

⋂n
i=1 Γ(Si)

�.

several types of PSM planners:

One-shot-PSM planner generates a proper random subset
of all solutions in Step 1. and terminates in Step 4. if a
solution is not found.

Iterative-PSM planner repeats all steps until the intersec-
tion

⋂n
i=1 Γ(Si)

� is nonempty, or all agents have con-
structed a full PSM Γ(Πi), in which case if the intersec-
tion is empty, there is no solution. In each iteration of
Step 1., new plans are added systematically (e.g., ordered
by length).

Full-PSM planner each agents constructs a full PSM
Γ(Πi) in Step 1. If the problem has a solution, all solu-
tions are found in the first iteration of Step 4.

The Iterative-PSM and Full-PSM planners were already
published in (Tozicka et al. 2016), albeit without the use
of secure DFA intersection, whereas One-shot-PSM is a
novel variant of the planner. Notice that both One-shot-
PSM and Full-PSM planners are computationally strong pri-
vacy preserving as the secure DFA intersection by (Guan-
ciale, Gurov, and Laud 2014) is computationally strong pri-
vacy preserving and no other communication is performed.
Also, in the case of One-shot-PSM, an information-theoretic
PSI (Li and Wu 2007) can be used as the used sets of plans
can be finite and thus One-shot-PSM can be strong privacy
preserving in the information-theoretic sense (without any
assumptions). Another promising feature of the One-shot-
PSM planner is that there is a trade-off between complete-
ness and efficiency, which can be exploited. The more plans
are generated, the more time it takes, but also the higher is
the chance of success in the one shot secure PSM intersec-
tion.

Before formulating these observations formally, we pro-
vide an algorithm for secure selection of a random solution
from the intersection of PSMs, as is required in the Step 5.

Random Solution Selection

In (Guanciale, Gurov, and Laud 2014) the authors pro-
pose algorithm for secure intersection of regular languages,
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which is based on DFA minimization, secure intersection
and secure trimming of unreachable states. As PSM is an in-
stance of DFA, this techniques can be used also to securely
compute intersection of the agents’ PSMs and securely re-
move unreachable states, that is, obtain a minimal DFA rep-
resenting the resulting PSM. The next step we need to per-
form is to select a random solution, again, without leaking
private information (Step 5. of Algorithm 1).

To select a random solution (a public plan) from the in-
tersection of PSMs

⋂n
i=1 Γ(Si)

�, we will iteratively se-
lect a random transition (action) from δ of

⋂n
i=1 Γ(Si)

�

leading from its initial state sI through intermediate states
s ∈ N and eventually terminates in one of the terminals
in F (the goal states). In states where we can both con-
tinue with a transition from δ or terminate, we will chose
randomly whether to continue with one of the randomly
selected transitions or whether we will terminate. The re-
sulting random trace through the PSM will be in form
(lbl(a1) ∈ Σ, . . . , lbl(ak) ∈ Σ). The extracted plan is then
straightforwardly π = (a1, . . . , ak).

All constructs in this procedure can be implemented with
existing MPC techniques (e.g., Sharemind (Bogdanov, Laur,
and Willemson 2008)). The iterative concatenation of the
trace (which is the public plan) as well as the number of it-
erations does not have to be hidden as it is part of the public
output. The used random variables have all uniform distri-
bution which does not reveal any additional information as
well. The procedure can work only with minimal DFA (in a
non-minimal DFA it could randomly end up in a state which
is not a terminal and there is no outgoing transition from it),
which holds for the intersection

⋂n
i=1 Γ(Si)

� of the PSMs.

Example

Let us show how the presented PSM-based algorithms work
on a simple case of a coalition surveillance mission prob-
lem with one UAV and two secret locations (see Figure 1),
where UAVs survey an area and need to be refueled by coali-
tion partners (a coalition base), the surveyed areas and the
state of supplies of the base are private (secret). We omit
the movement actions for simplicity (movement between the
surveyed locations would be private, movement to the coali-
tion base would be public).

location 1

location 2

base

UAV

Figure 1: UAV surveillance scenario example.

The problem in the running example consists of two
agents A = {UAV, base} and can be described using the
following sets of propositions:

Description Proposition sI s�
UAV has fuel f ∈ P pub false -
mission is complete c ∈ P pub false true

location 1 is complete l1 ∈ P priv
UAV false -

location 2 is complete l2 ∈ P priv
UAV false -

base has enough supplies s ∈ P priv
base true -

The problem consists of the following actions:

Actions (UAV) lbl(a) pre(a) add(a) del(a)

survey location 1 SL1 {f,¬l1} {l1} {f}
survey location 2 SL2 {f,¬l2} {l2} {f}
complete mission C {l1, l2} {c} ∅

Actions (base) lbl(a) pre(a) add(a) del(a)

refuel R {¬f, s} {f} {s}
refuel, resupply RR {¬f,¬s} {f, s} ∅

The public projection of the problem is restricted to the
public propositions P pub and the public projections of the
actions. Note that as SL1 and SL2 have the same projection,
they cannot be distinguished and thus are represented by a
single projected action SL�. The same holds for the actions
R and RR which are both represented by a projected action
R�. The details of the projected actions are the following:

Actions (UAV�) pre(a�) add(a�) del(a�)
survey location SL� {f} ∅ {f}
compl. mission C� ∅ {c} ∅

Actions (base�) pre(a�) add(a�) del(a�)
refuel R� {¬f} {f} ∅

Full PSMs and their projections for both agents are shown
in Figure 2. Their intersection equals to the full PSM of the
UAV agent. That is how the Full-PSM planner works. On
the other hand, when using One-shot-PSM planner, the base
agent can decide to add only one local solution to its PSM,
namely the local plan {R,C}. In that case, the intersection
of agents’ PSMs is empty and thus the planner ends without
finding a solution. Of course, even in One-shot-PSM plan-
ner, both agents may add multiple solutions and find a global
solution.

In the case of Iterative-PSM planner, the base agent adds
another plan {C} to its PSM, which still yields an empty
intersection. At third iteration, the base agent adds also
{R, SL,C} to its PSM and thus represents all necessary
plans. Intersection of such PSM with the UAV PSM is non-
empty and contains solution of the problem. In this case,
the base agent knows that the UAV agent does not accept
plan {R,C}, which leaks private information. Note that the
base agent cannot deduce this information in the cases of
Full-PSM planner and One-shot-PSM planner because the
intersection of PSMs is not known to the agents and the fi-
nal solution is selected randomly from all solutions encoded
by the PSM intersection.

The Limits of Strong Privacy Preserving MAP
In this section, we present theoretical limits of the privacy
preserving planner described above and their generalization
to other PP-MAP paradigms. For the privacy analysis, we
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Figure 2: a) Full PSM of the UAV agent and its public projection. b) Full PSM of the base agent and its public projection.

assume that the agents know the algorithm used by all other
agents (also including probability distributions of any ran-
dom variables, e.g., the uniform distributions in the random
solution selection) and also that the MAP problems cannot
be solved by a single agent alone (in which case a strong
privacy-preserving algorithm is trivial). We focus on the fol-
lowing three properties
Definition 2. A MAP planner P is
(i) Complete if for each MAP problem M that has a solu-

tion (a global plan), P terminates and returns a solution to
M.

(ii) Strong privacy preserving if P does not reveal any
other information than what can be deduced from the pub-
lic part of the input and the solution, that is, M� and π�.

(iii) Efficient if there exist a MAP problem M = {Πi}ni=1
for which P always returns a solution without enumerat-
ing all public solutions of each Πi.
The completeness definition does not require any fur-

ther explanation and the privacy definition has already been
discussed. As already mentioned, based on the presence
of computational assumptions, we distinguish two flavors
of strong privacy preserving algorithms, computational and
information-theoretic. The efficiency definition is somewhat
unusual. The aim is to differentiate between algorithms
which do have to explore the complete private search spaces
of the agents (which, in the worst case, can be as big as the
global problem) and those which do not. Although the the-
oretical complexity class is the same for both, as the worst
case is always the complete exploration, in most practical
problems, the difference is significant.

The Limits of the PSM-based Planners

i In this section, we assign the properties from Definition 2
to the particular PSM-based planner variants.
Theorem 3. The Full-PSM planner is complete and com-
putationally strong privacy preserving.

Proof. Let M = {Πi}ni=1 be a MAP problem. The Full-
PSM generates a full PSM Γ(Πi) for each Πi and a public

projection Γ(Πi)
�, each representing all local solutions of

each respective Πi and their public projection. Then a PSM
intersection

⋂n
i=1 Γ(Πi)

� is computed. If a global solution
{πi}ni=1 to M exists, each πi is a local solution to Πi and
thus is represented by Γ(Πi). Because π�

i = π�
j for each

i, j, π�
i is represented by the intersection

⋂n
i=1 Γ(Πi)

� and
is a public projection of a global solution, privately extensi-
ble by all agents. Thus Full-PSM is complete.

If the intersection
⋂n

i=1 Γ(Πi)
� is computed using a pri-

vacy preserving DFA intersection by (Guanciale, Gurov,
and Laud 2014), Full-PSM is computationally strong pri-
vacy preserving as no other multiparty computation or com-
munication is performed and no other information is ex-
changed.

Corollary 4. The Full-PSM planner is not efficient.

Proof. Trivial, as the Full-PSM from definition always gen-
erates local solutions of all agents before computing the in-
tersection.

Theorem 5. The Iterative-PSM planner is complete and ef-
ficient.

Proof. Let M = {Πi}ni=1 be a MAP problem and let
{πi}ni=1 be a global solution to M. Even though the number
of all possible solutions to M may be infinite, each such so-
lution {πi}ni=1 is finite and has a length l. As Iterative-PSM
is adding the plans in a systematic way (that is, a plan of
length k + 1 is added only after all plans of length k were
added), all plans of length l are added to each Si after a
finite number of steps. Thus also all the plans in {πi}ni=1
are added after a finite many steps and the solution becomes
part of the intersection

⋂n
i=1 Γ(Si)

� and thus Iterative-PSM
is complete.

Let l be the length of the shortest global solution. Based
on the systematic generation described above, the solution is
always found before all solutions of length l′ > l and thus
Iterative-PSM is efficient according to Definition 2(iii).

Theorem 6. The Iterative-PSM planner is not strong pri-
vacy preserving.
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Proof. By iterating the PSI or secure DFA intersection, in-
formation is leaked. In particular, information that a plan πi

shorter than the solution proposed by agent i is not exten-
sible by some agent j �= i. This reveals the existence of
private preconditions of some public actions of agent j used
in πi. Note that as we assume the knowledge of the algo-
rithm by all agents, even a less obvious systematic genera-
tion of plans leaks information as the particular algorithm
can be simulated by other agents and the plans which should
have already been generated can be determined. In the case
of randomized algorithms, we assume the knowledge of the
probability distributions of random variables used in the al-
gorithm as part of the algorithms and thus again, the infor-
mation about unaccepted public plans leaks.

Theorem 7. The One-shot-PSM planner is strong privacy
preserving and efficient.

Proof. By computing the secure DFA intersection only
once, no additional information can leak and thus One-shot-
PSM is computationally strong privacy preserving. If each
PSM Γ(Si) is replaced by a finite subset of represented plans
Si, the PSI can be used instead of the DFA intersection. By
using an information theoretic secure PSI (Li and Wu 2007)
on finite sets of plans, One-shot-PSM becomes information-
theoretic strong privacy preserving.

One-shot-PSM is trivially efficient according to Defini-
tion 2(iii) as it can use arbitrarily small subsets of all pos-
sible local solutions.

Theorem 8. The One-shot-PSM planner is not complete.

Proof. As some public solution is not generated by at least
one of the agents, it may be the case that the not-generated
solution is the one and only solution of the problem and thus
such problem would not be solved.

Impossibility Theorem

Next, we state the main contribution of this paper for the
class of PSM-based planners and later generalize it to a
wider class of planning algorithms.

Theorem 9. A PSM-based MAP planner P cannot have all
three properties (Definition 2) complete, strong privacy pre-
serving and efficient together.

Proof. According to Theorem 3, the Full-PSM is complete
and strong privacy preserving, but according to Corollary 4
not efficient as it generates all local solutions. For the sake of
contradiction, let us have a complete and strong privacy pre-
serving planner P which is efficient. From Definition 2(iii)
follows that there exist a MAP problem M = {Πi}ni=1 for
which some of the agents using P do not have to generate
all public plans in order to find a global plan {πi}ni=1, let j
be such agent. Let π̄�

j �= π�
j be the public plan which is not

generated by agent j.
Because we assume that the problem M cannot be solved

by a single agent only, a MAP problem M̄ can be con-
structed from M so that the only public plan extensible by
all agents is π̄�

j . It is enough, if one of the agents rejects
all public plans not equal to the public plan π̄�

j an therefore

the newly constructed MAP problem M̄ can differ from M
only in the problem of one agent, let that be agent i. The
construction is as follows. Let π̄i be a local plan of agent i
such that π̄�

i = π̄�
j , that is, π̄i can be part of the global plan

as it is the extension of π̄�
j by agent i.

We construct Π̄i from Πi =〈
Pi = P pub ∪ P priv

i , Ai, sI ∩ Pi, s� ∩ Pi

〉
by adding

a new proposition pk for each public action ak ∈ π̄�
i

s.t. ak ∈ Ai and by adding a new proposition pneg.
We add p0 to sI and modify each such ak so that
pre(āk) = (pre(ak) ∩ P pub) ∪ {pk}, add(āk) =
(pre(ak) ∩ P pub) ∪ {pk+1} or add(āk) = pre(ak) ∩ P pub

if ak is the last action and del(āk) = del(ak) ∩ P pub.
We modify each a′k ∈ Ai s.t. ak /∈ π̄�

i so that
pre(āk) = (pre(ak) ∩ P pub) ∪ {pneg}. The result is
that only actions in π̄i are applicable and only in the exact
same order, also keeping the public constraints in place,
thus {π̄i}ni=1 is the only global solution to M̄.

Since P is strong privacy preserving and M� = M̄�

as the public part was not modified, the agent j cannot dis-
tinguish between M and M̄ and thus generates exactly the
same PSMs Γ(Πj) = Γ(Π̄j) for both problems. But then,
as the planner P is complete and M̄ has the only solution
{π̄i}ni=1, the agent j has to generate π̄j also for M. Thus we
obtain a contradiction with the assumption that the planner
P is efficient (because it has to also generate π̄j), in other
words that a strong privacy preserving and complete planner
can generate less local plans than Full-PSM which generates
all of them and thus violates the efficiency property accord-
ing to Definition 2(iii).

Figure 3: Properties of PSM-based planners.

To illustrate the above proof, we will modify the UAV
example. Let UAV be the agent j and let π�

UAV =
{SL,R, SL,R,C} be the public plan which is not generated
by the UAV agent. Let the corresponding local plan of the
base agent be πbase = {SL,R, SL,RR,C}. Then the prob-
lem of the base agent can be modified so that P priv

base =
{p1, p2, pneg} and each action in the plan is modified so that
pre(R) = {¬f, p1}, add(R) = {f, p2}, pre(RR) = {¬f, p2}
and if there was any other action of the agent base, its private
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preconditions would be set to {pneg}. Also, the private part
of sI is set to {p1} and thus only the action R is applicable.

The properties of PSM-based planners according to Def-
inition 2 and the above theorems are summarized in Fig-
ure 3. Notice that the intersection of all properties is empty,
as shown by the Theorem 9. Also, the Full-PSM and One-
shot-PSM are the only generally strong privacy preserving
planners published up to date, thanks to the novel use of the
secure DFA intersection.

Notice that the Theorem 9 holds not only for the PSM
Planner (Tozicka et al. 2016) and the family of PSM-based
planners described in Algorithm 1, but also for algorithms
based on similar generate and test paradigm, such as Plan-
ning First (Nissim, Brafman, and Domshlak 2010), which
uses distributed constraint satisfaction (DCSP) in the place
of PSM intersection. The potential use of a secure version of
DCSP would result in similar limits as are the limits of the
PSM planner.

The Limits of State-Space Search

In this section, we focus on the strong privacy preserving
property in general terms. We abstract from the particular
secure computations such as PSI, secure DFA intersection
or even a single ORAM computation and refer to them col-
lectively as secure primitives. The important property of a
secure primitive is that (possibly under computational secu-
rity assumptions), no information leaks from a single secure
primitive and thus, on its own, it is strong privacy preserv-
ing. In general, combining multiple secure primitives may
leak information, as shown e.g., in Theorem 6. Formally:

Definition 10. (Secure primitive) A secure primitive (or a
cryptographic primitive) is a (possibly multiparty) computa-
tion block which by itself is strong privacy preserving.

We first state two general results applicable to any MAP
planning algorithm and then use them to generalize Theo-
rem 9 to wider classes of MAP planners. The definitions are
based on the notion of publicly equivalent MAP problems:

Definition 11. Two MAP problems M, M′ are publicly
equivalent if M� = M′� and their respective sets of public
solutions S� and S′� are equal, formally M ≡ M′.

Theorem 12. Let P be a MAP planner and M, M′ two
publicly equivalent MAP problems M ≡ M′, such that M
and M′ differ in the private part of agent i. Then if P is
strong privacy preserving, it performs the same number of
secure primitives on both M and M′.

Proof. Trivially, if P performs different number of secure
primitives on M and M′, the agents other than i can dis-
tinguish between M and M′, which is an information that
cannot be learned from the output, as the public projections
of both solutions are equal.

Corollary 13. The number of secure primitives performed
by a strong privacy preserving MAP planner P cannot de-
pend on any private part of the MAP problem M.

Proof. Direct consequence of Theorem 12.

Note that the whole planning algorithm can be considered
a secure primitive, if it is strong privacy preserving, e.g., the
Full-PSM planner.

The Theorem 12 and Corollary 13 are very general, but
also provide necessary conditions for any strong privacy pre-
serving MAP planner. This conditions can be used to gener-
alize the Theorem 9 to a wider class of MAP algorithms.

Definition 14. A state-space search (SS) MAP planner is a
MAP planner in which each agent searches its own state-
space. The agents coordinate themselves by exchanging
public projections of reachable states.

An example of a SS MAP planner aiming for secure com-
putation is Secure-MAFS (Brafman 2015) which is strong
privacy preserving for a restricted class of problems.

Corollary 15. Theorem 9 holds for any SS MAP planner,
assuming a bound b on the number of states in the global
state space of M.

Proof. Let us assume that the states in a strong privacy pre-
serving SS MAP planner P are communicated in a secure
way, that is, no information is leaked by communicating a
single state and thus the communication of a single state can
be considered a secure primitive. According to Corollary 13,
the number p of secure primitives must depend only on the
public part of M. In order to be complete, p must be large
enough even for the worst case execution, which is if the
state space is of size b and all states are expanded and sent.
But this corresponds to enumerating all local solutions of M
and thus breaks the efficiency property according to Defini-
tion 2(iii).

Based on (Stolba, Tozicka, and Komenda 2016a),
the forward-chaining plan-space search as used in
FMAP (Torreño, Onaindia, and Sapena 2014) essen-
tially corresponds to the state-space search paradigm and
thus the same results apply.

As already mentioned, the question whether a generic
MPC technique such as ORAM or BlindTM can be used
for efficient strong privacy preserving MAP planning is left
open for the future work. This concludes the theoretical
analysis of the limits of strong privacy preserving multi-
agent planning, both in general and in particular case of the
PSM-based planners.

Strong Privacy Preserving Equivalence Classes

In (Brafman 2015), the author proves that Secure MAFS is
strong privacy preserving on a restricted class of logistics
problems, where the problems have the same set of pack-
ages, the same set of public locations, and identical initial
public locations for packages and also that every private lo-
cation is reachable from every other private location. This
effectively means that part of the private problem is irrel-
evant (that is, it can always be solved) and the rest of the
private problem is the same for all instances of the restricted
problem. In this section, we formalize the notion of privacy
used in the proof in (Brafman 2015) and generalize the idea
of privacy on a class of problems.

303



Definition 16. A MAP planner P is strong privacy preserv-
ing on a class C of MAP problems iff from the execution of
P on M ∈ C and on M′ ∈ C no agent can distinguish M
and M′.

This definition of strong privacy differs from that in Def-
inition 2, but is reasonable. If solving e.g., a logistics prob-
lem, even if the fact that a package is loaded is private, the
agents can expect its existence based on how logistics works.
Now we formalize the equivalence class of problems based
on Definition 11.

Definition 17. A class C of MAP problems is a public
equivalence class iff for each two M ∈ C and M′ ∈ C
holds M ≡ M′.

This means that M� = M′� and their respective sets
of public solutions S� and S′� are equal. For each of the
problems M ∈ C by itself, the private part of M poses a
constraint and thus reduces the number of public solutions
which are also global solutions. But as all problems in C
have equal public projection and also the set of public solu-
tions, each of the problems in C differ from the other prob-
lems only by such part of the private problem, which does
not add more constraints and prevent more solutions, that
is, the different private parts of the problems can always be
solved.

An example of such class C are the logistics problems
used in (Brafman 2015) and rephrased at the beginning of
this section. The particular problems differ by the actual
number of private locations, but as the private locations are
always connected (not necessarily directly) to a public loca-
tion, this part of the problem does not constraint the public
solutions which are also global solutions of the whole prob-
lem. Nevertheless, this does not mean that the private part
of M is unnecessary—the agents still need to cooperate in
order to solve M and some of the public solutions are not
extensible because of the private parts of the agent problems.

Based on the Definition 17, we can formulate a general
result.

Theorem 18. A MAP planner P which is complete and effi-
cient by Definition 2 and strong privacy preserving on a pub-
lic equivalence class C of MAP problems by Definition 16
exists.

Proof. Let us start with Iterative-PSM, which is complete
and efficient by Theorem 5. In each iteration, a plan πi pro-
posed by agent i is either accepted by all other agents, in
which case the algorithm ends and no information leaks, be-
cause πi is part of the solution, or πi is not accepted and
thus some information leaks. But in the case of public equiv-
alence class C of problems, πi is either accepted or not ac-
cepted in all M ∈ C and thus this information cannot be
used to distinguish any two M,M′ ∈ C. Therefore by Def-
inition 16, Iterative-PSM is strong privacy preserving on the
class C.

This theorem generalizes the results of (Brafman 2015) to
all public equivalence classes of MAP problems and also to
MAP planners in general. Moreover, we can formulate the
following corollary.

Corollary 19. The public equivalence relation ≡ partitions
all MAP problems into classes of equivalence. There exists
a MAP planner P , which is complete and efficient by Defi-
nition 2 and for each MAP problem M, P is strong privacy
preserving on a public equivalence class C of MAP prob-
lems, induced by M.

This means that each MAP problem M induces the class
C of publicly equivalent problems, which can be solved by
such planner P (e.g., the Iterative-PSM planner), revealing
no other information, than that the problem falls in the par-
ticular class C. It seems that for some practical applications,
this might be enough to consider the planner strong privacy-
preserving, as the participating agents already know the
class of the planning problems they are solving in advance
(e.g., the logistics problems with particular constraints).

Considering the UAV example, a problem M′ which does
not consider the supplies of the base agent (there is no pri-
vate proposition) s falls in the same equivalence class as the
original problem as the RR can always be used and provide
supplies. Also, all problems which have more complex pri-
vate parts (e.g., another private actions for preparing the fuel,
etc.) which do not restrict any solutions of the original prob-
lem fall in the same equivalence class C.

Conclusions and Future Work

In this paper, we have extended an existing planner PSM,
the winner of the coverage and quality distributed tracks of
the CoDMAP competition, with a strong privacy preserv-
ing protocol which together allows strong privacy preserving
multi-agent planning. We have shown that it is not possible
for such planner to be strong privacy preserving, complete
and efficient at the same time and we have proposed three
variants of the planner which satisfy each two of the men-
tioned properties. For practical use, the One-shot PSM plan-
ner is the most suitable as it is both strong privacy preserv-
ing and efficient, although incomplete. Moreover, there is a
trade-off between completeness and efficiency as the more
plans are generated ahead of the secure primitive, the higher
is the chance of success.

We have also generalized the result that it is not possible
for a MAP planner to be strong privacy preserving, com-
plete and efficient at the same time, to a much wider class
of state-space search based MAP planners. Additionally, we
have provided a new notion of privacy restricted to a class
of problems, where it is easier to obtain strong privacy and
where it is possible to satisfy all three properties of com-
pleteness, strong privacy and efficiency at once.

We propose two directions of future work. The first is to
assess the real performance of the One-shot PSM planner
and the price it pays for strong privacy experimentally. The
second direction of future work is to investigate the use of
general-purpose secure computations such as ORAM and
Blind Turing Machine, which might possibly be used for
strong privacy preserving multi-agent planning, but with a
yet unknown overhead.
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