
Critical-Path Dead-End Detection versus NoGoods:
Offline Equivalence and Online Learning

Marcel Steinmetz and Jörg Hoffmann
Saarland University

Saarland Informatics Campus
Saarbrücken, Germany

{steinmetz,hoffmann}@cs.uni-saarland.de

Abstract

One traditional use of critical-path heuristic functions is as
effective sufficient criteria for unsolvability. To employ this
for dead-end detection, the heuristic function must be evalu-
ated on every new state to be tested, incurring a substantial
runtime overhead. We show herein that the exact same dead-
end detector can be captured through a nogood, a formula
φOFF computed once prior to search. This is mostly of theo-
retical interest, as φOFF is large. We obtain practical variants
by instead incrementally generating a stronger nogood ψ, that
implies φOFF, online during search, generalizing from already
tested states to avoid future heuristic-function evaluations.

Introduction
The family of critical-path heuristic functions hm, intro-
duced in its general form by Haslum and Geffner (2000), has
a long tradition of use as effective sufficient criteria for un-
solvability. If hm(s) = ∞, then the goal cannot be reached
from s even when allowing to break up conjunctive subgoals
into their atomic subgoals, namely the size-m subsets. This
idea has its roots in the use of h2 as encoded by the planning
graph, Graphplan’s mechanism for early termination on un-
solvable tasks (Blum and Furst 1997). The idea persisted
in delete relaxation heuristics (Bonet and Geffner 2001;
Hoffmann and Nebel 2001), as well as some partial delete
relaxation heuristics (Domshlak, Hoffmann, and Katz 2015),
which identify a state to be a dead-end if and only if h1
does. The idea recently culminated in the use of the general-
ized critical-path heuristic hC (Hoffmann and Fickert 2015)
– which reasons over arbitrary sets C of atomic subgoals,
rather than all size-m ones – for conflict-based learning dur-
ing forward search (Steinmetz and Hoffmann 2016).

For dead-end detection in forward search, hC(s) must
be evaluated for every new state s, incurring a substan-
tial runtime overhead, potentially a prohibitive one if C is
large. Kolobov et al. (2012) introduced the idea to alleviate
this through nogoods, formulas ψSM where s |= ψSM ⇒
h2(s) = ∞. Steinmetz and Hoffmann (2016) adopted the
same idea. Here, we make a more radical observation: as far
as dead-end detection goes, hC can be equivalently replaced
by a nogood formula φOFF computed offline, prior to search,
avoiding the computation of hC completely.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

This is mostly of theoretical interest though, as φOFF has
size worst-case exponential in the size of the input plan-
ning task, a blow-up which does tend to occur in prac-
tice (although evaluating φOFF does tend to be faster than
evaluating hC when φOFF can be constructed). We obtain
practical variants by instead incrementally learning a no-
good during search. We maintain and incrementally weaken
a stronger formula ψCL that implies φOFF. Future states s
where s |= ψCL need not be evaluated. This online nogood
ψCL is an alternative to the nogoods ψSM previously intro-
duced by Kolobov et al. As our experiments show, ψCL often
generalizes better, avoiding more future evaluations of hC .
This tends to pay off, in particular for the large sets C of
atomic subgoals underlying h2.

Background
We consider STRIPS planning. A planning task is a tuple
Π = (F ,A, I,G) of facts F , actions A, initial state I, and
goal G. An action a ∈ A is a tuple (pre(a), add(a), del(a))
where add(a) ∩ del(a) = ∅. (Action costs are irrelevant to
dead-end detection, so we assume unit action costs.)

Critical-path heuristics approximate goal distance
through the relaxing assumption that, for achieving a
conjunction G of facts (represented as a fact set), it suffices
to achieve the most costly atomic conjunction contained in
G. The set C of atomic conjunctions is a parameter.

Formally, for a conjunction of facts G ⊆ F and an ac-
tion a ∈ A, the regression of G over a is defined by
R(G, a) = (G ∪ pre(a)) \ add(a) if add(a) ∩ G 	= ∅ and
del(a)∩G = ∅. Otherwise, the regression is undefined, and
we writeR(G, a) = ⊥. By A[G] we denote the set of actions
awhereR(G, a) 	= ⊥. LetC be any set of conjunctions. The
generalized critical-path heuristic hC(s) is defined through
hC(s) = hC(s,G) where

hC(s,G) =

{0 G ⊆ s
1 + mina∈A[G] h

C(s,R(G, a))G ∈ C
maxG′⊆G,G′∈C h

C(s,G′) else
(1)

The computation of hC(s) is polynomial in |C| and |Π|, yet
incurs substantial runtime overhead in practice.

Offline NoGood hC Representation
The basic idea to avoid hC evaluations, already applied in
the aforementioned prior works, is to identify nogoods, for-
mulas φ over the facts F such that s |= φ ⇒ hC(s) = ∞.

Proceedings of the Twenty-Seventh International Conference on Automated Planning and Scheduling (ICAPS 2017)

283

The nogoods are tested prior to the computation of hC , and
that computation is skipped if at least one nogood fires (is
satisfied by the state at hand). In short, the nogoods serve
as an easy-to-test sufficient criterion. We next observe that
one can actually construct, before the search even begins, an
exact nogood φOFF, where s |= φOFF ⇔ hC(s) = ∞.

We have identified two alternative ways of constructing
such a nogood φOFF, which differ in terms of formula struc-
ture and size. We detail in what follows the simpler formula,
which turns out to be more useful in practice; we discuss the
alternative at the end of this section.

Our construction is based on what we call atomic regres-
sion traces. These are sets of atomic conjunctions, gleaned
from the recursion in Equation 1 by selecting a single G
in the maximization (bottom case) and following all a in
the minimization (middle case). This yields a disjunction
of atomic conjunctions. We observe that every state along
a path to the goal must satisfy every such disjunction, and
that the states not satisfying at least one such a disjunction
are exactly the dead-end states recognized by hC .
Definition 1. Let C be a set of conjunctions. A C-atomic
regression trace, short CART, is a subset σ of C so that

(i) there exists G ∈ σ with G ⊆ G, and
(ii) for every G ∈ σ and for every a ∈ A[G], there exists

G′ ∈ σ with G′ ⊆ R(G, a).
We identify a CART σ with the disjunction

∨
G∈σ G of

its element conjunctions. Note that each CART is, hence, a
DNF formula.

To see how conditions (i) and (ii) capture why hC eval-
uates to ∞, consider a state s and an atomic conjunction
G ∈ C. In the simplest case, hC(s,G) is ∞ because G is
not true in s and there is no action that achieves G, i. e., if
G 	⊆ s and A[G] = ∅. If G ⊆ G, then {G} is a CART on its
own: if a state does not satisfy G, there is no way in which
G (and hence the goal) can be made true from that state. In
contrast, for an atomic conjunction G with non-empty set
of achievers, hC(s,G) = ∞ depends on the reachability of
other atomic conjunctions. For hC(s,G) = ∞ to be true,
the regression of G over each of its achievers must contain
an atomic conjunction G′ with hC(s,G′) = ∞. Condition
(ii) ensures that a CART σ covers all achievers. But then,
as hC(s,G) < ∞ only if s supports at least one achiever,
hC(s,G) <∞ entails that s satisfies σ:
Lemma 1. For any state s, if s |= ¬σ, then hC(s,G) = ∞
for every G ∈ σ.
Proof. Assume that hC(s,G) < ∞ for some G ∈ σ. Let
G0 ∈ σ be an element of σ with minimal hC(s,G0) value.
If G0 ⊆ s, then s |= σ and there is nothing to prove. As-
sume for contradiction that G0 	⊆ s. Consider the action a
from the second case of Equation 1, in the computation of
hC(s,G0). By the definition of σ, there exists G′ ∈ σ with
G′ ⊆ R(G0, a). But then, hC(s,G0) > hC(s,R(G0, a)) ≥
hC(s,G′), which contradicts the selection of G0.

By Definition 1 (i), each CART contains at least one goal
conjunction. Hence, by Lemma 1, the existence of an unsat-
isfied CART implies that hC(s) = ∞. We next show that
the opposite direction also holds:

Lemma 2. If hC(s) = ∞, then there exists a C-atomic
regression trace σ so that s |= ¬σ.
Proof. We construct σ through a simple recursive proce-
dure. Initially, let σ = ∅. Starting with G, there must ex-
ist G ∈ C so that hC(s,G) = ∞ and G ⊆ G. Since
hC(s,G) = ∞, we must have G 	⊆ s, and for every
a ∈ A[G], we must have hC(s,R(G, a)) = ∞. We add
G to σ, and we recurse on R(G, a) for all a ∈ A[G]. We
terminate the recursion when the selectedG already is an el-
ement of σ (which happens at the latest when σ = C). The
resulting σ satisfies Definition 1, and s |= ¬σ by construc-
tion.

Lemma 1 and Lemma 2 together give the desired exact
characterization of hC dead-end detection:
Theorem 1. Let Σ be the set of all C-atomic regression
traces. Define φOFF :=

∨
σ∈Σ ¬σ. Then, for every state s,

s |= φOFF if and only if hC(s) = ∞.
The construction of φOFF requires the enumeration of all

CARTs. Obviously, the number of CARTs is worst-case ex-
ponential in the size of the planning task. We designed two
optimizations to alleviate this blow-up: (1) avoiding redun-
dancies, and (2) exploiting mutex information.

Regarding (1), if σ′ subsumes σ, i. e., σ′ ⊆ σ, then ¬σ
can be equivalently removed from φOFF as all states satisfy-
ing ¬σ necessarily also satisfy ¬σ′. Furthermore, instead of
naı̈vely removing subsumed CARTs after φOFF was already
fully generated, one can identify, during the generation pro-
cess, CARTs that will be subsumed. Organizing the genera-
tion process as a tree search where tree leaves are CARTs,
we do so via checking, prior to expanding an atomic subgoal
G, whether G was explored on a previous search path al-
ready. If so, and if the prefix beforeG on that previous search
path subsumes our current prefix, then the re-expansion ofG
is pruned. This disconsiders many CARTs long before they
are generated.

Regarding (2), for the purpose of dead-end detection in
forward search it is enough if s |= φOFF ⇔ hC(s) = ∞ for
those s that are actually reachable from the initial state. In
particular, we may disregard states that violate mutex con-
straints. So let ¬σ and ¬σ′ be two elements of φOFF. Then
we can remove from σ any atomic conjunction G 	∈ σ′ that
is mutual exclusive with all atomic conjunctions in σ′ \ σ: if
s satisfies the mutex constraints, s does not satisfy σ \ {G},
but s |= G, then s |= ¬σ′.

As advertised, we have also explored an alternative way
to build an exact offline nogood formula. So far, when glean-
ing our regression traces from the recursion in Equation 1,
we chose to select only a single G in the bottom-case maxi-
mization. The alternative is to select all these G, recursively
constructing an AND/OR tree, and therewith a correspond-
ing formula, over the atomic conjunctions. That formula is
equivalent to φOFF as defined above, and it may be exponen-
tially smaller. However, this alternative suffers from its com-
plex formula structure, with arbitrarily deep nesting of con-
junction and disjunction, in contrast to φOFF which is a dis-
junction of CNFs. This has two major practical implications.
First, the AND/OR tree construction is not amenable to our
subsumption pruning (1), and in our experiments was much

284

less feasible than constructing φOFF, despite its potential size
advantage. Second, the simple structure of φOFF – a disjunc-
tive list of CNF nogoods – lends itself to constructing that
formula incrementally, enabling online nogood learning as
described in the next section, which tends to be much more
practical than the offline construction anyway. We therefore
consider, from here on, only φOFF as above.

Online NoGood Learning

Online nogood learning was first suggested by Kolobov et al.
(2012) in the context of probabilistic planning. It constitutes
a middle ground between evaluating hC on all states encoun-
tered, and computing an offline nogood φOFF that replaces
the evaluation of hC completely (yet incurs prohibitive over-
head in its own right). The idea is to incrementally learn a
formula ψ where s |= ψ only if hC(s) = ∞; in contrast to
φOFF, we forsake the “if” direction. Consequently, instead of
replacing hC completely, we only avoid some of its evalua-
tions, namely those on states s that satisfy ψ.

The general framework for online nogood learning can
be phrased as the incremental construction of an under-
approximation ψ of φOFF, i. e., ψ ⇒ φOFF. Start with ψ :=
⊥, the trivial under-approximation of φOFF. Then, during
search, whenever hC(t) = ∞ is computed, find a formula ψ′
that (1) captures t, t |= ψ′; that (2) is weaker than ψ, ψ ⇒ ψ′
but ψ 	⇐ ψ′; and that (3) still is an under-approximation of
φOFF, ψ′ ⇒ φOFF. Replace ψ by ψ′ and continue the search.
Thanks to (3), ψ always remains an admissible pruning con-
dition, thanks to (2) it becomes incrementally weaker (prun-
ing more states). Thanks to (1), provided that ψ generalizes
over t, i. e., that t is not the only state satisfying ψ, ψ may
prune future evaluations of hC .

The only previously known instantiation of this frame-
work is state minimization (Kolobov, Mausam, and Weld
2012; Muise, McIlraith, and Beck 2012).1 Given a new state
t with hC(t) = ∞, state minimization views t as a con-
straint

∧
p∈F\t ¬p, and iteratively weakens that constraint

by removing one fact from F \ t, so long as hC(t) = ∞ is
preserved.2 Once this minimization step is completed, ψ′ is
obtained as ψ′ := ψ ∨ (

∧
p∈F\t ¬p). We denote the nogood

formula built in this manner by ψSM. Note that the mini-
mization step is crucial as, without it, there wouldn’t be any
generalization. The smaller F \ t becomes, the more states
will satisfy the new conjunction

∧
p∈F\t ¬p.

The alternative online nogood learning method we pro-
pose here, CART learning, is obtained directly from
Lemma 2. Given a new state t with hC(t) = ∞, there must
exist a C-atomic regression trace σ not touched by t. The
proof of Lemma 2 is constructive, showing how to find such

1Kolobov et al. and Muise et al. call this state generalization.
We use the term state minimization instead as this method is closely
related to techniques used under this name in property-directed
reachability (Bradley 2011; Suda 2014).

2In Kolobov et al.’s original nogood learning method, state min-
imization is preceded by a non-trivial nogood candidate construc-
tion, involving reasoning over previously encountered goal trajec-
tories. We skip this part, using the entire state t as candidate.

h1 h2 φOFF built
Domain # – ψSM ψCL φOFF – ψSM ψCL φOFF h1 h2

Unsolvable Benchmarks (Hoffmann, Kissmann, and Torralba 2014)
3unsat 30 15 15 15 15 10 15 15 15 30 15
Mystery 9 2 2 2 1 8 8 8 0 1 0

UIPC’16 Benchmarks
BagBarman 20 8 8 8 0 0 0 0 0 0 0
BagGripper 25 3 3 3 0 0 0 0 0 0 0
BagTransport 29 6 6 6 1 16 16 16 0 1 0
Bottleneck 25 20 20 20 10 19 21 21 0 10 0
CaveDiving 25 7 7 7 2 6 6 6 0 2 0
ChessBoard 23 5 5 5 4 4 4 4 0 4 0
Diagnosis 11 5 5 5 1 4 5 5 0 6 0
DocTransfer 20 7 6 7 1 8 7 8 0 2 0
NoMystery 24 2 2 2 2 2 2 2 0 17 0
Rovers 20 7 7 7 7 7 7 7 0 20 0
TPP 30 16 16 16 16 14 15 15 0 25 0
PegSol 24 24 24 24 0 24 22 22 0 0 0
PegSolRow5 15 5 5 5 3 4 4 4 1 3 1
SlidingTiles 20 10 10 10 10 10 10 10 0 10 0
Tetris 20 5 5 5 0 5 5 5 0 0 0

Unsolvable Resource-Constrained Benchmarks (Nakhost, Hoffmann, and Müller 2012)
NoMystery 150 45 45 45 45 74 81 81 0 150 0
Rovers 150 5 5 5 5 66 67 67 0 150 0
TPP 25 6 6 6 0 4 7 7 0 0 0
∑

695 203 202 203 123 285 302 303 16 431 16

Table 1: Coverage. Best results highlighted in boldface.
“φOFF built” shows the number of benchmark instances
where φOFF was constructed successfully.

a σ. We then obtain ψ′ simply as ψ′ := ψ ∨ ¬σ. We denote
the nogood formula built in this manner by ψCL.

Observe that ψCL is a sub-disjunction of φOFF, consist-
ing of CARTs for the hC dead-ends encountered so far. Ob-
serve furthermore that CART learning is inspective, based
on an analysis of the reasons for hC(t) = ∞, in contrast
to state minimization which treats hC like a blackbox. One
advantage of this is that, in difference to state minimization,
CART learning does not involve any intermediate reevalua-
tions of hC . On the other hand, ψCL (a disjunction of CNFs)
has a more complex structure than ψSM (a DNF), making the
formula itself more costly to evaluate. The more practically
important advantage of ψCL over ψSM turns out to be better
generalization, which makes sense given the inspective vs.
blackbox nature of the two methods.

Experiments

Our implementation is in FD (Helmert 2006). As our tech-
niques apply to dead-end detection, we focus on prov-
ing unsolvability. We run the UIPC’16 benchmarks;3 those
of Hoffmann et al.’s (2014) unsolvable benchmarks not
used in UIPC’16; and resource-constrained benchmarks by
Nakhost et al. (2012), with constrainedness set to be ∈ {0.5,
0.6, . . . , 0.9} so that the tasks are unsolvable. All experi-
ments were run on a cluster of Intel Xeon E5-2650v3 ma-
chines, with runtime (memory) limits of 30 minutes (4 GB).

In what follows, we inspect the influence of φOFF, ψCL,
and ψSM respectively on breadth-first search using either h1
or h2 for dead-end detection. We used the aforementioned
optimizations only for the construction of φOFF, and not for
ψCL. The mutex constraints were derived from FD’s state-
variable representation, i. e., that every state variable can

3We removed 9 instances of the Diagnosis domain because con-
ditional effects were introduced during FD’s grounding procedure,
and our implementation currently does not support these.

285

10
−2

10
−1

10
0

10
1

10
2

10
3

∞

10
−2

10
−1

10
0

10
1

10
2

10
3

∞

10
−2

10
−1

10
0

10
1

10
2

10
3

∞

10
−2

10
−1

10
0

10
1

10
2

10
3

∞

10
−2

10
−1

10
0

10
1

10
2

10
3

∞

10
−2

10
−1

10
0

10
1

10
2

10
3

∞

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

(a) (b) (c) (d)

Figure 1: Total time spent in dead-end detection (seconds), + marks h1, x marks h2. (a) Construction and evaluation of φOFF

(y-axis), vs. evaluation of h1/h2 (x-axis); (b) like (a) but without the construction. (c) Evaluation of h1/h2 plus refinement and
evaluation of ψCL (y-axis), vs. always evaluating h1/h2 (x-axis); (d) like (c) but restricted to dead-ends recognized by h1/h2.

have only one value at any time.
Consider Table 1. On the right, we see that constructing

φOFF is feasible about 62% of the time for h1, and is hardly
ever feasible for h2, exhibiting the mentioned blow-up. On
the left, we see that none of the nogood methods improves
coverage for h1. This is expected as computing h1 is cheap
so there is not much to gain by avoiding h1 computations.

Matters are different for h2, computing which is much
more costly (on average in our experiments, 3 orders of mag-
nitude slower). Observe first that, somewhat surprisingly
perhaps – a common perception being that h2 is way too
costly to be recomputed on every state in a forward search –
h2 outperforms h1 clearly here, mostly but not exclusively
due to the resource-constrained benchmarks. More impor-
tantly for our work here, in contrast to h1, online nogood
learning does have a considerable beneficial effect on cover-
age for h2. That said, there is little difference here between
the previous technique ψSM and our new technique ψCL.

We now analyze the data in more detail, beyond the coarse
measurement afforded by coverage. Figure 1 shows the ef-
fect of nogood learning on the time spent in dead-end detec-
tion. In (a) and (b), we see that, despite the size blow-up in
offline nogood learning, on those instances where φOFF can
be constructed, dead-end detection using φOFF is typically
much more effective than with the equivalent critical-path
heuristic. (a) shows that this is often so even when taking
into account the time spent constructing φOFF; (b) shows that
this is almost consistently so when disregarding that time,
i. e., when considering the effort spent during search only.

Figure 1 (c) and (d) examine the runtime impact of online
nogood learning with our new method ψCL. We see in (c)
that ψCL improves performance almost consistently, and es-
pecially for h2. We see in (d) that the improvement is quite
strong – up to 4 orders of magnitude – when considering
only those states recognized as dead-ends by h1/h2, i. e.,
those states where nogood learning may actually help (on
all other states, it merely incurs an additional overhead).

Figure 2 (a) examines the power of generalization, in
terms of the impact of online nogood learning on the number
of h1/h2 evaluations. We consider only those states where
nogood learning actually makes a difference – those recog-

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

10
2

10
3

(a) (b)

Figure 2: ψCL (y-axis) vs. ψSM (x-axis), (a) nogood general-
ization factor, (b) dead-end detection time (seconds).

nized as dead-ends by h1/h2 – and we show the improve-
ment factor, i. e., the ratio between the number of h1/h2 eval-
uations with vs. without nogood learning. We see that both
ψCL and ψSM generalize quite well, yielding large improve-
ment factors. Our new method ψCL is clearly superior, with
improvement factors up to 3 orders of magnitude larger than
those of ψSM. It reduces the number of evaluations by factors
in the thousands for h2, and up to millions for h1.

Figure 2 (b) compares the runtime spent in ψCL vs. ψSM

on those parts that actually differ, i. e., we disregard h1/h2
evaluation time on states not recognized by h1/h2, which is
identical on both sides. We see that the generalization ad-
vantage of ψCL over ψSM carries over to runtime. We remark
though that the identical runtime share on both sides is often
so large as to overshadow this advantage.

Conclusion

We have shed new light on the issue of critical-path dead-end
detection and its interplay with nogoods, leading in partic-
ular to the design of a new online nogood learning method
that has advantages over the previously known one.

Addressing the runtime share on non-recognized states
would require “goods” instead of “nogoods”, formulas im-
plying that hC(s) <∞, an interesting open direction.

286

It was surprising to us at first that one can represent
critical-path dead-end detection exactly through a nogood
formula computed once, offline before search. But perhaps
this is not so surprising in hindsight – the formula basically
enumerates all reasons why hC could become ∞ during
search. The more remarkable fact, then, is that this unwieldy
formula, if feasible to build, is actually easier to evaluate
than hC . So there is hope yet for this kind of offline analy-
sis, and the interesting question remains how to capture hC ,
or relevant parts thereof, effectively. It may also be possi-
ble to combine knowledge gained this way with knowledge
from other sources, e. g., abstractions.

Acknowledgments. This work was partially supported
by the German Research Foundation (DFG), under grant
HO 2169/5-1, “Critically Constrained Planning via Partial
Delete Relaxation”, as well as by the German Federal Min-
istry of Education and Research (BMBF) through funding
for the Center for IT-Security, Privacy and Accountability
(CISPA, grant no. 16KIS0656).

References

Blum, A. L., and Furst, M. L. 1997. Fast planning through
planning graph analysis. Artificial Intelligence 90(1-2):279–
298.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1–2):5–33.
Bradley, A. R. 2011. Sat-based model checking without un-
rolling. In Proceedings of the 12th International Conference
on Verification, Model Checking, and Abstract Interpreta-
tion (VMCAI’11), 70–87.
Domshlak, C.; Hoffmann, J.; and Katz, M. 2015. Red-black
planning: A new systematic approach to partial delete relax-
ation. Artificial Intelligence 221:73–114.
Haslum, P., and Geffner, H. 2000. Admissible heuris-
tics for optimal planning. In Chien, S.; Kambhampati, R.;
and Knoblock, C., eds., Proceedings of the 5th Interna-
tional Conference on Artificial Intelligence Planning Sys-
tems (AIPS’00), 140–149. Breckenridge, CO: AAAI Press,
Menlo Park.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Fickert, M. 2015. Explicit conjunctions
w/o compilation: Computing hFF(ΠC) in polynomial time.
In Brafman, R.; Domshlak, C.; Haslum, P.; and Zilberstein,
S., eds., Proceedings of the 25th International Conference
on Automated Planning and Scheduling (ICAPS’15). AAAI
Press.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.

Hoffmann, J.; Kissmann, P.; and Torralba, Á. 2014. “Dis-
tance”? Who Cares? Tailoring merge-and-shrink heuristics
to detect unsolvability. In Schaub, T., ed., Proceedings
of the 21st European Conference on Artificial Intelligence
(ECAI’14). Prague, Czech Republic: IOS Press.

Kolobov, A.; Mausam; and Weld, D. S. 2012. Discovering
hidden structure in factored MDPs. Artificial Intelligence
189:19–47.
Muise, C. J.; McIlraith, S. A.; and Beck, J. C. 2012.
Improved non-deterministic planning by exploiting state
relevance. In Bonet, B.; McCluskey, L.; Silva, J. R.;
and Williams, B., eds., Proceedings of the 22nd Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS’12). AAAI Press.
Nakhost, H.; Hoffmann, J.; and Müller, M. 2012. Resource-
constrained planning: A Monte Carlo random walk ap-
proach. In Bonet, B.; McCluskey, L.; Silva, J. R.;
and Williams, B., eds., Proceedings of the 22nd Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS’12), 181–189. AAAI Press.
Steinmetz, M., and Hoffmann, J. 2016. Towards clause-
learning state space search: Learning to recognize dead-
ends. In Schuurmans, D., and Wellman, M., eds., Proceed-
ings of the 30th AAAI Conference on Artificial Intelligence
(AAAI’16). AAAI Press.
Suda, M. 2014. Property directed reachability for auto-
mated planning. Journal of Artificial Intelligence Research
50:265–319.

287

