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Abstract

We introduce an algorithm for long distance path planning
in complex marine environments. The available free space in
marine environments changes over time as a result of tides,
environmental restrictions, and weather. As a result of these
considerations, the free space region in marine environments
needs to be dynamically generated and updated. The ap-
proach presented in this paper demonstrates that it is feasible
to compute optimal paths using A* search on visibility graphs
defined over quadtrees. Our algorithm exploits quadtree data
structures for efficiently computing tangent edges in visibil-
ity graphs. We have developed an admissible heuristic that
accounts for large islands while estimating the cost-to-go and
provides a better lower bound than the Euclidean distance-
based heuristic. During the search over visibility graphs, the
branching factor of A* can be large due to the large size of the
region. We introduce the idea of focusing the search by limit-
ing the child nodes to be in certain regions of the workspace.
Our results show that focusing the search significantly im-
proves the computational efficiency without any noticeable
degradation in path quality. We have also developed a method
to estimate bounds on how far the computed path can be from
the optimal path when methods for focusing the search are
utilized for speeding up the computation.

1 Introduction

Over the last ten years, substantial progress has been made
in the development of low-cost unmanned surface vehicles
(USVs) (Corfield and Young 2006; Manley 2008). There are
a number of civilian applications where deploying USVs
can significantly reduce costs, improve safety, and increase
operational efficiencies. Representative applications include
remote/persistent ocean sensing, marine search and rescue,
and industrial offshore supply and support. In this paper, we
are interested in path planning over long distances in com-
plex marine environments. Figure 1 shows an example of
an environment that consists of hundreds of islands of com-
plex shapes. The available free space in such marine envi-
ronments changes over time as a result of tides, environmen-
tal restrictions, and weather. Low tides may make it infeasi-
ble to go through regions with shallow waters. Environmen-
tal restrictions may prevent the unmanned surface vehicle
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Figure 1: Topography of a complex marine environment.

from passing through certain protected marine regions for
certain periods of times. Weather induced waves may pro-
hibit traveling over certain areas due to high collision risks.
As a result of these considerations, the free space region in
marine environments needs to be dynamically generated and
updated.

Consider a representative marine region of 100 sq. km.
This region may need thousands of complex polygons to
represent the land areas (or obstacles) in the marine environ-
ment. Roadmap-based methods work well with polygons-
based representations (Siegwart, Nourbakhsh, and Scara-
muzza 2011) and have been shown to be quite useful in
ground applications. However, as mentioned earlier, the free
space may change in marine environments. Hence, we can-
not justify the computational time and efforts needed to
build roadmaps. Instead, we will need to import the obstacle
field data from NOAA nautical charts by applying the appro-
priate height filters based on the tide conditions at the time of
the mission. Additional obstacles will need to be identified
based on weather and environmental restrictions applicable
at the time of the mission. These requirements restrict us to
only consider those methods that can compute plans without
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Figure 2: Quadtree representation of a complex polygon.

the need for computing roadmaps.
Grid-based methods can be used to represent complex ob-

stacle fields (Yap 2002; Hart, Nilsson, and Raphael 1968). If
a grid is defined over a 100 km by 100 km region using a
10 m resolution in each dimension, the resulting grid will
contain 100 million nodes. The large regions typically con-
tain large land masses that may span several kilometers. It
appears that quadtrees (Yahja et al. 1998) are better spatial
data structures to represent complex marine environments
compared to grids (see Figure 2). A 100km by 100km re-
gion can be represented with a hundred thousand or fewer
nodes in a quadtree. This leads to a reduction of more than a
thousand nodes in terms of spatial complexity. Environmen-
tal and weather based restricted areas can be easily incorpo-
rated in quadtrees as obstacles. Hence, in this paper we will
use quadtrees as the spatial data structure to represent the
free space.

In this paper, we present an algorithm for long distance
path planning in complex marine environments using A*
search on visibility graphs defined over quad trees. Section
3 defines the visibility graphs. Visibility graphs have been
shown to be useful in computing optimal paths in the pres-
ence of complex obstacle fields. However, the computational
performance of visibility graphs degrades as the region to be
searched becomes large and the number of nodes in the vis-
ibility graph increases rapidly. This paper introduces a num-
ber of techniques to speed up the A* search process and
makes it feasible to compute paths using visibility graphs
over large regions. Previous work has shown that the optimal
path goes through tangent edges in the visibility graph (Liu
and Arimoto 1992). We exploit the data structures and the
modified rotational plane sweep algorithm (RPS) (Choset
2005) to compute tangent edges efficiently (see Section 4).

We have presented an improved heuristic to handle large
obstacles in the region (see Section 5). Finally, we have de-
scribed methods for focusing the search by looking for child
nodes in certain spatial regions (see Section 6). The path
computed using the proposed approach can be used to gener-

ate trajectories and support a wide variety of missions (Shah
et al. 2015; Švec et al. 2014; Bertaska et al. 2013).

2 Related Work

Path planning is a well-studied problem in robotics and
AI communities. Many different approaches have been de-
veloped to solve path planning problems (LaValle 2006;
Hoy, Matveev, and Savkin 2015). The body of work that
is most closely related to the theme of this paper is the
path planning problem for a given complete map. We will
review methods that deal with known stationary obstacles
with no uncertainty in the environment or the outcome of
the vehicle actions. Readers are referred to (Stentz 1994;
Wang and Julier 2011; Luna et al. 2014) for an overview
of planning methods in partially known maps. Methods for
planning under uncertainty are discussed in (Dadkhah and
Mettler 2012). Planning methods developed for dealing with
dynamic obstacles are given in (Van Den Berg et al. 2011;
Sezer and Gokasan 2012; Wu and Feng 2012; Kuwata et al.
2014).

Path planning problems over long distances can be di-
vided into two categories. The first category includes prob-
lems where configuration spaces associated with the colli-
sion free regions of the space can be easily computed explic-
itly. Path planning problems for unmanned surface vehicles
are primarily focused in 2D workspaces (i.e., 3D configura-
tion spaces) and belong to the first category. The second cat-
egory belongs to the class of problems where explicitly com-
puting configuration space is computationally challenging.
Sampling based methods such as Rapidly Exploring Ran-
dom Trees (RRT) (LaValle and Kuffner Jr 2000) and Prob-
abilistic Road Maps (PRM) (Kavraki et al. 1996) have been
successfully used to deal with such problems. In this paper,
we will focus on methods that use explicitly computed con-
figuration spaces.

Finding optimal paths requires abstracting the given con-
figuration space into a discrete graph over which a search
can be performed to compute the optimal path. If the ap-
plication requires solving the planning problem multiple
times over the same configuration space, then it is useful
to construct roadmaps (Siegwart, Nourbakhsh, and Scara-
muzza 2011), and Voronoi graphs (Aurenhammer 1991;
Bhattacharya and Gavrilova 2008) that associate with the
configuration space. Even though this takes significant com-
putational effort upfront, the roadmap and/or Voronoi graphs
can be reused over multiple planning instances. If the plan-
ning problem is not being solved multiple times, then it is
computationally preferable to construct the relevant portions
of the search graph on-the-fly. In this paper, we are interested
in methods that do not precompute the search graph.

There are three main methods for representing the path
planning problem as a graph search. The first class of meth-
ods represents the configuration space as uniform grids
(Yap 2002; Hart, Nilsson, and Raphael 1968; Koenig and
Likhachev 2002; Likhachev et al. 2005) or multi-resolution
grids (Yap et al. 2011). At any point in the grid, the ve-
hicle can move only to the adjacent grid points using a
fixed number of actions. This method limits branching in
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the search trees, but leads to a large number of nodes in
the search tree. Paths produced by these methods are not
smooth and are often not optimal. The second class of meth-
ods is based on the idea that the optimal path will move
the vehicle in straight line paths between obstacles and it
will only pass through visible vertices of the obstacles. The
underlying representation used during the search is called a
visibility graph (Lee 1978; Lozano-Pérez and Wesley 1979;
Rashid et al. 2013). These methods compute optimal paths
and significantly reduce the number of nodes in the search
graph. However, the branching factor can be high. This leads
to computationally slow performance when the spatial re-
gion over which the planning is being done is large. Recent
development in any-angle search represents a third class of
methods. These methods combine features from the above
two classes of methods and limit the branching at the search
node and yet do not constrain the vehicle to move along
the grid edges. These methods are fast and produce sig-
nificantly better paths than grid-based methods. However,
paths produced by these methods may not be optimal. No-
table methods belonging to this class are Incremental Phi*
(Nash, Koenig, and Likhachev 2009), Theta* (Daniel et
al. 2010) and its variants (Nash, Koenig, and Tovey 2010;
Uras and Koenig 2015b; Tovey, Koenig, and Nash 2015),
and Field D* (Ferguson and Stentz 2006).

Several researchers have used quadtrees as the underlying
representation for path planning (Yahja et al. 1998). Recent
work using quadtrees to represent the operating environment
of the robot includes (Petres et al. 2007; Zhang, Ma, and Liu
2012).

3 Approach
In this paper, we are interested in computing an optimal
path τ on a workspace with large maps represented using a
quadtree MQ (see Figure 12), given the start nI and goal
nG node. Each leaf node in a quadtree is represented as
l = [ηT , d, t] ∈ MQ, where η = [x, y]T is the center of
the node in 2D space, d ∈ [0, dmax] is the current depth of
the node ranging from 0 (i.e. the rootnode) up to the maxi-
mum depth of the quadtree dmax, and t denotes the type of
the node, i.e. a free node (t = 0), a solid or obstacle node
(t = 1), and a node with additional branches (t = 2). In this
paper, the word ‘node’ (or ‘nodes’) is used for the nodes of
the visibility graph (Lozano-Pérez and Wesley 1979). The
quadtree nodes will be referred to as ‘leaf nodes’ (see Figure
3).

Any shortest path between the start nI and the goal nG

node in the workspace with a set of polygonal obstacles O
is a poly-line path whose inner vertices are vertices of O
(Choset 2005). Two vertices v and v′ are mutually visible
if the line segment connecting v and v′ does not intersect
with the interior of the polygonal obstacle oi ∈ O, where oi
is the ith obstacle in the set O. Now, vertices v and v′ will
be nodes n and n′ in the visibility graph V with an edge be-
tween them. The Visibility graph V is a graph whose nodes
are vertices of polygonal obstacles along with the initial nI

and the goal nG nodes. The edges of the graph represent the
pair of mutually visible vertices. The shortest path between
the start nI and goal nG nodes is the shortest path in the

Figure 3: Computation of visible nodes in quadtree.

Figure 4: Eliminating visible interior vertices from the visi-
bility graph.

visibility graph V . In our problem, the polygonal obstacles
are the solid leaf nodes (t = 1) of the quadtree MQ and the
vertices of these solid leaf nodes are the nodes of the visi-
bility graph V . The set of visible nodes at node n is denoted
as vn. The example in Figure 3 shows the candidate visible
nodes (marked by green) and non-visible nodes (marked by
red) of the current node n.

The set of visible nodes vn is calculated by iterating over
all the N nodes in the visibility graph V and performing
N − 1 collision checks to determine the visibility of the
nodes. This computation proves to be computationally ex-
pensive. The complexity of the visibility graph (i.e. the num-
ber of visibility checks per node n) can be reduced by incor-
porating the concept of tangent graphs (i.e. reduced visibility
graph) (Liu and Arimoto 1992). To reduce the complexity of
the graph we need to eliminate the nodes that will never be
part of the optimal path τopt. First, we accumulate the con-
nected solid leaf nodes of the quadtree tree which are termed
island hi. Each map represented by quadtree MQ may have
several such islands denoted by the set H . Second, we com-
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pute the convex hull regions cj ∈ Ci for all the island re-
gions, where Ci ∈ C is the set of all the convex hulls for
the ith island in H . The convex hull cj is computed such
that the hull does not intersect with obstacle region O. Thus,
each island hi can be represented by multiple convex hulls.

Let us consider a simple case shown in Figure 4, where (1)
hi ∈ H is an island (i.e. the solid quadtree leaf node). Let,
Ci be the set of convex hulls of island hi, (2) τfeasible is a
feasible path that includes an interior visible node nint (i.e.
interior vertex) of the island hi that is not on the boundary
of cj ∈ Ci, and (3) the start nI and the goal nG node are
outside of both the island hi and all the convex hulls in cj ∈
Ci and no other obstacle in O intersects with cj ∈ Ci. In
this case, τfeasible will cross the convex hull twice on its
course to reach interior visible node nint and then to come
out of cj . This path τfeasible can always be improved by just
moving along the convex hull rather than going inside and
coming out. There is no other obstacle intersecting with cj
to prevent this. Therefore, the interior vertex nint will never
be in the optimal path τopt.

Now, let us consider a more general case as depicted in
Figure 5 where (1) Ci = {c1, c2, c3}, (2) cj ∈ Ci does not
intersect with any other obstacle in O, and (3) nint is an inte-
rior node that belongs to island hi but not to cj . The optimal
path τopt will not pass through nint if nI and nG are out-
side of the convex hulls in Ci. Hence nint can be removed
from the list of potential candidate nodes for visibility graph
V . Similarly, in Figure 5, the nodes of the visibility graph
marked with red color are interior nodes nint that lie in the
interior of the convex hulls C. Now, as per the theorem stated
above, these nodes marked with red color can be eliminated
because they will not be included in the optimal path τopt.
Also, the nodes that are shared by the convex hulls within
the same island can be eliminated. Each island will have a
set of candidate nodes after the elimination of the interior
nodes nint that are used for computing tangent edges.

The interior nodes nint lying in the same convex hull as
the initial node nI or the goal node nG are not eliminated,
thus not altering the optimality of the path. It has been shown
that the optimal path only passes through edges that are tan-
gent to the polygonal obstacles in the visibility graph (Liu
and Arimoto 1992). Let us denote the graph comprised of
only tangent edges (i.e. tangent graph or reduced visibility
graph) by Vt. The shortest distance path between nI and nG

is comprised of a combination of shortest straight line paths
between two polygons and line segments along the exterior
boundary of the polygonal obstacles. Now, the number of
visible edges of the current node n ∈ Vt can be restricted to
the tangent edges from the current node n. This reduces the
size of the visibility graph without altering the quality and
optimality of the path.

4 Computation of Edges on the Tangent

Graph

Traditionally, the visibility and tangent graph-based path
planning approaches precompute the entire structure of the
graph with edges connecting the visible nodes. The compu-
tation of all the edges of the tangent graph Vt is computa-

Figure 5: Eliminating nodes in the interior of the convex hull
(we assume the start and the goal node are not inside any
convex hull).

tionally expensive. In our approach, the edges of the graph
are computed on the fly during the search for the optimal
path τ . The search is performed by expanding nodes in the
least-cost A* (Hart, Nilsson, and Raphael 1968) fashion ac-
cording to the cost function f(n) = g(n) + h(n), where
g(n) is the cost-to-come to node n from the initial node nI,
and h(n) is the heuristic estimate of the cost-to-go from the
current node n to the goal node nG.

During the expansion of each node n ∈ Vt, we need to
determine tangents for each island hi ∈ H and these tan-
gents have to be checked for collisions in order to determine
the visible nodes vn

t . This process of determining the visible
nodes vn

t is computationally intensive and hence reduces the
performance of the search algorithm.

The computational performance of the search can be im-
proved by reducing the number of collision checks required
during the determination of visible nodes. The reduction
in collision checks is achieved by our implementation of
a modified variant of the rotational plane sweep algorithm
(RPS) (Choset 2005), in which we compute the angle and
distance to each node in Vt from the current node nc. Dur-
ing the computation of these angles and distances, we de-
termine maximum and minimum angle for each island hi

which serve as tangents from the current node. The list of all
the tangents are sorted based on their angles with respect to
the current node nc.

Now, these tangents to each island hi ∈ H form cone
like structures with the apex at the current node n. We refer
to these cones as visibility cones for the island hi. During
the visibility check, we can directly eliminate all the candi-
date nodes with an angle lying in between the two edges of
the cone and distances greater than the tangent nodes for the
nearest visible convex hull hi. This drastically reduces the
number of collision checks required during the determina-
tion of visible tangent nodes and improves the efficiency of
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Figure 6: Elimination of non-visible nodes using the com-
puted tangents for the islands in H .

the algorithm. For example, in Figure 6 the tangent nodes
of island 138 and one of the tangent nodes of island 129
can be directly eliminated by a visibility cone of island 130.
Finally, the collision checks for determining visible tangent
edges that cannot be eliminated by the modified RPS algo-
rithm are performed by a modified Bresenham’s collision
test algorithm described in (Choi, Lee, and Yu 2010).

5 A New Heuristic

The performance of the A* based path planning algorithm
depends on the estimation of the cost-to-go (or h-cost) from
the current state nI to the goal state nG. If the path plan-
ner significantly underestimates the cost-to-go, then it has
to expand more nodes until it finds an optimal path to the
goal. On the other hand, if the path planner overestimates
the cost-to-go, then the h-cost is inadmissible and the paths
are no longer optimal.

The most widely used heuristic by the path planning al-
gorithms (Švec et al. 2013; 2014; Shah et al. 2014; Koenig
and Likhachev 2002; Likhachev et al. 2005) is the Euclidean
distance from the current node nI to the goal node nG. This
heuristic expands nodes nearest to the goal in a greedy fash-
ion. This assumption works perfectly on maps without any
large obstacle regions. In scenarios with large obstacles, the
shortest optimal path has to circumvent at least one obstacle
before heading towards the goal, unless the goal is in line-of-
sight to the initial location. The heuristic based on Euclidean
distance will expand all the nodes lying on the perimeter of
the obstacle in a greedy fashion until a straight line path is
available to the goal. However, in most of the complex ma-
rine environments (see Figure 1) we have large islands and
the use of the heuristic based on Euclidean distance often

Figure 7: Computation of the heuristic.

degrades the performance of the path planner.
We have developed a heuristic that exploits the fact that

the optimal path reaching towards the goal has to pass
through one of the corners of the obstacle obstructing the
straight line path to the goal node. Let us consider a scenario
shown in Figure 7. In this example, the straight line path
from the current node nc to the goal node nG intersects two
obstacles o1 and o2. The Euclidean distance heuristic from
n to nG is given by hE(n) = d(n,nG), where d(n,nG)
is the straight line distance. The vertices vR1 and vR2 are
the rightmost vertices of obstacles o1 and o2 and their corre-
sponding orthogonal distances are denoted by dR1 and dR2.
Similarly, the leftmost vertices are vL1 and vL2 and their
corresponding orthogonal distances are denoted by dL1 and
dL2. The shortest route to the goal will have to pass through
at least one of the extreme vertices of obstacle o1 or o2 repre-
sented in the configuration space, i.e. the path will be trian-
gular with the middle vertex vXn ∈ {vR1,vR2,vL1,vL2},
where X ∈ {R,L} and n ∈ {1, 2}. Let the extreme vertex
corresponding to distance dXn be denoted by vXn.

The triangular path length to travel from the
right side of the obstacle is given by hR

T (n) =
d(n,v(max(dR1, dR2))) + d(v(max(dR1, dR2)),nG).
Similarly, the path length to travel from the left side is de-
noted by hL

T (n). Finally, the admissible triangular heuristic
cost is computed as hT (n) = min(hL

T (n), h
R
T (n)).

6 Focusing A* Search

In order to guarantee optimality, the A* algorithm needs to
explore all possible child nodes for a node being expanded.
In large spatial regions, there can be a large number of nodes
that need to be examined to determine if the straight line
between them and the node being expanded belong to the
tangent graph. In certain pathological cases, the number of
edges on the tangent graph can be very large (see Figure 8).
This can lead to poor computational performance during the
search.

In order to improve the computational performance of the
algorithm, we can focus the search and examine only certain
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Figure 8: Pathological scenario where a node in tangent
graph has a large branching factor.

kinds of edges on the tangent graph. For example, we can
search for the edges in a spatial region that lies within a cer-
tain radius of the current node. However, if a fixed radius is
used, then we may not be able to find any edge to explore
if all other obstacles lie outside of the given radius. There-
fore, in addition to the radius, we also consider adding the
edges that lie on obstacles that intersect with the straight line
path from the node being expanded and the goal (see Figure
9). This approach focuses the search and ensures that we
do not encounter pathological cases. Also, during the search
the child nodes of the current node nc are checked for direct
line-of-sight connection with the parent node. This enables
a line-of-sight connection between the current node and the
nodes that lie outside the constrained region.

The path generated by the focused search is not neces-
sarily optimal. Hence we are interested in characterizing the
path with respect to the optimal path. Let us assume that L
is the length of the path generated using the focused search.
Now, let us construct a circle of radius L at the start node
nI and identify the set of visible nodes vn

t,L ∈ Vt that lie
inside the circle of radius L. Any node on the reduced visi-
bility graph (i.e. tangent graph) that is outside of the radius
L will have a path length of more than L from nI, hence it
cannot be on the optimal path.

Now we will compute the sum of cost-to-come g(n) and
cost-to-go h(n) for all the visible node n ∈ vn

t,L. Let L′
be the minimum among all the visible nodes in vn

t,L. The
optimal path length cannot exceed L′ because the optimal
path has to go through nodes in vn

t,L. If L ≥ L′, then L
is the optimal solution. If this condition is not satisfied, then
L′ can be used to compute a bound on how far off L is from
the optimal solution. The optimal solution cannot improve
the path length given by L by more than 100(L − L′)/L
percent. If this bound is relatively small, then the search can
be terminated and L can be returned as the solution.

If L′ is much smaller than L, then a second round of the

Figure 9: Procedure to add nodes to the focused visibility
graph.

search can be conducted with an adaptive radius of focus.
At the start node we can use L as the radius of focus. As
the search progresses, this radius can be reduced to L minus
the cost-to-come for the node being expanded. Let nc be the
current node being expanded and g(nc) be its cost-to-come,
then the remaining cost of the optimal path cannot exceed
L − g(nc), therefore there is no need to look for successor
nodes that are more than L− g(nc) distance away from nc.
This search always produces the optimal answer.

7 Results and Discussion

We compare the performance of the developed algorithm
with the any-angle path planning algorithm Theta* (Daniel
et al. 2010). The implementation of Theta* used for all
the simulation experiments is developed by the authors of
Theta* and is taken from (Uras and Koenig 2015a). The sce-
nario shown in Figure 11 (quadtree representation) is used
to demonstrate the scaling of the developed tangent graph
approach with improved heuristics against Theta*. Table 1
provides the computation time of Theta* and our approach.
We can see that the computation time of Theta* drastically
increases with the increase in pixels (or minimum grid size)
used to represent the scene. On the other hand, the computa-
tion time of our approach TG+HEU, marginally increases
primarily because of the Bresenham’s collision test algo-
rithm (Choi, Lee, and Yu 2010). In other words, the devel-
oped tangent graph approach is resolution independent and
does not depend on the grid size of the scene.

The simulation setup consisted of a randomly generated
quadtree for the area of size 100 x 100 km (see Figure 10).
The maximum depth of the quadtree was kept at dmax = 13
i.e. the finest resolution will be 100000/213 = 12.21 me-
ters. The start and the goal nodes were kept constant at
nI = [2000, 2000]T and nG = [98000, 98000]T (in me-
ters) respectively. The algorithm is written in Python 2.7 and
computed on a Intel(R) Core(IM) i7-2600 CPU @ 3.4 GHz
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Figure 10: Experimental setup and sample any-angle path
from the start node nI to the goal node nG.

Figure 11: Example scenario to compare the scaling between
Theta* and our approach.

Table 1: Computational results for Theta* and tangent graph
with the developed new heuristic (see Section 5) (TG+HEU)
in the same scenario with different grid sizes.

Table 2: Comparison between different variants of devel-
oped visibility graphs-based algorithms on scenarios with
a varying number of quadtree nodes. VG+ECU: Visibility
graph with Euclidean distance as heuristic, TG+HEU: Tan-
gent graph with the developed new heuristic (see Section 5),
and FS+HEU: Focused search in tangent graph with the de-
veloped heuristic.

machine with 8GB RAM.
The results presented in Table 2 shows the computational

performance of the developed approaches in randomly gen-
erated quadtree maps. The size of the quadtree map is varied
from 5000 to 100000 leaf nodes by varying the depth of the
quadtree dmax = 10 to 13 and the occupancy of the map.
The tangent graph approach combined with the improved
heuristics (TG+HEU) enhances the computational perfor-
mance and reduces the number of expanded states as com-
pared to the visibility graph using the Euclidean distance as
heuristics (VG+ECU). This is primarily due to a low branch-
ing factor of (TG) as it just examines the tangents of the is-
lands while adding visible edges to the graph. The branching
factor is further reduced by focusing the A* search on a tan-
gent graph (FS) which restricts the search for the possible
visible edges in the local vicinity and in the line-of-sight to
the goal. In our experiments, the local vicinity of FS is de-
termined by a circle of constant radius rfoc = 10 km. How-
ever, the improved computational performance of FS comes
at the cost of loss of optimality and increased path length by
a maximum of 0.33%.

The computation time and path lengths for Theta* on
randomly generated scenarios with nodes fewer than 10000
quadtree nodes are comparable to that of FS+HEU. How-
ever, Theta* is unable to compute paths in several scenarios
having more than 10000 quadtree leaf nodes (i.e. quadtrees
of depth dmax ≥ 12 which give maps that are 4096 x 4096
pixels in size) because the planner becomes memory inten-
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Figure 12: Computed path on a real world scenario.

sive and the computer which we used to perform our simu-
lation experiments cannot handle it. In the scenario above
10000 nodes where the Theta* is able to generate paths,
we see a significant increase in computation time and path
length.

The quadtree of the real marine environment (see Figure
12) is computed using the nautical chart data available from
NOAA. Nautical chart data of a 100 x 100 km region is ex-
ported into shapefile (.shp) format. We have created a frame-
work where we can read shapefiles of a region and gener-
ate the corresponding quadtree of a desired maximum depth
(dmax). Using this framework we processed the land-regions
from the shapefiles to extract the data represented in the form
of polygons. The quadtree of depth dmax = 13 is computed
from the extracted polygons and outputted to a text file.

The extracted polygons are then processed to compute the
quadtree of depth dmax = 13 and output it to a text file.

Figure 12 shows the computed path (in red) from the start
node nI to the goal node nG in a real marine environment
shown in Figure 1 . The size of the map is 100 x 100 km and
the number of quadtree nodes is 66425. The total number of
candidate nodes in the tangent graph is 2732. The number of
nodes expanded by the path planner FS+HEU is 711 and the
computation time is 12.19 seconds. The computation time
for Theta* is 96.32 sec and the computed path is the same as
that computed by FS+HEU.

8 Conclusion and Future Work

This paper presents an approach for computing paths on
large marine domains. The approach presented in the paper
demonstrated that it is feasible to compute optimal paths us-
ing an A* search on visibility graphs defined over quadtrees.
Experimental results indicate that optimal paths can be com-
puted in a reasonable amount of time over a 100 km by
100 km area with a 10 m feature resolution. This was made
feasible by developing methods to efficiently compute tan-

gent edges in visibility graphs using quadtree data structure.
There can be cases where the branching factor is large during
the search over the visibility graph due to the large size of the
region. To deal with these cases, we introduced the idea of
focusing the search by limiting the child nodes to be in cer-
tain regions of the workspace. Our results show that this idea
speeds up the computation time significantly without com-
promising the quality of the path in a significant way. We
also developed a method to estimate bounds on how far the
computed path can be from the optimal path when methods
for focusing the search are utilized for speeding up the com-
putation. Future work will involve dealing with time varying
obstacles and the effect of currents on the cost function.
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