
Increased Privacy with Reduced Communication in Multi-Agent Planning

Shlomi Maliah
Information Systems Engineering

Ben Gurion University
shlomima@post.bgu.ac.il

Ronen I. Brafman
Computer Science Dept.
Ben Gurion University
brafman@cs.bgu.ac.il

Guy Shani
Information Systems Engineering

Ben Gurion University
shanigu@bgu.ac.il

Abstract

Multi-agent forward search (MAFS) is a state-of-the-art
privacy-preserving planning algorithm. We describe a new
variant of MAFS, called multi-agent forward-backward search
(MAFBS) that uses both forward and backward messages to
reduce the number of messages sent and obtain new privacy
properties. While MAFS requires agents to send a state s pro-
duced by an action a to all agents that can apply any action
in s, MAFBS sends such messages forward only to agents that
have an action that requires one of the effects of a. To achieve
completeness, it sends messages backward to agents that can
supply a missing precondition. This more focused message
passing scheme reduces states exchanged, and requires that
agents be aware only of other agents that they directly inter-
act with, leading to agent privacy.

1 Introduction

In various settings, agents may wish to cooperate to achieve
joint goals, while concealing certain private facts. For ex-
ample, different manufacturers may want to collaborate in
the production of a good without disclosing their entire
supply-chain, inventory levels, and local processes. An at-
tractive framework for such planning problems is privacy
preserving planning (Nissim and Brafman 2014) which has
gained increasing attention in recent years. While several
approaches to privacy preserving planning were suggested,
heuristic search algorithms (Maliah, Shani, and Stern 2015;
Štolba and Komenda 2014; Štolba, Fišer, and Komenda
2015; Maliah, Shani, and Stern 2014a) seem to produce
good results. In particular, the Multi-Agent Forward Search
algorithm (MAFS) (Nissim and Brafman 2012), combined
with strong heuristic estimates (Štolba, Fišer, and Komenda
2015) demonstrated high performance over benchmarks.

The typical notion of privacy used so far in most work on
cooperative, privacy preserving planning, is dichotomic: ev-
ery action and variable is either private to a single agent or
public and accessible to all agents. However, in many cases,
various facts or actions are naturally described as private to a
strict subset of agents (Bonisoli et al. 2014). For example, a
supplier and a customer must know the content of a package,
but the courier that delivers it need not. Moreover, when two

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

organizations interact to achieve joint goals, each employ-
ing sub contractors, it may well be that each wishes that the
identity, or even the existence, of its sub contractors would
not be known to the other. This is known in the DisCSP lit-
erature as agent privacy (Faltings, Léauté, and Petcu 2008).

In this paper, we describe a model of refined privacy fol-
lowing (Bonisoli et al. 2014), and a new algorithm, which
we call forward-backward MAFS (MAFBS), which not only
provides weak privacy (like MAFS), but also ensures that two
agents that do not share a private variable, never communi-
cate with each other, and hence, need not be aware of the
existence of each other. Moreover, through the use of fo-
cused communication, we not only obtain the agent privacy
property, but also significantly reduce the number of sent
messages.

Our method, while still a forward search algorithm, sends
fewer messages by introducing elements of regression, or
relevance, through backward request messages, supporting
agent privacy. Our efficiency gains results from goal driven
expansions; In MAFS, agents send a state s generated by a
non-private action to any agent that can apply an action in s.
In MAFBS, an agent sends state s generated by action a only
to agents that have an action that requires one of a’s effects.

Unfortunately, sending states only to agents that require
an effect is incomplete. Consider, e.g., 3 agents, ϕ1,ϕ2,ϕ3 ,
and a solution plan a1, a2, a3, with ai an action of ϕi. As-
sume a1, a2 generate p1 and p2 respectively. a3 requires both
p1 and p2 and produces the goal. Suppose I is the initial
state. ϕ1 will send a1(I) to ϕ3, but not to ϕ2, while ϕ2 sends
a1(I) to ϕ3, but not to ϕ1. Thus, ϕ3 never receives a state
where both p1 and p2 hold, and cannot execute a3.

We address this problem using simple backward reason-
ing. Suppose ϕ received state a(s) because a produces a
precondition of ϕ’s action a′, but a(s) does not satisfy an-
other precondition q of a′. ϕ now sends a(s) backwards to
all agents that can supply q. In the example above, when ϕ3

receives a1(I), which satisfies p1, but not p2, it sends a1(I)
to ϕ2, who can produce p2. ϕ2 applies a2, achieving p2, and
sends a2(a1(I)) back to ϕ3. These backward messages en-
sure completeness.

The resulting algorithm, MAFBS, is sound and com-
plete for privacy preserving multi-agent planning, enhancing
MAFS with agent privacy. When forward messages are given
priority over backward messages, MAFBS is also very effi-

Proceedings of the Twenty-Seventh International Conference on Automated Planning and Scheduling (ICAPS 2017)

209

Figure 1: A logistics example.

cient, improving coverage, reducing computation time and
state expansions, and reducing, often considerably, the num-
ber of messages transmitted in all domains – a crucial pa-
rameter in distributed computation.

2 Background

We describe the model of privacy preserving collaborative
planning and the MAFS algorithm.

2.1 Privacy Preserving Planning

An MA-STRIPS problem (Brafman and Domshlak 2013) is
represented by a tuple 〈Φ,P, {Ai}|Φ|

i=1, I, G〉 where:
• Φ = {ϕ1, . . . , ϕ|Φ|} is a set of agents.
• P is a finite set of primitive propositions (facts).
• Ai is agent ϕi’s action set. Ai ∩Aj = ∅ if i �= j.
• I is the start state.
• G is the goal condition.

Each action a = 〈pre(a), eff (a)〉 is defined by its pre-
conditions (pre(a)), and effects (eff (a)). Preconditions and
effects are conjunctions of primitive propositions and liter-
als, respectively. A state is a truth assignment over P . G is
a conjunction of literals. a(s) denotes the result of applying
action a to state s. A plan π = (a1, . . . , ak) is a solution to
a planning task iff ak(. . . (a1(I) . . .) |= G.

An important assumption we make is that actions are in
transition normal form (Pommerening and Helmert 2015).
That is, a primitive proposition (or its negation) appears in
a precondition iff it (or its negation) appears in the effect of
the action. Every problem is easily converted into transition
normal form.

Privacy-preserving MA-STRIPS extends MA-STRIPS by
defining sets of facts and actions as private, known only to
a single agent. We extend this, in the spirit of (Bonisoli et
al. 2014), allowing a fact to be public only to a subset of the
agents.1 We refer to this as subset privacy. Thus, with each
p ∈ P we associate a set, pr(p) ⊆ Φ, the set of agents that
are aware of p and its value. We require that for every fact
p, if p appears in the description of an action a ∈ Ai, then
ϕi ∈ pr(p). That is, an agent must be aware of facts that

1Given multi-valued variables, this definition can be further re-
fined, allowing for private variable-value pairs.

appear as precondition or effect of one of its actions. Let
prp(ϕ) be the set of propositions that ϕ is aware of. That is,
for each p ∈ prp(ϕ), ϕ ∈ pr(p), and for each q �∈ prp(ϕ),
ϕ �∈ pr(q).

For clarity of exposition, we refer to a fact p where
|pr(p)| = 1 as private and to a fact p where pr(p) = Φ
as public, while facts p such that 1 < |pr(p)| < |Φ| will be
called subset-public.

We define similar notions for actions. Let pr(a) be the
set of agents that are aware of action a. Let pra(ϕ) ⊇ Aϕ

be the actions that ϕ is aware of. An action a is private if
|pr(a)| = 1, public if pr(a) = Φ, and subset-public oth-
erwise. Furthermore, if p is an effect or precondition of a,
then pr(p) ⊆ pr(a). In what follows we assume that the set
pr(p) is known to all agents in it. Removing this assumption
is an interesting challenge for future work.

Recently, there is growing awareness of the need to bet-
ter quantify and improve the privacy guarantees in privacy
preserving planning (Brafman 2015). A well known privacy
property in the area of DisCSP is agent privacy (Faltings,
Léauté, and Petcu 2008). Applying this idea to distributed
planning we say that a multi-agent planning algorithm satis-
fies agent privacy if an agent ϕi cannot learn from participa-
tion in the algorithm about the existence of an agent ϕj with
whom it shares no variable (that is, pr(ϕi) ∩ pr(ϕj) = ∅).
The agents that share at least one variable with ϕi are called
the neighbors of ϕi. Thus ϕi is only aware of the existence
of its neighbors. This is a desirable property in many multi-
agent collaboration settings, which is not satisfied by any
current MA planner.

Figure 1 illustrates a simple logistics example in which
the agents are trucks tasked with delivering packages. The
set of facts P represents the location of two packages and
six trucks. Each truck has three actions: move, load, and un-
load, corresponding to moving between locations, loading a
package and unloading it. Trucks can only drive along the
edges in Figure 1. Agents are heterogeneous and their range
is restricted, such that location [i, j] can only be reached us-
ing the truck of agent ϕi. The rectangles are logistic centers
visited by multiple trucks that load or unload packages.

Trucks are owned by different companies that do not want
to share their locations and coverage (which locations they
can reach) with other companies. Thus, all the facts repre-
senting the location of trucks are private, while the facts rep-
resenting whether a package is at a logistic center are shared
among all agents that can reach that logistic center. Only the
load/unload actions at the logistic centers are not fully pri-
vate, whereas the move actions are private for each agent, as
well as loading and unloading at private locations.

For each location l and package p there is a fact at(p, l)
denoting whether package p is at location l. In this example,
at(p, [4, 2]) is private to agent ϕ4, while at(p,E) is subset-
public to agents ϕ4, ϕ5, ϕ6. In this example there are no
public facts shared between all agents. Similarly, the action
unload(p,E) is subset-public to agents ϕ4, ϕ5, ϕ6.

In the example above, agent privacy requires that agent ϕ1

will be unaware of the existence of agents ϕ2, ϕ4, ϕ5, ϕ6. No
agent in the above example is aware of all other agents, yet
these agents must collaborate to move the packages to their

210

target locations.

2.2 Multi-Agent Forward Search

Multi-Agent Forward Search (MAFS) (Nissim and Brafman
2014) is a distributed algorithm schema for forward-search
planning that also preserves privacy. MAFS follows the stan-
dard definition of privacy, where facts are either private to a
single agent, or public to all agents.

In MAFS, each agent maintains a separate search space
with its own open and closed lists. The agent expands states
using its own actions only. Thus, two agents (that have dif-
ferent actions) expanding the same state, generate different
successor states. An agent generating a state s using a pub-
lic action, sends s to all other agents that can apply a public
action in s. When an agent receives a state s that does not
appear in its open or closed lists, it adds s to its open list.

In messages sent between agents, the value of private vari-
ables in a state are encrypted so that only the relevant agent
can decipher them. This is typically done by sending an
identifier to the private state, rather than encrypting each fact
independently. By definition, if q is private to an agent, other
agents do not have operators that affect its value, and so they
do not need to know or manipulate its value. When generat-
ing new states by applying their own actions to a received
state s, they only copy the encrypted values in s to the next
state.

3 Forward-Backward MAFS

Forward-Backward MAFS (MAFBS) employs a high-level
concept similar to MAFS: cooperative state-space search by
a group of agents, where each agent expands a state using its
own operators only. MAFBS differs from MAFS in its mes-
sage passing scheme. Whereas MAFS sends a state s gener-
ated by a public action to all agents that can apply an ac-
tion in s, MAFBS sends similar, yet more restricted forward
messages, as well as backward messages, requesting other
agents to achieve facts that the agent needs.

For ease of exposition, we describe MAFBS in terms of
multiple search processes running concurrently. We also fo-
cus on the question of when can a non-private action (which
here we refer to simply as public) be applied by the agent,
as the application of private actions by an agent is not re-
stricted.

The algorithm is message driven, with each forward or
backward message starting a new search process. Forward
searches are standard, attempting to advance the agent to-
wards achieving G, while backward searches are goal ori-
ented, where an agent attempts to achieve a specific set of
facts P .

Of course, instead of using multiple processes, we can use
a single open list, choosing at each iteration one state to ex-
pand, progressing the process that this state originated from.
Below, we provide a crude pseudo-code of MAFBS (Algo-
rithm 1), ignoring many details for clarity.

3.1 Message Types

MAFBS requires 3 types of messages:

• Forward messages: messages sent after an agent ϕi exe-
cutes a public action a, to all agents that have an action a′
such that pre(a′) ∩ eff(a) �= ∅, that is, a′ requires a pre-
condition that a supplies. The message contains the new
state, as well as the public effects of a.

• Backward messages: sent from an agent ϕi to an agent
ϕj , requesting ϕj to supply a fact p that ϕi requires. This
message is sent only to an agent which has actions that
achieve p. The message also contains an identifier, allow-
ing the requesting agent to map this message to a specific
search process after a reply. The message contains the cur-
rent state, the requested fact p, and the requesting agent
ϕi.

• Reply messages: sent once an agent ϕj has managed to
produce the fact p requested in a backward message, con-
taining the state s where p is achieved. This message is
sent only to the requesting agent ϕi which requested p.
The message also contains the identifier allowing the the
requesting agent to map the reply to the request.

3.2 Initialization

MAFBS begins by initializing the open list of each agent with
the forward message 〈I,P〉. As we explain below, this al-
lows each agent to apply any action applicable in I .

3.3 Handling Forward Messages

An agent that receives a forward message 〈s, P 〉, checks all
of its actions that have a precondition in P . For each such
action a that can be executed, the agent starts a new search
process over a(s). A forward search process is a standard
local heuristic forward search, in which the agent extracts a
state from the open list, applies all relevant actions, and adds
the resulting states back into the open list.

If a public action a was applied, a forward message as de-
scribed earlier is sent. If a state that is potentially a goal state
is generated, a goal detection algorithm, described later,
commences.

When a forward search process identifies an action a′ with
a precondition in P such that all private preconditions of a′
hold, but some public preconditions of a′ must be achieved
by other agents, the forward process sends again backward
messages requesting the missing preconditions of a′.

3.4 Handling Backward Messages

An agent that receives a backward message 〈s, p, ϕi〉, begins
a restricted forward search process. This process is designed
to achieve p, and can hence be restricted only to actions that
are relevant to p, which can be identified by regression, or
by a rapid complete approximated regression.

During this search, the agent may again identify an action
a′ whose private preconditions are satisfied, yet has some
unsatisfied public precondition, that must be produced by
other agents. In this case, the agent sends additional back-
ward messages.

When an agent manages to achieve p, it sends a reply mes-
sage to the requesting agent, containing the state where p
was achieved, and an identifier allowing the receiving agent
to associate the reply with a request.

211

Algorithm 1: MAFBS for Agent ϕi

1 MAFBS(i)
2 foreach Action a executable from I do
3 start a new forward search process with a(s) in its

open list
4 send forward message 〈a, eff(a)〉 to all relevant

agents
5 while TRUE do
6 process all received messages
7 choose an active search process and advance it

8 process-forward-message(s, P)
9 foreach a ∈ Ai s.t. pre(ai) ∩ P �= ∅ do

10 if s |= pre(a) then
11 start a new forward search process with a(s) in

its open list
12 send forward message 〈s, eff(a)〉 to all

relevant agents
13 else
14 Pm ← pre(a) \ s
15 foreach ϕj that can satisfy a fact p in Pm do
16 send backward message 〈s, p, i〉 to ϕj

17 process-backward-message(s, p, j)
18 Ap ← actions relevant for p
19 start a new backward search process with goal p over

actions Ap

20 process-reply-message(s)
21 proc ← the search process that sent the backward

message that was replied to
22 a ← the action in proc with missing precondition p
23 if s |= pre(a) then
24 Add a(s) to the open list of proc

25 else
26 Pm ← pre(a) \ s
27 foreach ϕj that can satisfy a fact p in Pm do
28 send backward message 〈s, p, i〉 to ϕj from

proc

3.5 Handling Reply Messages

An agent that receives a reply message containing state s,
identifies the search process from which the reply originated,
as well as the action a that required the missing precondi-
tions. If a can be executed in the received state s, then a is
executed, and the resulting state a(s) is added to the open
list of the search process.

If a still has some missing preconditions, new backwards
messages are sent with the state s, requesting achievement
of the missing preconditions.

Optimizations It was previously observed in MAFS that
sending messages whenever a public state is generated, pro-
duces too many messages. Instead, in MAFS agents send
messages only when a state generated by a public action is
extracted from the open list, that is, when that state is heuris-
tically deemed to be the best current state. We use a simi-
lar approach, sending both forward and backward messages
only after a state is extracted from the open list.

1 advance-forward-search()
2 s ← extract min from open list
3 if s is a goal state then
4 traceback solution and terminate

5 foreach a ∈ Ai do
6 if s |= pre(a) then
7 add a(s) to the open list
8 send forward message 〈a, eff(a)〉 to all

relevant agents
9 else

10 if private pre(a) satisfied in s then
11 foreach p ∈ pre(a), s �|= p do
12 send backward message 〈s, p, i〉 to

relevant agents

13 advance-backward-search(p,Ap, j)
14 s ← extract min from open list
15 if s |= p then
16 Send reply message s to the requesting agent ϕj

17 foreach a ∈ Ap do
18 if s |= pre(a) then
19 add a(s) to the open list

20 else
21 if private pre(a) satisfied in s then
22 Pm ← pre(a) \ s
23 foreach ϕj that can satisfy a fact p in Pm

do
24 send backward message 〈s, p, i〉 to ϕj

Intuitively, forward messages advance the plan towards
the goal, while backward messages are a necessary setback
because a needed action cannot be executed. Following this
intuition, we give priority to forward messages. When a state
is extracted from the open list, we apply all private actions
and the relevant public actions, we send only forward mes-
sages, and insert the state back into the open list. If that state
is extracted again, we send backward messages for relevant
public actions with missing public preconditions. That is,
backward messages are sent only once no further forward
progress can be made in the heuristically best state.

In addition, when deciding which search process, forward
and backward, to advance next, we again give priority to the
standard forward search over the backward search in a 2 : 1
ratio. That is, for each 2 states processed from the standard
open list, we process one state from a backward open list.

3.6 Goal Detection

Many existing privacy preserving algorithms assume that all
goals are public to all agents, or that agents can define arti-
ficial public goal actions, and thus report goal states to all
other agents. However, by adding artificially shared vari-
ables, these schemes violate agent privacy. Furthermore, al-
lowing public goals only when propositions can be subset-
public, seems overly restrictive.

To allow for private sub-goals and yet retain agent privacy,

212

we suggest using a distributed goal detection mechanism.
The essential steps are broadcast and consensus. For goal
broadcast, when an agent (the initiator) generates a state in
which all its goals, private and public, are satisfied, it sends
this state to all its neighbors. When an agent receives a pro-
posed goal state, it forwards it to all agents that have not
sent it the proposed goal. An agent that receives a proposed
goal from all its neighbors sends them back its decision (i.e.,
whether the state satisfies its own goals). For consensus, an
agent that received a decision updates it based on its own
goals, and forwards it to all neighbors who did not send a
decision. If the initiator receives a positive decision from all
its neighbors, it starts a second broadcast stage, announcing
that the search has terminated successfully. Naturally, vari-
ous optimizations are possible.

This mechanism contains some minimal information
leakage, because an agent that broadcasts a goal state and
receives a negative decision, learns that some other agent
has a private goal. Agent privacy, however, is preserved.

3.7 Private State Encryption

Earlier, we described how agents in MAFS maintain the pri-
vacy of their private state information by encrypting it, and
that since other agents do not use or change this state infor-
mation, they can simply copy the encrypted values to newly
generated states.

In the case of subset-public variables, the encryption
scheme is a bit more involved, but similar. Each variable will
have its own encryption/decryption key. For each subset-
public variable p, all agents in pr(p) are aware of its ini-
tial value, the identity of pr(p) members, and its encryp-
tion/decryption key. Of course, each agent will have its own
private encryption key (or it could simply maintain a cache
of IDs) for its private variables. The encrypted state is a list
of encrypted variables values, and each agent can only de-
crypt the values to which it has a key, as needed. Thus, the
state sent by one agent to another will contain the encrypted
value of all variables.

3.8 Distributed Plan Execution

When a goal is reached, the agents need to traceback the
path leading to the goal. We assume that agents that receive
a new state, record the identity of the sending agent (includ-
ing backward messages). Once a goal is detected, a trace-
back process ensues. When the traceback reaches a state re-
ceived from another agent, the token is passed to that agent
who continues the process. Note that sometimes, because of
backwards messages, the agent simply passes the token on
to another neighbor without introducing new actions, as in
the plan generation process. By definition, the sending and
receiving agents are aware of their mutual existence, as they
exchanged states before, and must share some variable. The
process stops when the initial state is reached. Now, each
agent knows when (at which state) and how it should act,
and the plan can be executed in a distributed manner

4 MAFBS Properties
We now discuss the key properties of MAFBS: soundness,
completeness, and agent privacy.

Claim 1. MAFBS is sound.

Proof. Each state generated in MAFBS is obtained by apply-
ing an action to a state that was previously generated, start-
ing at the initial state. Thus, all generated states are reach-
able, and if a goal state is found, there must be a plan.

Unfortunately, MAFBS is incomplete. One way to achieve
completeness, which we call Modified MAFBS is the follow-
ing: suppose that an agent receives a message, both forwards
and backwards, such that it can apply an action (i.e., the con-
ditions in line 10 or line 23 are true), it still sends a back-
wards message (lines 16 & 28) to agents that can supply
some precondition of that action (it may suffice to do this
only if a precondition that holds is destroyed by this ac-
tion.). Whether weaker conditions suffice remains an open
question. When the prioritizations described earlier is used,
such messages are never actually sent in our experiments.

For our completeness proof, we assume that the goal is
a single proposition. If not, the goal detection algorithm
is modified to ensure that a state in which a subgoal is
achieved is added to the open list of each agent. This, in
essence, restarts the search from states in which a subgoal
was achieved. We shall also assume, without loss of gener-
ality, that all actions in the plan are public. Private actions
can be compiled away by considering all private action se-
quences that achieve some private state. In our algorithm,
this is not really needed, provided we allow agents complete
flexibility with the application of private actions – i.e., run
the algorithm as is, except that before applying a public ac-
tion, the agent can freely apply any private actions.

We require the following definitions: The causal struc-
ture of a valid plan π (Karpas and Domshlak 2012), denoted
CS(π) is a DAG whose nodes are the actions of π. a is a
parent of a′ iff a precedes a′ in the π, and a has an effect,
say p, that is a precondition of a′, and no action between a
and a′ produces p. That is, there is a causal link between a
and a′ in π (Tate 1977). As we assume that the goal is a sin-
gle literal, there is a single leaf node in CS(π). We will use
InvCS(π) to denote CS(π) with edge directions reversed,
which by the above is a DAG with a single root node. Fi-
nally, we say that a plan is minimal if whenever any action
is removed from the plan, it is no longer a valid plan (i.e., it
is either not executable or does not achieve the goal).
Lemma 1. Let a, a′ be two actions in a plan π such that
a precedes (not necessarily immediately) a′ in π, and p ap-
pears in the description of a and a′ (possibly negated). Then,
a is an ancestor of a′ in CS(π).

Proof. The proof is by induction on the number of actions
between a and a′ in π in whose description p appears.
First, suppose that there are no such actions. Because we
assume actions are in transition normal form, then p (possi-
bly negated) appears in both the preconditions and effects of
a and a′. Therefore, a must supply the correct value of p to
a′. Consequently, by definition, a is a parent of a′ in CS(π).

For the inductive step, suppose the above holds when
there are k actions between a and a′, and consider the case
where there are exactly k + 1 actions, a1, a2, . . . , ak+1 be-
tween a and a′ that contain p in their description. By the

213

inductive hypothesis, a1 is an ancestor of a′, and by the ar-
gument above, a is a parent of a1, and thus, an ancestor of
a′.

An immediate consequence of the above Lemma and the
definition of post-order traversal of a graph is:
Lemma 2. The order of actions that mention p in their de-
scriptions in any post-order traversal of InvCS(π) is iden-
tical.

Proof. By Lemma 1, every two actions that mention p have
an ancestor/descendant relation, which must be maintained
in any post-order traversal.

Lemma 3. Every post-order traversal of InvCS(π) is a
valid plan.

Proof. In any post-order traversal of the graph, for every ac-
tion a, the relative order of all actions supplying a with some
precondition must be the same. Therefore, the value of the
propositions in the precondition of a prior to the execution
of a will be identical to their value prior to the execution of
a in π, and therefore, the preconditions of a are satisfied and
a is executable, and hence the entire sequence is executable,
and in particular the last action that achieves the goal.

We now prove:
Theorem 1. Modified MAFBS is complete.

Proof sketch. Suppose a MA-STRIPS planning problem is
solvable. Let π be such a plan. We show that MAFBS gener-
ates a post-order traversal of InvCS(π), which by Lemma 3
is a plan.

Let a be the first action a in π. a must be a leaf node
of InvCS(π). After executing a, the algorithm continues
to execute one descending path from a using forward mes-
sages until ap, the first parent of a that has other children
(which means that this action requires additional actions per-
formed before it). According to the algorithm, the current
state is sent backwards from ap to one of the children and
along some branch up to one of its leaf descendants al (leaf
w.r.t. the tree w/o the actions executed so far). In the mod-
ified version of the algorithm, we are guaranteed that the
messages are sent backwards by ap and its descendants even
if the action is applicable. Next, we apply al, and by virtue
of backwards messages, the resulting state is passed and up-
dated along the branch from al to ap. This processes contin-
ues until we finish the graph traversal. The above is the key
argument in a formal inductive proof.

An important, technically straightforward property is:
Theorem 2. MAFBS with a heuristic whose computation
preserves agent privacy preserves agent privacy.

Proof sketch. The key intuition is that an agent cannot dis-
tinguish between having multiple “hidden” neighbors of its
neighbor, and the case of a “larger” neighbor that encom-
passes all of these hidden neighbors.

In more detail: Suppose that agent ϕj is not a neighbor of
agent ϕi, and let us consider the case that ϕi and ϕj have a
common neighbor ϕk. ϕi and ϕj do not communicate with

each other directly in any stage of the algorithm (search,
goal detection, and plan reconstruction). Thus ϕi can learn
about the existence of ϕj only via the content or existence
of messages. First, we note that the nature and order of mes-
sages sent by ϕk to ϕi are identical whether ϕk has addi-
tional neighbors hidden from ϕi or not. Next, let us consider
the contents of the messages during search. The messages
that ϕi receives contain, aside from the values of variables
it is aware of, the values of other variables. These values are
encrypted so that their value cannot be determined. Their
owner, as well, cannot be detected. In particular, whether the
encrypted variables belong to ϕk or to another agent. The
same holds during goal detection – if ϕi receives a goal pro-
posal or a decision from ϕk, it cannot know whether ϕk pro-
posed it or accepted/rejected it, or some agent unknown to
it. Finally, during plan reconstruction, we repeat the process
of search, but backwards, and the same argument applies.

The above arguments are true also if ϕi and ϕj have other
shared neighbor ϕ′

k. The only additional information trans-
mitted is heuristics estimates, whose computation must also
preserve agent privacy.

The landmarks heuristics (Maliah, Shani, and Stern
2014b) respects agent privacy: agents are aware only of
landmarks of neighbor agents. Hence, using this heuristic
estimate with MAFBS maintains agent privacy.

Finally, although initially MAFBS sends a state s only
to agents that can use the effects of the last action, s may
be sent to additional agents via backwards messages. Still,
while MAFS sends s to all agents, MAFBS will send s only
to agents relevant to the last action performed. While this set
could contain all agents, it is often much smaller.

5 Empirical Evaluation

We conduct an empirical analysis of MAFBS. We experiment
with a set of benchmarks from the CoDMAP competition
(Štolba, Komenda, and Kovacs 2015), and two more com-
plicated domains — MA-Blocks and MA-Logistics, where
a larger number of private actions need to be executed be-
tween two consecutive non-private actions, and agents must
choose between several paths for achieving goals.

We compare MAFBS to MAFS. Both algorithms use a land-
mark heuristic (Maliah, Shani, and Stern 2014a), which nat-
urally extends to preserve agent privacy. Table 1 shows the
results of the experiments. We report coverage, as well as the
number of messages that were sent (a message broadcasted
to k agents is counted as k separate messages, MAFBS mes-
sages contain one extra bit), the time to completion, and the
number of expanded states. We report averages only over
problems that both algorithms were able to solve. The table
is sorted by decreasing improvement in sent messages. In
addition, we report the geometric means in Table 2.

MAFBS is advantageous across all metrics in (almost) all
domains. Differences are especially pronounced in the case
of the number of messages. MAFBS sends from 3% to 71%
of the messages sent by MAFS, and 38% on average. This is
not surprising, as MAFS sends new states to all agents that
can apply an action, while MAFBS sends forward messages
only to agents that use an effect of the generating action.

214

(a) Elevators
(b) MALogistics (c) Depot

Figure 2: Agent interaction graph. Larger nodes represent agents while smaller nodes represent shared facts.

Coverage Messages Time States
Domain MAFS MAFBS MAFS MAFBS Ratio MAFS MAFBS Ratio MAFS MAFBS Ratio
satellites 13/20 19/20 6518 225 3.5 % 411.9 109.8 26.7 % 16692.6 1147.8 6.9 %

rovers 20/20 20/20 2091.3 197.5 9.4 % 121.3 39.1 32.2 % 1894.6 742.5 39.2 %

depot 10/20 13/20 58117 6904 11.9 % 148.2 11.9 8 % 30541 4683.7 15.3 %

MALogistics 26/26 26/26 2117.8 343.7 16.2 % 16.9 15.5 91.7 % 3453.1 2840.8 82.3 %

woodworking 8/20 8/20 6068.3 1878.4 31 % 125.3 19 15.2 % 3393.3 1072.5 31.6 %

zenotravel 20/20 20/20 235.1 74.9 31.9 % 209.8 155.5 74.1 % 528.1 435.2 82.4 %

blocksworld 14/20 14/20 58080.3 21779.2 37.5 % 216.3 72 33.3 % 28905.8 18172.5 62.9 %

logistics 20/20 20/20 596.9 227.5 38.1 % 1.2 1 83.3 % 356.1 347.3 97.5 %

MABlocks 4/8 5/8 580.3 272 46.9 % 1382.7 992 71.7 % 405.8 316.5 78 %

sokoban 5/20 8/20 11760.6 5764 49 % 214.5 75.7 35.3 % 17695.4 10714.6 60.6 %

elevators 18/20 20/20 355.2 210.4 59.2 % 19 7.2 37.9 % 783.4 490.8 62.6 %

driverlog 14/20 14/20 783.9 517.4 66 % 51.3 34 66.3 % 3121.4 2944.1 94.3 %

Taxi 20/20 20/20 451.9 323.7 71.6 % 0.3 0.2 66.7 % 419.3 298 71.1 %

Average 38.1 % 53 % 61.6 %

Table 1: Comparing the performance of MAFBS and MAFS. For each domain we report the average over all problems.

Messages Time
Domain MAFS MAFBS MAFS MAFBS

Satellites 1698.09 84.29 73.03 10.06

Rovers 908.57 129.67 17.39 9.05

Depot 7838.33 1441.28 13.47 2.39

MALogistics 1937.92 335.40 15.75 14.67

Woodworking 1081.31 644.46 2.87 1.72

Zenotravel 90.10 31.89 5.65 4.57

BlocksWorld 9567.31 5187.88 43.32 20.08

Logistics 374.87 124.24 0.58 0.52

MABlocks 555.12 266.19 1304.10 919.56

Sokoban 2804.44 1167.77 15.31 6.11

Elevators08 222.37 165.05 4.16 2.33

Driverlog 152.23 117.39 1.64 0.74

Taxi 322.33 230.46 0.20 0.16

Table 2: Geometric means for MAFBS and MAFS.

The added backward messages do not reduce the advantage
of MAFBS. This reduction in messages is important, as in
many distributed settings the cost of message passing dom-
inates all other costs. Our implementation mimics a multi-
agent scenario on a single machine, with messages passed
through shared memory. Presumably, in a truly distributed
setting, the advantage of MAFBS will be more pronounced.
The number of generated states as well as runtime improves
in MAFBS across all domains, although not as much as the

Coverage Time Messages
Domain FwdBwd Fwd FwdBwd Fwd FwdBwd Fwd

MALogistics 26 26 15.5 15.5 343.7 343.7
blocksworld 14 14 72 72.1 21779.2 21779.2
rovers 20 20 41.1 41.1 197.5 197.5
satellites 19 19 110.4 110.4 225.8 225.8
zenotravel 20 20 155.5 150.9 74.9 74.9
elevators 20 20 7.2 7.1 210.4 195.3
logistics 20 20 1 1 227.5 197
driverlog 14 14 34 28 517.4 252.7
woodworking 8 8 19 17 1878.4 1713.5
depot 12 7 15 11 8012 3078
MABlocks 5 3 686 690 246 202
sokoban 8 2 1.3 1.4 267 288

Table 3: Comparing forward-backward to sending forward
messages only

reduction in the number of messages.
To further understand the behavior of MAFBS we take

a closer look at the domains where MAFBS does best and
worst. Satellites is by far the easiest domain for MAFBS,
because no agent ever generates a precondition for another
agent. However, agents share resources consumed, but never
produced, by actions, and different agents can achieve differ-
ent subgoals. Thus, there is no need for an agent to ever send
forward (or backward) messages. Instead, the only mes-
sages that are sent are goal messages, allowing one agent

215

Bwd actions Max bwd
Domain Forward Backward in plan depth

MALogistics 343.7 0 0 0
blocksworld 21779.2 0 0 0
rovers 197.5 0 0 0
satellites 225 0 0 0
zenotravel 74.9 0 0 0
elevators 210.4 15.1 0 1
logistics 227.5 30.4 0 1
driverlog 517.4 200.3 0 2
woodworking 1878.4 303.4 0 2
sokoban 5764 68.2 1 1
MABlocks 272 43.5 0.8 2
Taxi 323.7 62.5 0.4 5
depot 6904 4823.2 3.9 6

Table 4: Analyzing message behavior.

to achieve goals that the other could not. Rovers has similar
properties and presents similar results. Taxi and Driverlog
are the domains where the reduction in the number of mes-
sages is lowest. In these domains there are public facts that
are shared between all agents. Hence, executing some of the
actions, results in sending forward messages to all agents.

We show (Figure 2) the agent interaction graphs for ex-
ample problems from 3 domains — MALogistics and De-
pot, where MAFBS reduces the amount of messages consid-
erably, and Elevators where it does not. In the graphs, the
larger nodes represent agents, the smaller nodes represent
facts, and an edge represents that an agent uses a fact.

MALogistics is a complex domain similar to the running
example in Figure 1. We created domains where the num-
ber of interacting agents is limited, that is, the area under
the control of most trucks is connected to at most k other
agents. Thus, each time an agent drops a package at some
logistic center, it needs to inform only a small number of
agents, greatly reducing the number of messages. Indeed, as
the graph shows, in MALogistics there is only one fact that
is shared among 4 agents. All other facts are shared between
exactly 2 agents. In Depot, only one fact is shared among
3 agents, and all other facts are shared only between two
agents. Given these sparse dependencies, it is no surprise
that MAFBS sends many fewer messages than MAFS.

In Elevators, on the other hand, changes in each floor af-
fect 3 out of 4 elevators, while floor f5 is shared between all
agents. Thus, agents need to inform almost all other agents
of changes in a floor, and the number of messages sent by
MAFBS is not much less than those sent by MAFS.

These domains demonstrate that loose coupling of agents
is advantageous for MAFBS, while tightly coupled agents
with many almost public facts, make MAFBS less advanta-
geous. In all domains, supporting agent privacy does not re-
sult in reduced performance.

To better understand MAFBS, we take a deeper look at
the messages sent by the algorithm. In Table 4 we split the
domains into 3 sets: The first set contains domains where
no backward messages were ever sent. In these domains an
agent never needed a precondition supplied by another agent
to apply a public action. Of course, Rovers and Satellite be-

long to this set. In the second set of domains, agents some-
times requested other agents to achieve preconditions using
a backward message, but these requests never entered the fi-
nal plan. The third set of domains are the most interesting
ones, where the backward messages generated actions that
were added to the final plan. Of these, Depot and Taxi were
the ones where the backward search was deepest, and in De-
pot the most backward actions were added to the plan.

Depot is the most interesting domain in our experiments.
In Depot the agent needs to place boxes in a specific order at
a target location. Depot is especially difficult for landmark
based search, because the planner may need to give up on
achieved landmarks to reach the goal. In Table 1 we see that
the reduction in messages, runtime, and expanded states is
very pronounced there. This is because limiting agents to
apply only actions that depend on the latest action, reduced
the problem of placing boxes in the wrong order.

As in many domains MAFBS does not require any back-
ward messages, we ran a forward only version, removing the
considerations for sending backward messages altogether
(Table 3). While in domains from the first class, there is little
benefit in this version, in domains from the second class, this
resulted in significantly less messages and run time. These
results demonstrate that many domains are, in a sense, easy
to solve, using a single forward path in plan space. In addi-
tion, we can see that in domains form the third class, sending
backward massages significantly improve the coverage.

6 Conclusion

We described the multi-agent forward-backward search al-
gorithm. This algorithm improves upon the state-of-the-art
MAFS algorithm, most significantly in the number of mes-
sages passed. It also improves upon MAFS in terms of pri-
vacy in three ways: 1) Guarantees agent privacy. 2) Due to
the reduction in messages, it may leak less private informa-
tion. Fewer messages sent are likely to lead to less private in-
formation leakage (Štolba, Tožička, and Komenda 2016). 3)
MAFBS adapts the more refined privacy model of (Bonisoli
et al. 2014) supporting agent privacy. The original algorithm
suggested by (Bonisoli et al. 2014) modifies MAFS with ad-
ditional encryption, but keeps the same messages passing
protocol. Thus, in terms of performance, number of mes-
sages, and agent privacy it is identical to MAFS.

In the future, we intend to examine a fwd/bwd version
of secure-MAFS. The fwd/bwd behavior appears orthogonal
to the changes made in secure-MAFS, so their combination
could be both more secure and send fewer messages.

MAFBS is also interesting because it combines both for-
ward and backward reasoning in a manner that is very dif-
ferent from current single and multi-agent planning (and
search) algorithms. We believe that additional optimizations
that will focus the message passing are possible, and could
lead to further improvements in performance.

Acknowledgments: Supported by ISF Grant 933/13, by
the Helmsley Charitable Trust through the Agricultural, Bi-
ological and Cognitive Robotics Center, and by the Lynn and
William Frankel Center for Computer Science.

216

References

Bonisoli, A.; Gerevini, A. E.; Saetti, A.; and Serina, I. 2014.
A privacy-preserving model for the multi-agent proposi-
tional planning problem. In ECAI 2014 - 21st European
Conference on Artificial Intelligence, 18-22 August 2014,
Prague, Czech Republic - Including Prestigious Applica-
tions of Intelligent Systems (PAIS 2014), 973–974.
Brafman, R. I., and Domshlak, C. 2013. On the complexity
of planning for agent teams and its implications for single
agent planning. Artificial Intelligence 198:52–71.
Brafman, R. I. 2015. A privacy preserving algorithm for
multi-agent planning and search. In the International Joint
Conference on Artificial Intelligence (IJCAI), 1530–1536.
Faltings, B.; Léauté, T.; and Petcu, A. 2008. Privacy guar-
antees through distributed constraint satisfaction. In Pro-
ceedings of the 2008 IEEE/WIC/ACM International Con-
ference on Intelligent Agent Technology, Sydney, NSW, Aus-
tralia, December 9-12, 2008, 350–358.
Karpas, E., and Domshlak, C. 2012. Optimal search
with inadmissible heuristics. In Proceedings of the Twenty-
Second International Conference on Automated Planning
and Scheduling, ICAPS 2012, Atibaia, São Paulo, Brazil,
June 25-19, 2012.
Maliah, S.; Shani, G.; and Stern, R. 2014a. Privacy pre-
serving landmark detection. In the European Conference on
Artificial Intelligence (ECAI), 597–602.
Maliah, S.; Shani, G.; and Stern, R. 2014b. Privacy pre-
serving landmark detection. In ECAI 2014 - 21st European
Conference on Artificial Intelligence, 18-22 August 2014,
Prague, Czech Republic - Including Prestigious Applica-
tions of Intelligent Systems (PAIS 2014), 597–602.
Maliah, S.; Shani, G.; and Stern, R. 2015. Privacy preserving
pattern databases. In ICAPS workshop on Distributed and
Multi-Agent Planning (DMAP).
Nissim, R., and Brafman, R. I. 2012. Multi-agent A* for
parallel and distributed systems. In AAMAS, 1265–1266.
Nissim, R., and Brafman, R. I. 2014. Distributed heuristic
forward search for multi-agent planning. Journal of Artifi-
cial Intelligence Research (JAIR) 51:293–332.
Pommerening, F., and Helmert, M. 2015. A normal
form for classical planning tasks. In Proceedings of the
Twenty-Fifth International Conference on Automated Plan-
ning and Scheduling, ICAPS 2015, Jerusalem, Israel, June
7-11, 2015., 188–192.
Štolba, M., and Komenda, A. 2014. Relaxation heuristics
for multiagent planning. In International Conference on Au-
tomated Planning and Scheduling (ICAPS).

Štolba, M.; Fišer, D.; and Komenda, A. 2015. Admissi-
ble landmark heuristic for multi-agent planning. In Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS).
Štolba, M.; Komenda, A.; and Kovacs, D. L. 2015. Compe-
tition of distributed and multiagent planners (codmap). The
International Planning Competition (WIPC-15) 24.

Tate, A. 1977. Generating project networks. In Proceed-
ings of the 5th International Joint Conference on Artificial
Intelligence. Cambridge, MA, August 1977, 888–893.
Štolba, M.; Tožička, J.; and Komenda, A. 2016. Secure
multi-agent planning. In Proceedings of the 1st Interna-
tional Workshop on AI for Privacy and Security, PrAISe ’16,
11:1–11:8. New York, NY, USA: ACM.

217

