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Abstract

Compressed path databases (CPDs) are a state-of-the-art ap-
proach to path planning, a core AI problem. In the Grid-based
Path Planning Competition, the CPD-based SRC path plan-
ning system was the fastest competitor with respect to both
computing full optimal paths and computing the first moves
of an optimal path. However, on large maps, CPDs can re-
quire a significant amount of memory, which can be a seri-
ous practical bottleneck. We present an approach that signifi-
cantly reduces the size of a CPD. Our approach replaces part
of the data encoded in a CPD with wildcards (“don’t care”
symbols), maintaining the ability to compute optimal paths
for all pairs of nodes of an undirected graph. We show that
using wildcards in a way that maximizes the memory savings
is NP-hard. We consider heuristics that achieve a good per-
formance in practice. We implement our ideas on top of SRC
and provide a detailed empirical analysis. Average memory
savings can reach a factor of 2. Our first-k-moves lag (i.e.,
the time before knowing the first k optimal forward moves)
increases, but it can be kept within competitive values. The
speed of computing full optimal paths improves slightly.

1 Introduction

A compressed path database (CPD) is a data structure that
encodes optimal first moves from any node s towards any
other node t in a graph. In optimal path planning, CPDs
have been shown to achieve a state-of-the-art speed per-
formance. CPD-based systems such as Copa (Botea 2012)
and SRC (Strasser, Harabor, and Botea 2014) have been top
performers in two different editions of the Grid-based Path
Planning Competition.

A CPD system precomputes and stores the first move of
all-pairs shortest paths (APSPs) for the input graph. When
a new query is addressed, the moves of an optimal path
are retrieved one by one from the CPD, as opposed to per-
forming a more expensive graph search. As a naive en-
coding of APSP data would be prohibitively large, CPDs
compress their data. Despite impressive compression re-
sults (Botea and Harabor 2013; Strasser, Harabor, and Botea
2014), CPDs can still be very large when the input graph is
large, which can make the approach infeasible.
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We present an approach to reducing the size of CPDs. In
this work we focus on undirected graphs. The undirected-
ness assumption is very common in gridmap path planning.

The intuition behind our work is simple to understand.
Given any two nodes s and t, a standard CPD encodes both
an optimal first move from s towards t, and an optimal first
move from t towards s. However, it is sufficient to require
that, for every pair (s, t), at least one of these moves is avail-
able. This allows to reconstruct a full optimal path between
any two nodes (or any fragment of an optimal path). For in-
stance if a first move from s towards t is not available, get t′,
the resulting node after the first optimal move from t towards
s, and continue recursively with the pair (s, t′).

The observation that one out of the two moves is sufficient
allows to replace up to about half of the symbols encoded in
a standard CPD with wildcards (i.e., “don’t care” symbols).
Wildcards allow to improve the compression of a CPD, with
a corresponding reduction of the CPD size.

We develop our ideas on top of the state-of-the-art system
SRC (Strasser, Harabor, and Botea 2014). SRC represents
APSP data as a so-called first-move matrix m where an entry
m[u, v] is an optimal first move from node u towards node
v. Then, each matrix row is compressed with run-length
encoding (RLE). Consider the string aaabaaaabaaa. RLE
encodes it more efficiently as a, 1; b, 4; a, 5; b, 9; a, 10 (i.e.,
there is a solid block of one or more a symbols, starting
at position 1, followed by a solid block of one or more b
symbols, starting at position 4, and so on). Each solid block
is called a run, and our sample string is split into five runs.

Imagine now that we replace each b with a wildcard. Now
the whole string becomes aaa∗aaaa∗aaa, and it can be rep-
resented much more compactly with only one run, namely
(a, 1), since the wildcard is a “don’t care” symbol. This il-
lustrates how wildcards can reduce the size of a CPD.

In deciding what subset of entries in the first-move matrix
should be replaced with wildcards, our approach uses an or-
dering of the graph nodes that we call the wildcard node or-
dering (shorter, wildcard ordering). Put it simply, if a node
v comes before a node u in the wildcard ordering, then, in
the first-move matrix m, we can replace the symbol m[u, v]
with a wildcard. All wildcard orderings are correct, but they
differ in terms of their compression power. In the previous
example, replacing both b symbols led to a good additional
compression, reducing the number of runs from 5 to 1. On

Proceedings of the Twenty-Seventh International Conference on Automated Planning and Scheduling (ICAPS 2017)

250



the other hand, replacing any two a symbols would have no
impact in the number of runs.

We perform a theoretical analysis, showing that finding a
wildcard order that maximizes the memory savings is NP-
hard. Due to this theoretical result, we consider a range of
heuristic wildcard orderings.

While reducing the CPD size, wildcards could increase
the first-k-moves lag, which is the time before the first k op-
timal forward moves are known. The reason is that we build
an optimal path as a combination of “forward” moves (i.e.,
moves from the current source towards the current target)
and “backwards” moves (i.e., from the target towards the
source). Some backwards moves could be needed before the
first k forward moves. We present heuristics focused on how
many wildcards should be considered to balance well the
trade-off between the CPD size and the first-k-moves lag.

We perform a detailed empirical analysis on a large set of
game maps from Sturtevant’s online repository (Sturtevant
2012), a well known standard testbed in path planning re-
search. In domains where the full path is important but the
first-k-moves lag is less important, wildcard ordering heuris-
tics focusing only on the size can reduce the CPD size by a
factor of two on average. On the other hand, when the first-
k-moves lag is also important, we can tune our heuristics,
thanks to their parameters, to balance the trade-off between
the CPD size and the first-move lag. The time to compute
full optimal paths can improve slightly.

2 Related Work
We start with techniques that precompute and com-
press APSP data. In the preprocessing, methods such
as SILC (Sankaranarayanan, Alborzi, and Samet 2005),
Copa (Botea 2011; 2012; Botea and Harabor 2013) and
SRC/MRC (Strasser, Harabor, and Botea 2014; Strasser,
Botea, and Harabor 2015) iterate through all nodes of the
input graph. At one iteration, the node at hand s plays the
role of a current node (source). All other nodes are potential
targets. A Dijkstra search rooted at s assigns to target nodes
t labels representing a first optimal move from s towards t.

At each iteration, the set of first-move labels is com-
pressed. For this purpose, SILC splits the map using
quadtrees, requiring that all targets included in one square
of the quadtree have the same first-move label. Copa splits
the map using rectangles of arbitrary sizes and positions, ob-
taining a better compression than quadtrees. SRC takes a
different approach. Instead of compressing a bi-dimensional
structure such as the input map, SRC represents all nodes
as a one-dimensional string, using a fixed ordering of the
nodes. The string is compressed with run-length encoding
(RLE), as mentioned in the introduction and discussed in
more detail in subsequent sections.

Methods such as Copa and SRC/MRC make use of wild-
cards in a limited way. Only moves for same-node pairs
(s, s) are treated as a wildcard (“don’t care” symbol). As
such, the impact of using wildcards is limited, as there are
only n such same-node pairs, out of n2 node pairs in total. In
contrast, our method allows to use wildcards for more than
half of the n2 node pairs, with a substantial reduction of the
CPD size, as shown in the experimental evaluation.

When a shortest path query is posed, systems such as
those mentioned earlier do not perform any search in the
problem graph. Instead, they retrieve optimal moves one by
one and chain them into an optimal solution. In contrast,
other modern pathfinding approaches, such as searching in
subgoal graphs (Uras, Koenig, and Hernández 2013), Jump
Point Search (JPS) (Harabor and Grastien 2011), and JPS
with bounding boxes (Rabin and Sturtevant 2016) perform a
highly optimized search in a graph obtained from the input
gridmap. In systems that perform graph search, the first-k-
moves lag is equal to the time to find the entire path. The
reason is that a graph search has to be completed all the way
to the target before knowing even the first optimal move.
In contrast, CPD-based systems can provide the first moves
along a path much earlier than the target is reached.

SRC (Strasser, Harabor, and Botea 2014; Strasser, Botea,
and Harabor 2015) was shown in previous work and in the
Grid-based Path Planning Competition to be a state-of-the-
art approach, exceeding the speed performance of other sys-
tems discussed in this section. This is why we implement
our ideas on top of SRC, and use SRC as a benchmark algo-
rithm in our empirical evaluation.

3 Background
Given a graph G = (V,E), a first-move matrix m is a
square, |V | × |V | matrix, with the property that m[i, j] (i.e.,
the cell on row i and column j) is an optimal first move
from node i towards node j. The size of a naive encoding
of a first-move matrix can be within O(|V |2) but, as shown
in the related work section, the literature shows methods to
compress a first-move matrix.

Strasser, Harabor, and Botea (2014) use RLE to compress
each matrix row. RLE compresses a string of symbols by
representing more compactly substrings, called runs, con-
sisting of repetitions of the same symbol. E.g., the string
σ = aabbbaaa has three runs, namely aa, bbb, and aaa.
A run is replaced with a pair that contains the start and the
value of the run. The start is the index of the first element in
the substring, whereas the value is the symbol contained in
the substring. In our example, the string is represented more
efficiently as a,1; b,3; a,6; we call these sequential runs.

Cyclic runs (Botea, Strasser, and Harabor 2015) are ob-
tained by putting the two ends of the string next to each
other, as if the string was cyclic, and then counting the runs.
Consider again the string σ = aabbbaaa. There are three se-
quential runs, as shown earlier. At the same time, σ has two
cyclic runs. The reason is that the first and the last sequential
runs have the same symbol, namely a. When the two ends
of the string are put next to each other, all a symbols become
one single solid block. When the first and the last symbols
of a string are different, sequential and cyclic runs are equiv-
alent. When the first and the last symbols are identical, the
number of cyclic runs is smaller by 1. In the example above,
the sequential runs are a, 1; b, 3; a, 6. The cyclic runs are
b, 3; a, 6. Cyclic runs are sufficient to reconstruct the origi-
nal string (Botea, Strasser, and Harabor 2015).

Cyclic runs could save some additional memory in com-
parison to serial runs, but in practice the differences often
are very small. However, cyclic runs are important because
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they allow an easier theoretical analysis. Similarly to Botea,
Strasser, and Harabor (2015), we use cyclic runs in the the-
oretical analysis presented in this paper.

In this work, we assume that the ordering of the columns
of the first-move matrix is fixed. Column orderings have
been studied in previous work (Strasser, Harabor, and Botea
2014; Botea, Strasser, and Harabor 2015), and reordering
the columns is beyond our focus in this work.

Given an input graph, we assume that we index locally
the outgoing edges of every node i with numbers from 0 to
od(i) − 1, where od(i) is the out-degree of the node i. In
the case of an undirected graph, all edges that are adjacent
to i are both incoming and outgoing edges. We encode an
optimal first move from i towards j as the local index of the
outgoing edge of i that represents the first step on an opti-
mal path to j. On a sparse graph, locally indexing edges has
the advantage that each local index fits into a small number
of bits, with a corresponding benefit in the size of a com-
pressed path database. Notice that graphs used in path plan-
ning, such as 8-connected gridmaps, are sparse, with nodes
having no more than 8 adjacent edges each.

4 Ordered Wildcard Substitutions

A wildcard is a “don’t care” symbol that can improve the
effectiveness of RLE compression. Consider the string σ =
aabbcbb. This string has 4 runs (either sequential or cyclic).
If we replace the c symbol with a wildcard, the number of
runs reduces to two. Wildcards can be used to greatly reduce
the size of a first-move matrix compressed with run-length
encoding. As shown next, CPDs with wildcards allow to
perform optimal pathfinding.

To introduce our wildcard-based approach informally,
consider a total ordering of the graph nodes, o = i1, i2 . . . in.
We call this a wildcard ordering. In m, replace the symbol
on row r and column c with a wildcard if and only if c come
before r in the wildcard ordering. Despite removing some
information, the remaining information (not replaced with
wildcards) is sufficient to reconstruct an optimal path from
any node i to any node j, with i �= j. Indeed, exactly one of
m[i, j] and m[j, i] is preserved in the matrix, while the other
one is replaced with a wildcard. If m[i, j] is preserved, take
a move from i towards j and continue recursively. Other-
wise, take a move from j towards i and continue recursively.
See an example later in this section. Before the example, we
formalize this intuitive idea.
Definition 1 (Basic wildcard range, BWR). Let i1, i2 . . . in
be any reordering of the numbers from 1 to n. The ba-
sic wildcard range λ(ik) of ik is defined as λ(ik) =
{i1, i2 . . . ik}, for 1 ≤ k ≤ n.

BWR defines the symbols to replace with a wildcard on
each row, as described in the previous paragraph. Notice that
each row i also includes m[i, i], which is never needed for
pathfinding purposes anyways. I.e., we never need a move
from the node i to itself.
Definition 2 (Basic ordered wildcard substitution, BOWS).
Given a square matrix m, let o = i1 . . . in be a wildcard or-
dering. A basic ordered wildcard substitution replaces some
symbols with wildcards in the matrix as follows. In the k-th

row in the ordering o (i.e., the row with the index ik), replace
with wildcards all symbols m[ik, l], where l ∈ λ(ik).

Note that the total number of wildcards is n2+n
2 , thus ex-

ceeding half of first-move matrix cells.
The following example illustrates our idea. Consider the

toy 8-connected grid map shown in Figure 1 (a). Its first-
move matrix graph is shown in Figure 1 (b). Figure 1 (c)
shows the first-move matrix after applying our ordered wild-
card substitution with B, E, F , A, C, G, D as wildcard or-
dering. In the matrices, optimal moves are represented as
numbers as follows: 0 = East, 1 = South-East, 2 = South,
. . . , 7 = North-East. For instance, m[A,G] = 2 because go-
ing South is an optimal move from A towards G.

In the preprocessing, Strasser, Harabor, and Botea (2014)
compress with RLE the matrix shown in Figure 1 (b). In
contrast, we compress the matrix shown in Figure 1 (c). In
this toy example, the former matrix has 16 serial runs, and
the latter has 12 serial runs. The savings can be much greater
on large maps, as shown in the experiments.

After the preprocessing is completed and the system starts
answering shortest-path queries, assume that we need to
compute an optimal path from C to E, using a CPD after
applying our wildcards. As C > E in the wildcard ordering
in use, it follows that we have a backwards move available
from E to C, namely move 6 (i.e., North). Indeed, in Fig-
ure 1 (c), m[E,C] = 6 (as opposed to that cell being a
wildcard). The result of that move is D. We continue recur-
sively with the pair (C,D). C < D in the wildcard ordering,
which means we have a move available from C towards D
(i.e., move 4 = West, since m[C,D] = 4 in Figure 1 (c)).
The result of this forward move is B. We continue recur-
sively with pair (B,D). B < D in the wildcard ordering,
so a forward move from B towards D is available (i.e., 3 =
South-West). After this move, the two segments of the op-
timal path, namely the forward segment C, B, D and the
backward segment E, D have met, and the optimal path is
complete. Notice that, before being able to make the first
move forward, we had to make one move backwards. In
general, 0 or more backwards moves may be needed before
making the first k moves forward. This is why the first-k-
move lag can be longer than k in our approach.

5 Theoretical Analysis

We provide an NP-completeness result about computing a
wildcard ordering that minimizes the number of runs of a
matrix. We introduce a few definitions and assumptions, for
an easier formal analysis.
Definition 3 (Wildcard range with one swap, WR1). Let
i1, i2 . . . in be any reordering of the numbers from 1 to n.
The range λ1(ik) of ik is defined as follows:
• λ1(i1) = {i1, in}
• λ1(ik) = {i1, i2 . . . ik}, for 2 ≤ k ≤ n− 1

• λ1(in) = {i2, i3 . . . in}
WR1 is a slight variant of BWR, introduced in Defini-

tion 1. Compared to BWR, WR1 moves the location of one
wildcard symbol from m[in, i1] to m[i1, in]. We call this
change a swap. This swapping preserves the key property
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A B C

D

E F G

m =

⎡
⎢⎢⎢⎢⎢⎢⎣

A B C D E F G

A ∗ 0 0 2 2 2 2
B 4 ∗ 0 3 3 3 3
C 4 4 ∗ 4 4 4 4
D 6 7 7 ∗ 2 1 1
E 6 6 6 6 ∗ 0 0
F 5 5 5 5 4 ∗ 0
G 4 4 4 4 4 4 ∗

⎤
⎥⎥⎥⎥⎥⎥⎦

m =

⎡
⎢⎢⎢⎢⎢⎢⎣

A B C D E F G

A ∗ ∗ 0 2 ∗ ∗ 2
B 4 ∗ 0 3 3 3 3
C ∗ ∗ ∗ 4 ∗ ∗ 4
D ∗ ∗ ∗ ∗ ∗ ∗ ∗
E 6 ∗ 6 6 ∗ 0 0
F 5 ∗ 5 5 ∗ ∗ 0
G ∗ ∗ ∗ 4 ∗ ∗ ∗

⎤
⎥⎥⎥⎥⎥⎥⎦

(a) (b) (c)

Figure 1: Left: a small grid map. The black cells are not traversable. Middle: uncompressed first-move matrix. Right:
(uncompressed) first-move matrix with BOWS, using B, E, F, A, C, G, D as a wildcard ordering. In the matrices, numbers
represent optimal moves; the symbol * represents a wildcard.

that, given any pair of distinct nodes s and t, the database
provides either an optimal move from s to t, or an optimal
move from t to s. WR1 is introduced because the techni-
cal details of the formal analysis presented in the remaining
part of this section are easier to perform with this variant
in use instead of BWR. In terms of empirical performance,
the difference between WR1 and BWR is negligible, as only
one wildcard moves its position, out of a large number of
wildcards used on a map.
Definition 4 (Ordered wildcard substitution with one swap,
OWS-1). Given a square matrix m, assume that the order-
ing of columns is fixed, and let o = i1 . . . in be an ordering
of its rows. OWS-1 replaces some symbols with wildcards
in the matrix as follows. In the k-th row in the ordering o
(i.e., the row with the index ik), replace with wildcards all
symbols m[ik, l], where l ∈ λ1(ik).

Figure 2 (a) shows a matrix used as a running example,
and Figure 2 (b) illustrates applying OWS-1.

Given a wildcard ordering i1, i2 . . . in, we define the next
cyclic position nc(ik) as ik+1 if k < n and as i1 if k = n.
Definition 5. The nc wildcard substitution rule replaces
with a wildcard elements m[ik, nc(ik)], for 1 ≤ k ≤ n.
Definition 6 (NOWS-1: OWS-1 plus the nc rule). NOWS-1
is a substitution method combining OWS-1 and the nc rule.

Figure 2 (c) illustrates applying NOWS-1.
Remark 1. For n ≥ 3, positions replaced with wildcards
when applying OWS-1 are disjoint from positions replaced
with wildcards when applying nc substitutions.

See Figures 2 (b) and (c) for an illustration of this remark.
OWS-1 is a lossless technique, in the sense that it allows

reconstructing a full optimal path (or any fragment) for any
pair of nodes. The interesting discussion is whether the nc
rule is a loseless rule. In general, adding the nc substitu-
tion rule on top of OWS-1 could result into a lossy method,
due to the removal (replacement with wildcards) of symbols
m[ik, nc(ik)] in the matrix. Indeed, if we want either an op-
timal move from node ik to node nc(ik) or an optimal move
from node nc(ik) to ik, the matrix has neither of them after
performing the nc-based substitutions.

However, the information m[ik, nc(ik)] can be handled
separately. With the local indexing of edges in use, pre-
sented in the background section, a very simple trick ensures

that actually there is no information loss. After a wildcard
ordering is selected (and thus the nc function is known), re-
index the outgoing edges of each graph node such that the
local index of the first-move from ik towards nc(ik) is the
same for every node ik. With no generality loss, assume that
such a common first-move index is 0. With this re-indexing
in place, if such a move is needed, return 0.

For example, for a given node ik, assume that the first
move from ik towards the node nc(ik) has the index l. If
l > 0, swap the indexes of the two outgoing edges of ik
initially indexed as 0 and l.

In summary, the nc rule is a lossless method since, in the
common implementation of graphs, every node has its adja-
cent edges indexed locally, as shown above.

Definition 7 (Optimal wildcard ordering for NOWS-1, OP-
T-NOWS-1). Input: a square matrix m and an integer k.
Question: Is there a wildcard ordering o such that, after ap-
plying NOWS-1 on that ordering, the number of cyclic runs
summed up across all rows is at most k?

Theorem 1. OPT-NOWS-1 is NP-complete.

Proof. Clearly, the problem is within NP, as solutions can
be guessed and verified in polynomial time. The hardness is
shown with a reduction from the problem of the existence
of a Hamiltonian cycle in a 3-regular, undirected, bipar-
tite graph, 3REG-BIP-HAM, a known NP-complete prob-
lem (Takanori, Takao, and Nobuji 1980). Let G = (V,E)
be an arbitrary 3-regular undirected bipartite graph, and let
n = |V |. Figure 3 shows a sample 3-regular undirected bi-
partite graph. Given an instance of 3REG-BIP-HAM, i.e.,
G = (V,E), we construct an instance of OPT-NOWS-1.
Specifically, we build a matrix m of size n × n, defined
as follows: m[k, l] = l if (k, l) ∈ E, and m[k, l] = 0
if (k, l) /∈ E. This construction can be done in time that
is polynomial in the size of the 3REG-BIP-HAM instance.
The matrix shown in Figure 2 (a) is precisely the matrix m
corresponding to our sample graph.

Note that G has 3n
2 edges, and m has exactly 3n positive

symbols, 3 per row. We claim that G has a Hamiltonian
cycle if and only if m ends up with 3n

2 cyclic runs.
The “only if” part: Assume that G has a Hamiltonian

cycle, and pick a wildcard ordering o identical to the or-
dering of the nodes in a randomly chosen Hamiltonian path
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m =

⎡
⎢⎢⎢⎢⎢⎣

1 2 3 4 5 6

1 0 0 0 4 5 6
2 0 0 0 4 5 6
3 0 0 0 4 5 6
4 1 2 3 0 0 0
5 1 2 3 0 0 0
6 1 2 3 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

m =

⎡
⎢⎢⎢⎢⎢⎣

1 2 3 4 5 6

1 ∗ 0 0 4 5 ∗
2 ∗ ∗ 0 ∗ 5 6
3 ∗ ∗ ∗ ∗ ∗ 6
4 ∗ 2 3 ∗ 0 0
5 ∗ ∗ 3 ∗ ∗ 0
6 1 ∗ ∗ ∗ ∗ ∗

⎤
⎥⎥⎥⎥⎥⎦

m =

⎡
⎢⎢⎢⎢⎢⎣

1 2 3 4 5 6

1 ∗ 0 0 ∗ 5 ∗
2 ∗ ∗ 0 ∗ ∗ 6
3 ∗ ∗ ∗ ∗ ∗ ∗
4 ∗ ∗ 3 ∗ 0 0
5 ∗ ∗ ∗ ∗ ∗ 0
6 ∗ ∗ ∗ ∗ ∗ ∗

⎤
⎥⎥⎥⎥⎥⎦

(a) (b) (c)

Figure 2: Left: A sample matrix. Middle: The matrix after applying OWS-1, using the wildcard ordering 1, 4, 2, 5, 3, 6. Right:
The matrix after applying NOWS-1 with the same wildcard ordering. The symbol * represents a wildcard. At the right,
wildcards corresponding to the nc rule are shown in bold.

1 2 3

4 5 6

Figure 3: A 3-regular undirected bipartite graph.

stemming from the Hamiltonian cycle at hand. (I.e., obtain
a Hamiltonian path by disregarding one edge of the cycle.)

Recall that NOWS-1 is OWS-1 plus an additional replace-
ment of symbols of the form m[ik, nc(ik)]. Regardless of
the wildcard ordering, OWS-1 replaces exactly half of the
positive symbols. Indeed, observe that, for any two distinct
indexes il and ik, m[ik, il] > 0 iff m[il, ik] > 0. OWS-
1 will remove exactly one of these two since exactly one
of the following two relations holds: either il ∈ λ1(ik) or
ik ∈ λ1(il). See Figure 2 (b) for an example.

In addition to OWS-1, NOWS-1 substitutes n symbols of
the form m[ik, nc(ik)]. See Figure 2 (c) for an example.
Since the ordering at hand corresponds to a Hamiltonian cy-
cle, all the symbols replaced with wildcards using the nc rule
are positive symbols, corresponding to edges included in the
Hamiltonian cycle. It follows that there are 3n− 3n

2 −n = n
2

positive symbols left in the matrix.
Furthermore, there is at most one positive symbol per row.

Indeed, every row initially had 3 positive symbols, and the
two of them corresponding to adjacencies included in the
Hamiltonian path are replaced for sure.

By construction, using NOWS-1, rows in−1 and in con-
tain only wildcards, row in−2 contains exactly one non-
wildcard symbol, and every other row contains at least two
non-wildcard symbols. In row in−2, the non-wildcard sym-
bol is m[in−2, in]. In Figure 2 (c), this is m[5, 6]. We claim
that the non-wildcard symbol on that row is always 0. In-
deed, the Hamiltonian cycle implies the existence of edges
(in−2, in−1) and (in−1, in). A positive value m[in−2, in]
would imply the existence of an edge (in−2, in), leading to
a cycle of length 3, namely (in−2, in−1, in). However, odd-
length cycles cannot exist in a bipartite graph.

It follows that each of the n/2 positive symbols occur on
rows with at least 2 non-wildcard symbols. As remarked

earlier, there is at most one positive symbol per row, which
implies that there is at least one zero symbol in each of these
rows. In summary, these rows have one positive symbol, one
or more zero symbols, and some wildcards. Every row like
this (i.e., row with a positive symbol) has two cyclic runs.
All other rows (i.e., rows with only zeros and/or wildcards)
have one run each. These add up to 3n/2 runs.

The “if” part: Assume that the total number of runs Nt

is at most 3n/2 for a wildcard ordering i1, . . . , in. After
applying NOWS-1, rows with at least one 0 are called 0-
populated rows. A 0-populated row with p positive symbols
(and any number of wildcards) has at least p+1 runs. A row
with no zeros has p ≥ 1 positive symbols, and any num-
ber of wildcards has p runs. We call these solid-positive
rows. Thus, if a matrix has z positive elements distributed
across b0 0-populated rows and b1 solid-positive rows, we
have Nt ≥ n + z − b1 (n is there because each row has at
least one run, and positive symbols add at least z− b1 runs).
Note that b0 + b1 = n − 2 as rows in−1 and in, with only
wildcards, are neither 0-populated nor solid-positive.

In the rest of this section, every time we write m0[i, j] we
refer to the value before applying NOWS-1. We still write
m[i, j] when the value is not impacted by NOWS-1.

Let w be the number of cells m0[ik, nc(ik)] equal to 0.
Recall that OWS-1 leaves 3n/2 positive symbols in place,
and nc replaces one more symbol (either 0 or positive) per
row. It follows that z = n/2 + w and thus Nt ≥ 3n/2 +
w − b1. As Nt ≤ 3n/2, it follows that w ≤ b1.

For n ≥ 8, rows i1, . . . , in−4 are 0-populated.∗ Hence at
most two rows (in−2 and in−3) could be solid-positive (i.e.,
b1 ≤ 2). It follows w ≤ b1 ≤ 2, and hence w ≤ 2. We call
this last relation the α property.

In the rest of the proof we consider the following four
cases. We show that in Cases (1) and (4.1) the graph admits

∗By construction, each row i1, . . . , in−5 is 0-populated, hav-
ing at least 4 non-wildcard symbols, out of each at most 3
are positive. Thus b0 ≥ n− 5 and b1 = n− 2− b0 ≤ 3. As-
sume by contradiction that row in−4 is solid-positive (i.e.,
m[in−4, in−2], m[in−4, in−1], m[in−4, in] are positive). Then
m0[in−5, in−4] = m0[in−4, in−3] = 0, as the degree of node
in−4 is exactly 3; m0[in−2, in−1] = 0 to avoid the odd-
length cycle (in−4, in−2, in−1); m0[in−1, in] = 0 to avoid cycle
(in−4, in−1, in). Thus, w ≥ 4 and 4 ≤ w ≤ b1 ≤ 3. Contradic-
tion.
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a Hamiltonian cycle, while all other cases are impossible.
Case 1: m[in−2, in] = 0 and m0[in−3, in−2] > 0.

Row in−2 is 0-populated as m[in−2, in] = 0. We show
that also row in−3 is 0-populated. Assume by contradic-
tion that m[in−3, in−1] > 0 and m[in−3, in] > 0. Then
m0[in−4, in−3] = 0, since the degree of node in−3 is ex-
actly 3. Furthermore, m0[in−2, in−1] = 0 to avoid the odd-
length cycle (in−3, in−2, in−1), and m0[in−1, in] = 0 to
avoid the cycle (in−3, in−1, in). It follows that w ≥ 3, but
this contradicts the α property. Thus, all rows that could
have positive symbols are 0-populated (i.e., b1 = 0). It fol-
lows that w = 0, i.e., i1, . . . , in, i1 is a Hamiltonian cycle.

Case 2: m[in−2, in] = m0[in−3, in−2] = 0. Case
2.1: row in−3 is 0-populated. It follows that b1 = 0. As
m0[in−3, in−2] = 0, w ≥ 1. Contradiction with w ≤ b1.
Case 2.2: row in−3 is solid-positive (i.e., m[in−3, in−1] >
0 and m[in−3, in] > 0) and hence b1 = 1. It fol-
lows that m0[in−1, in] = 0, to avoid the odd-length cycle
(in−3, in−1, in). Thus w ≥ 2. Contradiction with w ≤ b1.
Thus Case 2 is impossible.

Case 3: m[in−2, in] > 0 and m0[in−3, in−2] >
0. As m[in−3, in] = 0 (to avoid the odd-length cycle
(in−3, in−2, in)) row in−3 is 0-populated and thus the only
solid-positive row is in−2 (i.e., b1 = 1). Thus w ≤ 1
(i.e., at most one cell m0[ik, nc(ik)] is equal to 0). If ei-
ther m0[in−2, in−1] = 0 or m0[in−1, in] = 0, it follows
that i1, i2 . . . in−2, in, i1 is a cycle of length n − 1, which
is an odd length. Contradiction. Otherwise, (in−2, in−1, in)
is a cycle of length 3, which is a contradiction again. Thus
Case 3 is impossible.

Case 4: m[in−2, in] > 0 and m0[in−3, in−2] = 0. Case
4.1: m[in−3, in−1] > 0 and m[in−3, in] > 0. It fol-
lows that m0[in−1, in] = 0, to avoid the odd-length cycle
(in−3, in−1, in). As m0[in−3, in−2] = m0[in−1, in] = 0,
all other elements m0[ik, nc(ik)] are positive (cf. prop-
erty α). Thus i1, i2, . . . in−3, in−1, in−2, in, i1 is a Hamil-
tonian cycle. Case 4.2: At least one of m[in−3, in−1]
and m[in−3, in] is equal to 0 and thus row in−3 is 0-
populated. Hence in−2 is the only solid-positive row, and
b1 = 1. This further implies that w ≤ 1, which means
that at most one element m0[ik, nc(ik)] is equal to 0. As
m0[in−3, in−2] = 0, according to the assumption made for
this case, all other elements m0[ik, nc(ik)] are positive. It
follows that m0[in−2, in−1] > 0 and m0[in−1, in] > 0,
leading to the odd-length cycle (in−2, in−1, in). Contradic-
tion. Thus Case 4.2 is impossible.

Note that the matrix m used in Definition 7 and con-
structed in the previous proof is not necessarily a first-move
matrix. Investigating whether Theorem 1 holds under the
additional condition that m is a first-move matrix is left as
future work.

6 Heuristics

When applying our method, there is a trade-off between the
size of the resulting CPD and the first-k-moves lag, as men-
tioned earlier. We present heuristics aimed at balancing and
controlling the trade-off. The desired behavior depends in
part on the application domain. For instance, in domains

where full paths are required and the first-k-moves lag is
less important, one could aim at minimizing the CPD size.

We discuss two types of heuristics, which are orthogo-
nal and can be combined. The first type refers to heuristic
node orderings to be used as a wildcard ordering. Heuristics
in the second category are about using only a subset of the
available wildcards, to reduce the first-k-moves lag.

Heuristic wildcard orderings. New heuristics used
in our experiments are an enhancement of the CUT node
ordering heuristic and the DFS node ordering heuristic,
which have been introduced by Strasser, Harabor, and
Botea (2014). In that previous work, the CUT and the DFS
heuristic are used to order the columns of the first-move ma-
trix. In contrast, in our work we evaluate CUT and DFS
as wildcard ordering heuristics. Column orderings and our
new wildcard orderings are two independent and orthogonal
enhancements to CPDs.

CUT and DFS are designed to capture the intuition that
nodes close to each other in the graph should come close
to each other in the heuristic ordering. The CUT heuristic
computes the ordering recursively. It divides the graph into
two subgraphs, and requires that all nodes in one subgraph
come in the heuristic ordering before all nodes in the other
subgraph. The process continues recursively. DFS orders
the graph nodes in the order in which the nodes are visited
for the first time in a depth-first traversal of the graph.

As shown in the experiments section, when used as wild-
card orderings, the CUT and the DFS heuristics achieve a
good performance in terms of CPD size. However, the first-
move lag increases on average. A closer look at these heuris-
tics explains this behavior. Consider a current source node
s and a current target t with the property that s > t in the
wildcard ordering. This means that a backwards move is
available. Let t′ be the new target after performing the back-
wards move. Recall that the CUT and DFS heuristics cap-
ture the intuitive idea that nodes close to each other in the
graph should be close to each other in the heuristic order-
ing. Thus, as t and t′ are neighbors in the graph, chances are
they are close to each other in the heuristic ordering. When
s > t and t and t′ are close to each other in the heuristic
ordering, chances are that s > t′, which means that a back-
wards move is available from t′ towards s. Applying this
argument recursively, it could be the case that a relatively
long series of backwards moves are obtained before getting
the first move forward. This explains why DFS and CUT
tend to have an increased first-move lag.

Part of the heuristics presented in the rest of this section
aim at reducing the first-move lag of CUT and DFS. The
combined CUT-random heuristic CUT-rnd(k) starts from
the CUT ordering and swaps the ordering of k pairs of nodes
picked at random, where k is a parameter. The combined
DFS-random heuristic DFS-rnd(k) is similar, except it is
based on DFS. We have also used an uniformly random wild-
card ordering, as a baseline approach.

Varying the number of wildcards in use. As argued
earlier in this section, the CUT and the DFS node orderings
could lead to long chains of backwards moves, increasing
the first-move lag. For this reason we introduce the second
type of heuristics, which control the number of used wild-

255



Algorithm 1: TK-heuristic
input: s source, t target, r threshold, k K-factor

1 if t before s in the wildcard ordering then

2 d ← 100 × |s − t|/n;
3 if d > r and t is multiple of k then

4 encode real move

5 else

6 encode wildcard

7 else

8 encode real move

cards. Their purpose is to break a chain of backwards moves
as early as possible, decreasing the first-k-moves lag.

The idea is to skip the application of some wildcards,
leaving in place some pairs (s, t) with moves available in
both directions. In such cases, we are free to prefer the for-
ward move, reducing the first-k-moves lag.

Our TK-heuristic TK(r, k) is used to decide what wild-
cards should be skipped. The name comes from its two pa-
rameters, the threshold r and the K-factor k. The threshold
r is given as a percentage of the number of nodes, and k is
an integer. Consider an entry m[s, t] that would normally be
replaced with a wildcard, according to a wildcard ordering.
If, in the wildcard ordering, the difference between the in-
dexes of a current source node s and a target node t exceeds
r, and the index of t is a multiple of k, then do not replace
the current first-move symbol with a wildcard. Otherwise,
apply the method as before (i.e., replace the symbol with a
wildcard). See Algorithm 1 for the pseudocode.

The two parameters control how many wildcards to skip.
The larger r, the fewer wildcards are skipped. In particular,
when r grows to 100%, no wildcard is skipped, and thus the
TK-heuristic reduces to our original wildcard substitution
approach. Likewise, the larger k, the fewer wildcards are
skipped. When k > n, no wildcards are skipped.

7 Experiments

In this section, we present the results of our experimen-
tal analysis with the aim of evaluating the effectiveness of
using wildcard substitutions. The test data consist of 8-
connected gridmaps ranging from about 2,000 to 750,000
nodes (Sturtevant 2012). We used 185 real game maps,
from games such as Dragon Age: Origins, Starcraft and Bal-
dur’s Gate II. Each map comes with a set of shortest-path
queries. Maps are undirected. Straight edges have a weight
of 1 and diagonal edges have a weight of

√
2.

The experiments were conducted using an Intel Xeon R©
6-core 3.46GHz CPU running Red Hat 6.8. The original
SRC code is provided by its authors. All algorithms are
compiled using g++ 5.4.0 with -O3.

Table 1 compares the performance of the heuristic wild-
card orderings with respect to using no wildcard substitu-
tions. We evaluate the CPD size, the first-move lag, the first-
20-moves lag, and the speed to compute a full path. The
first-20-moves lag is borrowed from the Grid-based Path
Planning Competition (GPPC). Our method has virtually no

CUT Column Ordering Heuristic
Wildcard heuristic Size Lookups for Lookups for Full path

[%] 1 fwd move 20 fwd moves time [μs]
None 100 1 20 17.03
CUT 49.56 84.37 98.32 14.61
CUT + TK(10, 2) 60.40 5.51 22.65 16.60
CUT + TK(10, 5) 57.97 5.95 23.79 16.38
CUT + TK(10, 10) 56.52 8.12 25.67 16.19
CUT + TK(0, 5) 77.92 2.78 20.11 17.68
CUT + TK(0, 10) 71.74 4.87 21.93 17.26
CUT + TK(0, 100) 57.88 27.27 42.82 16.00
CUT-Rnd(5) 59.09 35.76 64.22 16.09
CUT-Rnd(10) 62.04 25.65 60.29 16.57
CUT-Rnd(100) 70.72 7.59 54.14 18.60
Random 71.55 5.15 53.54 16.56

DFS Column Ordering Heuristic
Wildcard heuristic Size Lookups for Lookups for Full path

[%] 1 fwd move 20 fwd moves time [μs]
None 100 1 20 12.64
DFS 51.93 84.10 98.11 10.43
DFS + TK(10, 2) 66.64 5.51 23.65 11.99
DFS + TK(10, 5) 64.70 6.80 24.72 11.93
DFS + TK(10, 10) 63.19 9.02 26.65 11.84
DFS + TK(0, 5) 82.93 2.72 20.06 12.76
DFS + TK(0, 10) 78.04 4.74 21.85 12.68
DFS + TK(0, 100) 61.27 29.39 45.59 14.67
DFS-Rnd(5) 62.02 36.22 64.32 12.33
DFS-Rnd(10) 65.78 25.58 60.10 12.66
DFS-Rnd(100) 75.53 7.42 53.10 13.60
Random 76.93 5.27 52.60 13.21

Table 1: Results averaged over all maps.

overhead in terms of preprocessing time on top of SRC.
The entry with no wildcard heuristic (label “None”)

stands for the original system SRC (Strasser, Harabor, and
Botea 2014). Every other entry represents our system, im-
plemented on top of SRC, with a given wildcard heuristic.
In the top half of the table, the CUT heuristic is used to order
the columns of the first move matrix. In the bottom half, the
column ordering heuristic is DFS.

Column 2 in Table 1 shows the average CPD size as a
percentage of the original average CPD. Wildcard heuris-
tics such as CUT and DFS reduce the size by a factor of
2 in average, a significant memory improvement. On the
other hand, the measured first-k-moves lags (i.e., k = 1 and
k = 20) increase significantly for CUT and DFS (columns
3 and 4). Using the TK heuristic helps balance this tradeoff.
Take for instance CUT + TK(10,5). It cuts the CPD size by
about 42%, and reduces the first-k-moves lags significantly
in comparison to just CUT.

In the rest of the section, TK(r, k) is a shortcut for CUT +
TK(r, k) and DFS + TK(r, k). When two TK combinations
are directly compared, they are both from the same half of
the table (top or bottom half). TK(r, ∗) denotes all the TK
heuristics tested using threshold r and any value of K factor.

Overall, CUT, DFS, and TK(10, ∗) appear to be among
the best heuristics that we tested. We call these the star
heuristics. When minimizing the CPD size is more im-
portant, use CUT or DFS as wildcard ordering heuristics.
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When the first-k-moves lags matter too, heuristic TK(10, ∗)
achieves a good performance, reducing the CPD size sig-
nificantly, and maintaining the lags within competitive lim-
its. For TK(10, ∗), the first-20-moves lag reduces to val-
ues slightly larger than the 20 optimal value. The first-move
lag stays within less than 10 moves before the first forward
move is available. This too is a very good value in com-
parison to modern systems based on graph search. For in-
stance, the GPPC results show that SRC (called SRC-dfs-i
in the competition report (Sturtevant et al. 2015)) is orders
of magnitude faster in terms of the first-20-moves time and
the max segment time (max time per move) than other opti-
mal solvers (Sturtevant et al. 2015). As explained in the re-
lated work section, the reason is that solvers based on graph
search need to reach the target (i.e., complete the search) be-
fore knowing the first optimal move. On the other hand, the
overheads of our TK(10,*) heuristic are much smaller, being
less than a factor of 1.4 for the first-20-moves lag and less
than a factor of 10 for the first-move lag (cf. Table 1).

Figure 4 illustrates the CPD size reduction for a represen-
tative subset of maps (Dragon Age: Origins maps), to avoid
clutter. Figure 5 illustrates the first-move lag on all maps.
Notice how TK improves the first-move lag of CUT, re-
ducing it from increasingly large values to small and stable
values. To save room and avoid clutter, we plotted a few
heuristics from the top half of Table 1 (i.e., programs using
the CUT column ordering.) Using DFS for column ordering
leads to a similar behavior.

Interestingly, using our wildcard technique can slightly
improve the full path time (column 5 in Table 1). In par-
ticular, this is true about the star heuristics. The reason
is that, with a smaller CPD in use, the rate of CPU cache
misses could be smaller. Also, as compressed matrix rows
are shorter, the binary search needed to extract an optimal
move could be slightly faster.

MRC (Strasser, Harabor, and Botea 2014) can also
achieve some memory savings on top of SRC. However,
MRC’s savings are more modest, being smaller than 15%,
as shown in the original work. Compared to SRC, MRC in-
creases the time per move and the full path time by 25% or
more (Strasser, Harabor, and Botea 2014).

Star heuristics dominate other heuristics evaluated in our
tests. For example, TK(10, 5) dominates the CUT-Rnd
heuristics in terms of both size reduction and first-move(s)
lag. TK(10, 5) achieves similar size reductions as DFS-
Rnd, but the former has better first-move(s) lag performance.
TK(10, 5) and TK(10, 2) are similar to Random in terms
of first-move(s) lags, but the latter creates larger CPDs. In
terms of CPD size, TK(10, 5) is similar to TK(0, 100), but
the former has a better first-move(s) lag performance. Size-
wise, TK(10, 5) is much better than TK(0, 5) and TK(0, 10),
while the first-move(s) lags are comparable.

Table 1 shows that the baseline program SRC is slower on
average with the CUT column ordering heuristic, as opposed
to the DFS heuristic. A closer look at the data shows that this
is due to the Starcraft domain. In the other domains SRC
with CUT is generally faster than SRC with DFS. A deeper
analysis is beyond our focus, as this refers to the behaviour
of the baseline program SRC.
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8 Conclusion

Path planning is a core AI problem, with applications in do-
mains such as robotics and games. CPD-based path planning
systems, such as SRC (Strasser, Harabor, and Botea 2014),
achieve an impressive speed performance, in terms of com-
puting both full optimal paths and a first fragment of an op-
timal path. However, large maps can lead to large CPDs,
which can represent a performance bottleneck.

In this work we have focused on reducing the size of a
CPD. Our contributions are algorithmic (a new technique),
theoretical and experimental. As the main theoretical contri-
bution, we proved that applying our wildcard idea in a way
that maximizes the memory savings is NP complete. We im-
plemented our ideas on top of the state-of-the-art SRC sys-
tem. The experiments demonstrate the benefits of our tech-
nique. We reduce the CPD size significantly. The time to
compute full optimal paths can improve slightly. The first-
k-moves lag is kept within competitive values.

In future work, we would consider graphs with mixed di-
rected and undirected edges. We plan to investigate new
heuristics to further improve the performance and the scal-
ability to larger maps. As mentioned earlier, extending our
theoretical analysis is another interesting direction for future
work.
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