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Abstract

Agents operating in a multi-agent environment must consider
not just their own actions, but also those of the other agents in
the system. Artificial social systems are a well known means
for coordinating a set of agents, without requiring central-
ized planning or online negotiation between agents. Artificial
social systems enact a social law which restricts the agents
from performing some actions under some circumstances. A
good social law prevents the agents from interfering with
each other, but does not prevent them from achieving their
goals. However, designing good social laws, or even check-
ing whether a proposed social law is good, are hard questions.
In this paper, we take a first step towards automating these
processes, by formulating criteria for good social laws in a
multi-agent planning framework. We then describe an auto-
mated technique for verifying if a proposed social law meets
these criteria, based on a compilation to classical planning.

Introduction

The design of an agent which is about to operate in a multi-
agent environment is quite different from the design of an
agent which performs its activities in isolation from other
agents. Typically, a plan that would have allowed an agent
to obtain its goals had it operated in isolation might yield
unexpected results as a consequence of other agents’ activ-
ities. Various approaches to multi-agent coordination have
been considered in the literature. We could, for instance,
subordinate the agents to a central controller. This approach
may be useful in various domains but might suffer from
well-known limitations, such as bottlenecks at the central
site or sensitivity to failure. Another approach is to design
rules of encounter, that is, rules which determine the be-
havior of the agent, and in particular the structure of ne-
gotiation, when its activities interfere with those of another
agent. Rules of encounter may be quite useful for conflict
resolution, but might sometimes be inefficient, requiring re-
peated negotiations to solve on-line conflicts. In this pa-
per we consider a canonical intermediate approach to co-
ordination, referred to as artificial social systems (Tennen-
holtz 1991; Shoham and Tennenholtz 1992a; 1992b; 1995;
Moses and Tennenholtz 1995).
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An artificial social system institutes a social law that the
agents shall obey. Intuitively, a social law restricts, off-line,
the actions legally available to the agents, and thus mini-
mizes the chances of an on-line conflict and the need to
negotiate. Similarly to a code of laws in a human society
(Rousseau 1762), an artificial social law regulates the indi-
vidual behavior of the agents and benefits the community as
a whole. Yet, the agents should still be able to achieve their
goals, and restricting their legal actions to a too wide extent
might leave them with no possible way to do so.

Consider for instance a domain involving a set of techni-
cians, broken machines, and tools. The technicians can walk
between locations, take and put down tools, and fix the ma-
chines using those tools. The goal consists of a set of ma-
chines that should be fixed. In order to guarantee that ev-
ery machine gets fixed, we could set a law which forces the
technicians to return every tool they use to the toolbox when
they are finished with it. Although it may seem like this law
is enough, a more subtle issue involves a possible deadlock,
where technician 1 is holding tool A and waiting for tool B,
while technician 2 is holding tool B and waiting for tool A.
In order to avoid such deadlocks, we could modify the law to
allow each technician to hold at most one tool at any given
moment. This example illustrates the fact that we must be
careful in designing social laws: Only useful social laws, i.e
laws which guarantee that each agent achieves its goals, are
to be considered.

The artificial social systems approach has become a
canonical approach to the design of multi-agent systems
(Woolridge 2001; Shoham and Leyton-Brown 2008; Horling
and Lesser 2004; d’Inverno and Luck 2004; Klusch 1999).
However, while the origins of the artificial social systems
approach arise from a knowledge representation and plan-
ning perspective, and early work by the founders of that ap-
proach had advocated the use of planning paradigms, such as
STRIPS-like representations for multi-agent planning (Ten-
nenholtz and Moses 1989), the connection between artificial
social systems to modern planning techniques has not been
crystallized or exploited. The aim of our current line of re-
search is to re-visit the artificial social systems approach in
view of progress made in planning. Specifically, the contri-
butions of this paper are threefold: First, we describe a for-
malism for representing and reasoning over social laws in a
multi-agent planning framework. Second, we describe some

Proceedings of the Twenty-Seventh International Conference on Automated Planning and Scheduling (ICAPS 2017)

163



robustness criteria we believe good social laws should sat-
isfy. Third, we describe an algorithm for verifying if a given
social law meets these criteria, which is based on a compi-
lation to classical planning. An empirical evaluation shows
this approach scales up very well.

Preliminaries

We consider multi-agent planning settings formulated in (a
variation of) MA-STRIPS (Brafman and Domshlak 2008).
Our focus in this paper is on problems which do not require
cooperation, but do require coordination, and thus we mod-
ify MA-STRIPS to include a goal for each agent, rather than
an overall goal. A multi-agent planning setting is defined by
a tuple Π = 〈F, {Ai}ni=1, I, {Gi}ni=1〉, where: F is a set of
facts, I ⊆ F is the initial state, Gi ⊆ F is the goal of agent
i, and Ai is the set of actions of agent i, where agents are
numbered 1 . . . n. Each action a ∈ Ai is described by pre-
conditions pre(a) ⊆ F , add effects add(a) ⊆ F , and delete
effects del(a) ⊆ F . The result of applying action a in state
s is (s \ del(a)) ∪ add(a).

The projection of Π for agent i is the (single agent)
STRIPS (Fikes and Nilsson 1971) planning problem Πi =
〈F,Ai, I, Gi〉. A sequence of actions πi is a solution for Πi

if applying the actions in πi from state I results in a state s
that satisfies the goal, that is, a state such that Gi ⊆ s.

In the execution model we consider here, each agent plans
offline, arriving at plan πi. The agent then tries to follow πi

by executing it one action at a time. Thus, at any given mo-
ment there are several agents, each ready with its next ac-
tion (the number could be less than n if some agents have
already finished executing their plan). At each step, we as-
sume that the choice of which agent acts next is made by
some external scheduler. The chosen agent then executes its
pending action, the state of the world changes accordingly,
and the chosen agent then sets the next action in the plan as
pending. Then, the next step starts, and the scheduler again
chooses the agent to act next. Note that we do not make any
assumptions about the fairness of the scheduler, and in fact,
consider it to be adversarial.

Encoding Social Laws

We have described our multi-agent setting, but we have yet
to describe how we represent social laws in this setting. To
begin with, we will represent social laws as modifications to
a MA-STRIPS problem. That is, a social law l takes an input
MA-STRIPS problem Π, modifies it, and outputs a new MA-
STRIPS problem Πl. Such a law is described by:

1. The facts it adds or removes,
2. The actions it adds or removes,
3. The preconditions, add effects, or delete effects it adds or

removes from each existing action,
4. The facts it adds or removes from the initial state
5. The facts it adds or removes from each agent’s goal, and
6. The action preconditions which are denoted as waitfor

The first 5 items above are simply syntactic modifications
of an MA-STRIPS setting. For example, the social law which

states that technicians must return tools to the toolbox when
they are done can be encoded by (a) removing all actions
which put down tools in any other locations, and (b) adding
the fact that the technician is not holding anything to each
technician’s goal. Note that while the definition allows a so-
cial law to modify all aspects of the MA-STRIPS problem,
not all such modifications make sense as social laws (for ex-
ample, making the goal ∅). For the purposes of this paper,
we assume the social law is designed by a human to be rea-
sonable, given an understanding of the problem at hand.

The waitfor precondition annotations, however, require
some explanation. Waiting is one of the most basic forms of
coordination, and can eliminate some failures. For example,
waiting for a tool to be put back in the toolbox eliminates
failures that result from not finding the tool. However, wait-
ing also introduces the possibility of a deadlock, where two
technicians are waiting for each other to finish and return
their tools, as described previously.

The semantics of executing an action with a waitfor pre-
condition in our model is as follows: When an agent’s pend-
ing action a has a waitfor precondition p, the scheduler will
only execute the action (that is, choose this agent to act next)
if p holds in the current state s. We will denote the waitfor
preconditions of action a by prew(a) and the other precondi-
tions of a by pref (a). If an action a is executed in some state
s which does not satisfy pref (a) (i.e., pref (a) � s), we say
that action a has failed. If at least one agent is waiting for
some precondition, and all other agents are either waiting
for some precondition or have already achieved their goal,
then the system is in a deadlock.

We conclude this section with a brief discussion of when
it does or does not make sense to wait for some precondi-
tion of an action. One of the original motivations for social
laws comes from robotics, and in the real world, robots can
not sense everything. Thus, it only makes sense to wait for
something the agent can sense, as otherwise there is no way
to implement the action on a robot. This is a subtle point
with the assumptions underlying classical planning: assum-
ing the actions are deterministic, do we sense at every state,
or only at the initial state? For classical planning, the answer
is irrelevant, but when there are multiple agents operating
in the world, the answer is very important. waitfor precon-
dition annotations answer this question by stating that we
sense before we start executing an action.

Secondly, it does not make sense to wait for a precondi-
tion which the agent can achieve by itself — a private fact
in multi-agent planning terms. This would automatically re-
sult in an agent entering a deadlock by itself. For example,
consider the action move(A,X, Y ) which has a precondi-
tion at(A,X), which the agent waits for. Unless some other
agent can move A to X , and has a good reason to do so, A
will be stuck waiting for itself to move to X .

Properties of Social Laws
Now that we have formalized the setting in which we con-
sider social laws, we describe what are the criteria that define
a good social law. We consider two different criteria for so-
cial laws, which we call rational and adversarial robustness.
In rational robustness, we assume all agents are rational and
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want to achieve their goal, and ask whether there is any pos-
sible way for them to interfere with each other. In adversar-
ial robustness, we assume all agents except for one specific
agent (say agent i) are adversarial, and only want to prevent
agent i from achieving its goal, without regard for achieving
their own goal later. These criteria are formally stated in the
following definition:

Definition 1. A social law l for multi agent setting Π =
〈F, {Ai}ni=1, I, {Gi}ni=1〉 is robust to:

rational iff for all agents i = 1 . . . n, for all individual so-
lutions πi for Πi, for all possible action sequences π re-
sulting from any arbitrary interleaving of {πi}ni=1 which
respects waitfor preconditions, π achieves G1 ∪ . . .∪Gn.

adversarial against i iff for all individual solutions πi for
Πi, for all possible action sequences π resulting from an
arbitrary interleaving of πi which respects waitfor pre-
conditions with any valid action sequence of all other
agents, π achieves Gi.

adversarial iff it is robust to adversarial against i for all
i = 1 . . . n.

We remark that Definition 1 is somewhat restrictive.
Specifically, it assumes each agent chooses a plan to execute
a-priori, and then executes that plan. Without introducing
the ability to wait, this is similar to conformant planning —
whenever the scheduler tells an agent to act, it must execute
its next action. If the preconditions of that action do not hold,
the agent fails.

In general, we would like to be able to support more gen-
eral policies for the agents. This would be similar to con-
tingent planning, except that the non-determinism is really
the result of other agents acting in the world. However, this
makes the non-deterministic planning problem highly in-
tractable, as any action can have many outcomes (Muise et
al. 2015).

Therefore, in this paper we adopt a limited form of con-
tingent planning — waiting until some condition holds. This
means that each agent can treat its own individual planning
problem as a classical planning problem, and does not need
to reason about the possible changes introduced by the other
agents. In fact, we argue that the purpose of a good social
law is to allow agents to do just that — not have to reason
about what the other agents are going to do, assuming they
respect the social law. As our focus in this paper is on coor-
dination problems, rather than on problems involving coop-
eration, we believe this is a good middle-ground.

To show that waiting is a natural way to specify social
laws, consider our running example. If a technician executes
the pickup tool action without waiting for the tool to be in
the toolbox, the action will fail. However, if we denote the
precondition of the tool being in the toolbox as waitfor, we
obtain the desired behavior of waiting for the tool to be there.

One more point to note is that, in some cases, we might
want to allow an agent’s individual plan to explicitly include
waiting for some external event. For example, we might
want to wait for another agent to achieve its goal before ex-
ecuting some action. An action in which agent i waits for p
can be easily incorporated into our framework, by adding an

action to the MA-STRIPS problem Π with a waitfor precond-
tion p, and adding an action which achieves p to Πi — the
single agent projection of Π. Thus, when agent i attempts to
come up with its individual plan πi it can be optimistic and
assume that whatever it waits for will occur. In the next sec-
tion, we describe how we can automatically verify whether
such optimism is warranted.

Verifying Social Laws

Now that we have a formal definition of what it means
for a social law l to be robust to adversarial or to ratio-
nal, we can easily formulate the corresponding decision
problems: VERIFY-ADVERSARIAL and VERIFY-RATIONAL,
which take a MA-STRIPS setting Π and a social law l, and
return whether Πl is robust to adversarial (respectively, ra-
tional). We begin by discussing the relation between these
two verification problems.

Verifying Adversarial vs. Verifying Rational

It is easy to see that if a social law is robust to adversar-
ial, then it is also robust to rational. Conversely, we now
show that the verification problem for adversarial robustness
VERIFY-ADVERSARIAL is reducible to the verification prob-
lem for rational robustness VERIFY-RATIONAL.

Theorem 1.
VERIFY-RATIONAL ≥p VERIFY-ADVERSARIAL.

Proof. Given a multi-agent setting Π and a social law l, we
want to solve VERIFY-ADVERSARIAL(Πl). From Definition
1, this is equivalent to verifying that Πl is robust to adversar-
ial against i for all i = 1 . . . n. To verify that Πl is robust to
adversarial against a given i, we will construct a 2-agent set-
ting Π′ and a social law l, such that Π

′l is robust to rational
iff Πl is robust to adversarial against i.

The facts and the initial state in Π′ are the same facts as in
Π: F and I , respectively. The first agent in Π′ is agent i from
Π, and its actions and goal are the same as in Π: Ai and Gi,
respectively. The second agent in Π′ is a single virtual agent,
which controls all agents in Π except for i, that is, its action
set is

⋃
j �=i Aj . The goal of this agent is always true (	), that

is, it can achieve its goal whenever it wants. The social law l
is the same, except for the required modifications introduced
by renaming the agents.

To see that Π
′l is robust to rational iff Πl is robust to

adversarial against i, note that for any solution πi for Πi,
and for any sequence of actions π′ of all other agents, the
set of interleavings of πi and π′ which respects waitfor pre-
conditions is the same in Π

′l and in Πl. Furthermore, note
that given any such interleaving π, it achieves Gi in Π

′l iff
it achieves Gi in Πl. Finally, note that π always achieves
the (always true) goal of the second agent in Π

′l, and that
the definition for adversarial against i does not require the
agents other than i to achieve their goal.

To complete the picture, we now describe how we can
verify that a social law l is rationally robust in a multi-agent
setting Π.
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Π′ = 〈F ′, A′, I ′, G′〉, where:
• F ′ = {f1 . . . fn | f ∈ F} ∪ {fg, fc | f ∈ F} ∪
{wtf,i | f ∈ F, i = 1 . . . n} ∪ {fini | i = 1 . . . n} ∪
{failure, act}

• A′ =
⋃n

i=1 A
′
i ∪{CHECK-NO-f,CHECK-NO-WAITING-f | f ∈ F},

where:
A′

i = {ENDs
i ,ENDf

i ,ENDw
i } ∪ {asi , afi | ai ∈

Ai} ∪ {aw,x
i | ai ∈ Ai, x ∈ prew(ai)}, such that:

pre(asi ) = act ∧ (
∧

f∈pre(ai)
(fi ∧ fg)),

add(asi ) = {fi, fg | f ∈ add(ai)},
del(asi ) = {fi, fg | f ∈ del(ai)},

pre(afi ) = act ∧ (
∧

f∈pre(ai)
fi) ∧ (

∧
f∈prew(a) fg) ∧

(
∨

f∈pref (ai)
¬fg),

add(afi ) = {failure} ∪ {fi | f ∈ add(ai)},
del(afi ) = {fi | f ∈ del(ai)},

pre(aw,x
i ) = act ∧ (

∧
f∈pre(ai)

fi) ∧ ¬xg ,
add(aw,x

i ) = {failure, wtx,i} ∪ {fi | f ∈ add(ai)},
del(aw,x

i ) = {fi | f ∈ del(ai)},

pre(ENDs
i ) = ¬fini ∧ (

∧
f∈Gi

fi) ∧ (
∧

f∈Gi
fg),

add(ENDs
i ) = {fini},

del(ENDs
i ) = {act},

pre(ENDf
i ) = ¬fini ∧ (

∧
f∈Gi

fi) ∧ (
∨

f∈Gi
¬fg),

add(ENDf
i ) = {fini, failure},

del(ENDf
i ) = {act}

pre(ENDw
i ) = ¬fini ∧ (

∧
f∈Gi

fi) ∧ (
∨

f∈F wtf,i),
add(ENDw

i ) = {fini, failure},
del(ENDw

i ) = {act}

pre(CHECK-NO-f) = (
∧

i=1...n fini) ∧ ¬fg ,
add(CHECK-NO-f) = fc,
del(CHECK-NO-f) = ∅

pre(CHECK-NO-WAITING-f) = (
∧

i=1...n fini) ∧
(
∧

i=1...n ¬wtf,i),
add(CHECK-NO-WAITING-f) = fc,
del(CHECK-NO-WAITING-f) = ∅

• I ′ = {act} ∪ {fi | f ∈ I, i = 1 . . . n} ∪ {fg | f ∈ I},
and

• G′ = {failure}∪{fc | f ∈ F}∪ {fini | i ∈ {1 . . . n}}

Figure 1: Formal Description of the Compilation. For ease
of exposition, we use logic, rather than sets, to express pre-
conditions.

Verifying Rational Robustness

Our algorithm compiles the VERIFY-RATIONAL problem for
Πl = 〈F, {Ai}ni=1, I, {Gi}ni=1〉 into a classical planning

problem Π′. This compilation is described formally in full
in Figure 1, but we will first provide some explanations of
the compilation, and then prove its correctness.

The key idea behind this compilation is to create a plan-
ning problem Π′ which attempts to find a set of individ-
ual plans for each agent, and an interleaving between these
plans, which does not work — that is, which leads to either
an action failing or to a deadlock. Thus, the social law is ro-
bust iff if the planning problem we create is unsolvable. On
the other hand, a solution to this planning problem gives us
a counter-example for the robustness of the social law.

The compilation creates n + 1 copies of each fact of the
planning problem. We will refer to copies 1 . . . n as local
copies (one for each agent), and the final copy as the global
copy, which will be denoted by g. Each action of agent i
affects both its local copy i and the global copy g. The dif-
ference is that the local copy i keeps track of the current
state assuming agent i had acted alone, and the global copy
g keeps track of the “real” current state, which accounts for
the actions of all agents.

The objective is to find a plan for each agent which works
alone (that is, achieves agent i’s goal in local copy i), but
when all plans are joined together (in an order chosen by
the planner) in copy g, there is a failure. This is captured
by the goal of this planning task, which is to achieve Gi

in copy i, and have either a deadlock or some action fail
in the global copy, as indicated by the flag failure. We
remark that this duplication of facts is similar to the com-
pilations for discovering worst case distinctiveness in goal
recognition design (Keren, Gal, and Karpas 2014; 2015;
2016), although the rest of the compilation is very different.

In order to identify failures in the global copy, we create
several versions of each action ai for each of the possible
outcomes of ai: ai succeeds, ai fails due to a violated (non-
wait) precondition, or ai leads to a deadlock. Each of these
affect copy i as if ai succeeds, but has different effects on
the global copy: the success outcome also succeeds in the
global copy, the fail version requires one of the precondi-
tions of ai to be false in the global copy1, and the deadlock
version requires that one of the facts that ai waits for is false,
and remains false when agent i has a chance to act. This is
achieved by raising a flag wtf,i that indicates that agent i is
waiting for fact f . Since we assume the scheduler is adver-
sarial to the agents, and thus under the control of the planner,
the next opportunity when agent i is sure to be able to act is
after all other agents are finished, i.e. have either achieved
their goal or are also waiting.

In order to know when agents have finished, we also add
an END action for each agent, whose preconditions are the
goal facts of the agent. We create the success, fail, and dead-
lock versions of this action, and thus the only failures we
need to consider are action preconditions not holding and
deadlocks. However, in order to prevent a situation where an
agent achieves its goal early, and then another agent invali-
dates it later, we do not allow any “regular” actions to occur
after one agent executed an END action, which is controlled

1note that this requires disjunctive negative preconditions,
which can be easily compiled away by adding more actions
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by the act flag.
Finally, in order to make sure that deadlocks are true dead-

locks (that is, that if agent i is waiting for fact f , then f will
be false after all agents have finished), for each fact f we
also add two actions which are meant to verify that no agent
is waiting for f at the end, and f holds. These actions are
called CHECK-NO-f and CHECK-NO-WAITING-f . The
first checks that f does not hold, and the second checks that
no agents are waiting for f . Both of these achieve a new fact,
fc, which is also included in the goal, and are only applicable
after all agents have executed their END actions. Together,
these actions verify that at the end, wtf,i → ¬f , that is, that
if agent i is waiting for fact f , then f does not hold at the
end. Note that, since we need this to hold for all agents, this
is equivalent to ¬f ∨ (

∧
1=1...n ¬wtf,i), and each of these

actions is responsible for checking one of the disjuncts.
It is easy to see that the compilation is polynomial, and

that the description size of Π′ is roughly n times more than
that of Πl. We now proceed to prove that the compilation is
correct, through a series of lemmas. We begin by proving a
lemma about the structure of any solution of Π′.

Lemma 1. Any solution π of Π′ can be divided into three
sub-sequences, π = πa · πEND · πCHECK, such that πa

contains only “regular” actions (asi , a
f
i or aw,f

i for some
ai ∈ Ai), πEND contains only END actions, and πCHECK
contains only CHECK-NO-f and CHECK-NO-WAITING-f
actions.

Proof. By construction of Π′, as soon as one of the END
actions is executed, act is deleted. As act is a precondi-
tion of all regular actions, they must all precede the first
END action. Similarly,

∧
i=1...n fini is a precondition of all

CHECK actions, and since fini can only by achieved by
one of the ENDi actions, all END actions must precede all
CHECK actions.

Next, we prove that any solution for Π′ contains valid in-
dividual solutions for each of the agents:

Lemma 2. Let π = πa · πEND · πCHECK be an arbitrary
solution of Π′. Define πi to be the subsequence of πa con-
sisting only of actions of agent i. Then πi is a solution for
Πl

i — the projection of Πl for agent i.

Proof. Let us look at the projection of Π′ on {fi | f ∈
F} ∪ {fini}, which we will denote by Π′

i. It is easy to see
that Π′

i is simply Πl
i with an END action that achieves fini

added to it. As Π′
i is an abstraction of Π′, any solution for Π′

is also a solution for Π′
i. Since actions that do not belong to

agent i do not affect {fi | f ∈ F} or fini, if π is a solution
of Π′, πi · 〈ENDi〉 is a solution of Π′

i, for any of the versions
of ENDi. Because Π′

i and Πl
i are equivalent except for the

addition of END and fini, πi is a solution for Πl
i.

We now prove that any solution of Π′ respects the waitfor
preconditions:

Lemma 3. Let π = πa · πEND · πCHECK be an arbitrary
solution of Π′. π respects the waitfor preconditions of all
actions in πa, that is, whenever one of the success (asi ) or

fail (afi ) variants of action ai is executed in π, all waitfor
preconditions of ai hold.

Proof. prew(ai) is in the preconditions of both asi and afi ,
meaning that any action that is executed, is executed only
when the agent could execute it (that is, would not have
waited).

We are now ready to prove our main theorem, about the
correctness of the compilation:

Theorem 2. Assume Πl
i is solvable for all agents i. Then Π′

is not solvable iff Πl is rationally robust.

Proof. Assume Π′ is solvable, let π = πa ·πEND ·πCHECK
be a solution for Π′, and denote by πi the subsequence of πa

consisting only of actions of agent i. Let us denote the first
non-success action in πi (that is, afi or aw,f

i ) by nsi, where
nsi = ⊥ if all actions in πi are success actions (that is, asi ).
From Lemma 2, each πi is a solution for Πi.

First, note that there must exist some j such that nsj �= ⊥.
Otherwise, none of the actions in the plan achieve failure,
which is part of the goal. If there exists some j such that
nsj = afj then πa gives us an interleaving of {πi}ni=1 which
violates one of the (non-wait) preconditions of afj . From
Lemma 3, πa respects all waitfor preconditions. Thus, we
have found an interleaving of valid individual plans, which
respects waitfor preconditions, but leads to an illegal joint
plan, and thus Πl is not rationally robust.

If there does not exist some j such that nsj = afj then
there must exist some j such that nsj = aw,f

j . We can guar-
antee that f will not hold at the end, since the only way
to achieve fc, which is part of the goal, would be through
CHECK-NO-f (as CHECK-NO-WAITING-f is not appli-
cable after aw,f

j is executed). Thus, if the scheduler does
not allow agent j to act until all other agents are done,
we have an interleaving in which agent j is in a deadlock.
Here again, we have found an interleaving of valid individ-
ual plans, which respects waitfor preconditions, but leads to
an illegal joint plan, and thus Πl is not rationally robust.

We have shown that if Π′ has a solution then Πl is not
rationally robust. Now assume Π′ does not have a solution,
and let πi be any solution for Πi, for i = 1 . . . n. Let π
be any interleaving of these individual plans which respects
waitfor preconditions. All preconditions of all actions in π
hold when the action is executed, as otherwise Π′ would
have been solvable (taking π with the appropriate END and
CHECK actions added at the end as a solution). Similarly, π
achieves G1∪ . . .∪Gn, and none of the agents is stuck wait-
ing for some fact (as again, either of these scenarios would
have led to Π′ being solvable). Thus, if Π′ does not have a
solution then Πl is rationally robust.

We have shown that verifying the rational robustness of a
social law can be done via compilation to classical planning.
One important point to note here is that if the social law
is not robust, then the solution of the planning problem can
provide a counter-example, and thus guide a human designer
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in fixing the social law. We discuss this point, and its relation
to the choice of which planner to use, in the next section.

Empirical Evaluation

We implemented our compilation, based upon the script
which was used to convert MA-PDDL to PDDL representing
a centralized planning problem from the first Competition
of Distributed and Multiagent Planners (Stolba, Komenda,
and Kovacs 2015).2 We remark that while we have described
the compilation for a grounded MA-STRIPS setting, most of
the compilation can actually be done on the lifted level of
MA-PDDL, and our compilation performs partial grounding
where it must.

In order to evaluate how our compilation scales for prob-
lems with increasing size, we used the benchmark do-
mains from the first Competition of Distributed and Multia-
gent Planners (Stolba, Komenda, and Kovacs 2015). These
benchmarks are for cooperative planning, and thus contain
a single goal in each instance. We created an instance with
a separate goal for each agent by allocating each fact in the
goal to one of the agents, in a round-robin manner (except
in cases where the first argument of the goal fact mentions a
specific agent, in which case it was allocated to that agent).
We excluded problem instances in which one of the agents
was not able to achieve its goal alone (we checked this by
solving the Πi planning problem for each agent), which left
us with only 3 domains (BLOCKSWORLD, DRIVERLOG, and
ZENOTRAVEL). Additionally, we encoded the machine fix-
ing domain introduced in this paper, which we call FIX.

The choice of planner to use here poses an interesting
dilemma. If the social law we are trying to verify is robust,
then the planning problem is going to be unsolvable. In such
a case, planners for proving unsolvability (Bäckström, Jons-
son, and Ståhlberg 2013; Hoffmann, Kissmann, and Torralba
2014) are a good choice, as our results will show. However,
if we were sure that the social law is robust, we would not
be verifying it, and thus using a “regular” planner tends to
be faster, as our results will also show. Thus, we evaluate
the performance of different planners on both the original
formulation of the domains, and on the same domains con-
taining robust social laws (which we formulated using our
verification procedure).

Another important consideration is that planners which
are geared towards proving unsolvability typically do not
return a plan, even if the problem turns out to be solvable.
While this allows these planners to make more efficient use
of memory, it means that if the social law we are trying to
verify is not robust, we do not have a counter-example show-
ing us what needs to be fixed.

While in general it is probably a good idea to combine
several planners in a portfolio, possibly also using some
prior estimate on the probability of whether the social law
is robust or not, in our empirical evaluation, we simply used
the FF planner (Hoffmann and Nebel 2001), as well as the
top 3 planners from the Unsolvability International Plan-
ning Competition (Muise and Lipovetzky 2015): Aidos 1

2The compilation script and our new FIX domain are available
at https://github.com/karpase/social laws

FIX FIX with social law
prob FF SymPA (irr) M&S Aidos 1 FF SymPA (irr) M&S Aidos 1

probFIX-2-2 0.0 1394.17 - 855.89 0.0 304.78 1.32 -
probFIX-2-3 0.0 - - 855.93 0.0 304.72 1.32 -
probFIX-2-4 0.0 - - - 0.02 43.45 1.71 -
probFIX-3-5 0.0 - - - 0.12 313.01 6.96 -
probFIX-3-7 0.0 - - - 0.25 353.62 33.3 -
probFIX-4-9 0.0 - - - 2.28 0.44 0.4 0.47

probFIX-4-11 0.0 - - - 3.21 0.51 0.47 0.53
probFIX-5-11 0.01 - - - 34.05 0.95 0.88 0.99
probFIX-5-13 0.02 - - - 124.46 - - -
probFIX-6-15 0.02 - - - 679.14 - 2.65 3.0
probFIX-6-17 0.02 - - - 1659.24 - - -

SOLVED 11 1 0 2 11 8 9 4

Table 1: Results of Different Planners on FIX

(Seipp et al. 2016), M&S (Torralba, Hoffmann, and Kiss-
mann 2016), and SymPA (IRR) (Torralba 2016). We remark
that initial experiments with other planners from the unsolv-
ability competition showed the same trend as the competi-
tion, and the top 3 planners are also the best on our bench-
marks. All planners had a time limit of 30 minutes and a
memory limit of 8GB on an Intel i7-6700k CPU runnning at
4GHz.

Tables 1,2,3, and 4 show the results of running these plan-
ners on each instance of our compilation. Each table shows
the runtime in seconds on each problem, as well as the total
number of problems solved for each domain. Note that we
consider a planner to solve a problem if it either finds a plan
or proves that one does not exist.

The left-hand side of each sub-table shows the results of
verifying whether the “empty” social law encoded in the
original domain is robust. The results clearly show that FF
beats all three planners from the unsolvability track on these
problems, which are all, indeed, solvable.

However, we also wanted to evaluate our approach on ro-
bust social laws. For each of the four domains above, we
attempted to create such a robust social law, and succeeded
in doing so on three of them. We used our compilation to
guide this process, using the FF planner to obtain counter-
examples. The results for verifying these social laws appear
on the right-hand side of the sub-tables in these tables. Here,
indeed, the planners from the unsolvability track perform
much better than FF. Thus, we conclude that a useful tool
for verifying social law robustness should combine between
these approaches.

We now describe the process of creating these social laws
for each domain.

FIX

We have encoded our running example into a MA-PDDL do-
main called FIX. The FIX domain involves a set of techni-
cians, broken machines, and tools. The technicians can walk
between locations, take and put down tools, and fix the ma-
chines using those tools. The goal consists of a set of ma-
chines that should be fixed. In the multi-agent version of this
problem, the agents are the technicians, each of whom is as-
signed a set of machines to fix. At the beginning all tools are
stored in a special location called “toolbox”.
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BLOCKSWORLD

prob FF SymPA (irr) M&S Aidos 1
9-0 0.1 - - -
9-1 0.1 - - -
9-2 0.1 - - -

10-0 0.1 - - -
10-1 0.14 - - -
10-2 0.12 - - -
11-0 0.43 - - -
11-1 0.33 - - -
11-2 0.27 - - -
12-0 0.75 - - -
12-1 0.32 - - -
13-0 0.29 - - -
13-1 0.57 - - -
14-0 0.93 - - -
14-1 0.96 - - -
15-0 1.46 - - -
15-1 2.31 - - -
16-1 1.94 - - -
16-2 0.6 - - -
17-0 19.72 - - 1308.03

SOLVED 20 0 0 1

Table 2: Results of Different Planners on BLOCKSWORLD

We propose the next set of social laws for this domain:

• “Put it back where you took it” – each technician can put
down the tool only at the “toolbox”

• “Leave work at work” – the agent should have no tool on
him at the goal state

• “Don’t be greedy” – to avoid deadlocks each technician
can take one tool at a time

Results for this domain appear in Table 1. The results in-
dicate that the unsatisfiability solvers do a much better job at
proving no plan exists than they do in proving that one does
exist, while FF performs better on both sides of the table.

BLOCKSWORLD

The multi-agent BLOCKSWORLD domain involves a set of
robotic arms, each of which constitutes an agent. Each arm
can pick up and stack blocks, as in the single-agent version
of BLOCKSWORLD. Each agent is assigned a goal which
consists of a set of ON(x, y) propositions.

Unfortunately, we could not find any reasonable social
law for this domain. This is because, although each agent
can perform all actions necessary to achieve its goal by it-
self, when agents are operating together they must cooperate
in order to achieve all of their goals. For example, if the goal
of agent 1 is ON(A,B) and the goal of agent 2 is ON(B,C),
then each agent can easily achieve its goal by building a
tower of 2 blocks, but achieving both goals requires a tower
of height 3. This requires cooperation between the agents,
while our focus here is on simple coordination.

Results for this domain appear in Table 2. The results in-
dicate that the unsatisfiability solvers can barely prove solv-
ability here, while FF solves all 20 instances in seconds.

DRIVERLOG DRIVERLOG with social law
prob FF SymPA (irr) M&S Aidos 1 FF SymPA (irr) M&S Aidos 1
pfile1 0.0 1133.14 - 0.32 0.0 0.29 0.27 0.37
pfile2 0.0 - - 1071.08 0.08 0.55 0.56 0.66
pfile3 0.0 - - 931.22 0.67 - 60.41 -
pfile4 0.01 - - - 31.23 - 156.61 -
pfile5 0.02 - - - - 0.25 0.24 1.45
pfile6 0.0 - - - - 1.31 1.34 2.26
pfile7 0.02 - - - - 389.12 - -
pfile8 0.03 - - - - 1.61 1.25 2.89
pfile9 383.84 - - - - 1.91 1.33 3.79
pfile10 0.0 - - - - 0.28 0.18 0.25
pfile11 - - - - - 0.44 0.31 3.24
pfile12 - - - - - 13.91 11.05 23.94
pfile13 0.08 - - - - 1.0 0.73 1.93
pfile14 0.31 - - - - 0.79 0.59 13.02
pfile15 - - - - - 0.86 0.62 17.29
pfile16 1.49 - - - - - - -
pfile17 - - - - - - 57.37 -
pfile18 - - - - - 6.77 6.91 -
pfile19 - - - - - - - -
pfile20 - - - - - - - -

SOLVED 13 1 0 3 4 14 16 12

Table 3: Results of Different Planners on DRIVERLOG

DRIVERLOG

The DRIVERLOG domain involves a set of drivers, trucks,
and packages. Drivers can walk between locations, or enter
trucks and drive them. Packages can be loaded onto trucks
and unloaded. The goal consists of a set of target locations
for each truck and packages. In the multi-agent version of
this problem, the agents are the drivers, each of whom is
assigned a set of packages and a truck, as its individual goal.

The “empty” social law (that is, the original formulation
of this domain) is not robust, because any driver can load
a package which is part of another driver’s goal, and never
unload it. Below, we describe 10 different social laws we
tried with this domain. While the details of these are not
important, this does show that (a) coming up with robust
social laws is non-trivial, (b) our compilation can help a user
find problems with candidate social laws, and (c) counter-
examples are helpful in the process of designing social laws.

First, we tried a social law which states that a driver can
only drive trucks and handle packages if they are assigned
to its goal. However, because some drivers might not have
a truck in their goal, some of the individual projections are
unsolvable.

In order to fix this, we tried a social law which forces
trucks to be empty of drivers and packages in the end (that
is, the social law modifies the goal). However, this social law
is still not robust, as driver i can move a package which is in
driver j’s goal, after driver j is finished.

We then extended the above social law by adding a re-
striction that a driver is only allowed to handle a package as-
signed to its own goal. Our compilation then found another
type of error, where a driver boards a truck that already has
another driver in it.

We then further extended the above social law by mak-
ing the precondition of board-truck which states that the
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truck has no driver a waitfor precondition. However, the
board-truck action fails if the truck becomes empty of its
driver at a different location than where there is a driver wait-
ing to board it.

Naturally, we also made the truck being in the same loca-
tion as the driver waiting to board it a waitfor precondition.
However, this leads to a deadlock when a driver never re-
turns a truck to where another driver is waiting to board it.

We then tried to fix this issue by forcing drivers to return
a truck they boarded to the original location they boarded
it. This had the side effect of some of the individual projec-
tions not being solvable, because the truck’s goal might be
different than its original location.

We then relaxed the above social law, by only requiring
drivers who do not have a goal on a truck’s location to re-
turn it to where they originally boarded it. This leads to a
deadlock when some driver is waiting for a truck in its orig-
inal location, but another driver moved the truck to its goal
location.

To address this, we modified the social law to force drivers
who do not have a goal regarding a truck’s location to board
the truck only at its goal location. This leads to a new kind
of failure, where a driver can not disembark from a truck
that another driver has loaded packages on, because our so-
cial law requires the truck to be empty of packages for the
disembark action to be applied.

We then modified this social law again, to only allow
drivers to board trucks that have no packages in them, and
changed the truck being empty of packages precondition of
disembark to be a waitfor precondition. However, this leads
to a deadlock where a driver is waiting forever to disembark
from a truck.

Finally, we added a restriction that each driver can only
board one truck, and arrived at the following social law:
• Trucks must be empty of both packages and drivers at the

end
• Drivers can only handle packages assigned to their own

goal
• Drivers wait for the truck to be empty and at the right

location before boarding it
• Drivers who do not have a goal on a truck’s location can

only pick it up at its goal location, and must return it there
• Drivers wait for the truck to be empty before boarding and

disembarking from it
• Drivers can only board one truck
We were then able to show this social law is robust.

Results for this domain appear in Table 3. The results indi-
cate that the unsatisfiability solvers are much better at prov-
ing unsolvability, while FF is much better at finding plans.

ZENOTRAVEL

The ZENOTRAVEL domain involves a set of aircraft and peo-
ple. Aircraft fly between different cities, using actions fly
and zoom, which consume different amounts of fuel, and
can also refuel. People can board and disembark aircraft, to
arrive at their goal location. The agents in the multi-agent
version of the domain are the aircraft.

ZENOTRAVEL ZENOTRAVEL with social law
prob FF SymPA (irr) M&S Aidos 1 FF SymPA (irr) M&S Aidos 1
pfile3 0.0 2.08 - 3.09 0.0 0.34 0.3 0.33
pfile4 0.0 - - 3.18 0.0 0.28 0.28 0.3
pfile5 0.0 - - 1218.04 0.01 0.44 0.44 0.48
pfile6 0.01 - - - 0.0 0.46 0.45 0.5
pfile7 0.0 - - - 0.0 0.44 0.45 0.51
pfile8 0.0 - - - 0.0 0.98 0.89 1.23
pfile9 0.01 - - - 0.01 0.93 0.88 1.19
pfile10 0.01 - - - 0.0 0.93 0.88 1.17
pfile12 0.01 - - - 0.01 1.4 1.33 1.74
pfile13 0.02 - - - 0.02 1.52 1.35 1.82
pfile14 0.14 - - - 0.14 7.63 6.86 10.15
pfile15 0.28 - - - 0.17 11.57 11.11 15.4
pfile16 0.15 - - - - 2.92 2.84 3.33
pfile17 0.76 - - - 0.6 24.46 23.23 31.51
pfile18 0.91 - - - 0.6 31.93 30.18 43.25
pfile19 4.34 - - - 2.66 41.95 40.96 56.14
pfile20 4.02 - - - 2.64 52.65 51.78 69.47
pfile21 5.05 - - - - 53.52 52.11 72.64
pfile22 7.5 - - - 5.02 75.39 74.11 103.09
pfile23 12.02 - - - - 11.83 12.21 13.06

SOLVED 20 1 0 3 17 20 20 20

Table 4: Results of Different Planners on ZENOTRAVEL

The original version of this domain is not robust be-
cause two aircraft can attempt to board the same person. We
quickly arrived at a robust social law for this domain, which
arbitrarily allocates people to aircraft. People can only board
the aircraft they are assigned to, meaning that they can not
interfere with each other.

Results for this domain appear in Table 4. In the results
here, the unsatisfiability solvers prove all 20 problems on
the right side of the table unsolvable, while performing very
badly on the left. On the other hand, FF finds plans for all
20 instances on the left side, but fails to prove no plans exist
for 3 instances on the right side.

Discussion

In this paper, we have connected social laws to model-based
planning, and formalized some criteria which we believe
“good” social laws should exhibit under this framework.
We have also described a compilation to classical planning
for verifying whether an artificial social system meets these
criteria, and provided an empirical demonstration that this
compilation is feasible in practice.

As our empirical results have shown, planners that are
geared towards proving unsolvability do perform better at
verifying that a given robust social law is indeed robust.
However, if the social law is not robust, then “regular” plan-
ners often end up being more helpul, as they provide a
counter-example for why the social law is not robust, and
are often faster in practice. This might indicate the existence
of a certain bias, where unsatisfiability solvers assume they
need to prove unsolvability, while classical planners to as-
sume a plan exists.

We remark that the principles behind the compilation we
present can be extended to more realistic settings. First,
agents might not know what the goals of other agents are,
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and only have some idea of what the possible goals are. A
simple compilation which eliminates disjunctive goals can
solve this problem. Second, agents might enter the system
at different places and at different times. It is very easy to
define actions for “adding” agents at legal locations, and our
compilation will take care of making sure the social law cri-
teria are not violated by this.

We conclude by noting that, in this paper, we focus on
the problem of verifying whether a social law (encoded in a
multi-agent planning framework) meets some desired crite-
rion. However, our ultimate goal is to automatically synthe-
size such social laws, rather than just verifying them. Hav-
ing efficient verification techniques is a first step in this di-
rection. If these verification techniques can yield counter-
examples, those could be used to guide a process of auto-
matically refining a social law, until it becomes robust.
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