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Abstract

A mixed-integer linear program (MILP) approach to
scheduling a large constellation of Earth-imaging satel-
lites is presented. The algorithm optimizes the assign-
ment of imagery collects, image data downlinks, and
”health & safety” contacts, generating schedules for all
satellites and ground stations in a network. Hardware-
driven constraints (e.g., the limited agility of the satel-
lites) and operations-driven constraints (e.g., guarantee-
ing a minimum contact frequency for each satellite) are
both addressed. Of critical importance to the use of this
algorithm in real-world operations, it runs fast enough
to allow for human operator interaction and repeated
rescheduling. This is achieved by a partitioning of the
problem into sequential steps for downlink scheduling
and image scheduling, with a novel dynamic program-
ming (DP) heuristic providing a stand-in for imaging
activity in the MILP when scheduling the downlinks.

1 Introduction

Terra Bella (formerly Skybox Imaging) provides access to
timely, high-resolution satellite imagery and analytics of
Earth, to improve understanding of daily patterns in the
world. During the course of 2016, Terra Bella will launch
10+ satellites to add to the existing 2 satellites currently
in orbit. These additional assets are critical to Terra Bella
achieving its business goals of analytics applications built
around timely geo-spatial information. Such a large coor-
dinated satellite constellation is unique in the commercial
high-resolution remote sensing business, and presents novel
challenges to efficient operation. The job of the scheduling
software is to automatically assign imaging and downlink
tasks to each satellite to maximize throughput of imagery
over a set scheduling horizon (typically 8-12 hours). This
paper presents the automatic constellation scheduling algo-
rithm in use at Terra Bella. The algorithm addresses all of
the desired constraints and objectives (enumerated below),
and allows for the seemless integration of even more satel-
lites and ground stations beyond those immediately planned.
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Orbits and Opportunities

Each satellite completes an orbit of the Earth once every
90-100 minutes, collecting imagery over desired targets and
downlinking the data during ground station passes. Oppor-
tunities to image are dictated by the set of targets and when
each satellite’s orbit takes it in view of these targets. Simi-
larly, opportunities to downlink are dictated by the fixed lo-
cations of the ground stations and when each satellite’s or-
bit takes it in range of these locations. Figure 1 shows an
example orbit over western Asia and eastern Africa, with a
downlink when in range of a Terra Bella ground station in
Norway, and an imaging pass when in view of a target in
South Africa.

Figure 1: Examples of downlink opportunity (Norway) and
imaging opportunity (South Africa)

Satellites must align to a specific orientation to point the
camera or antenna at a location on the Earth (as indicated in
Figure 1). Opportunities are defined by this required point-
ing orientation as well as the time at which they occur.

Opportunities over a ground station serve double duty for
Terra Bella operations. During a ground station pass, im-
agery data stored onboard the satellite is downlinked to the
ground, to be processed into images. In parallel, the oper-
ations team can ‘contact’ the satellite to receive engineer-
ing telemetry or issue new commands, for health and safety
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monitoring and upkeep of the constellation. So a downlink
opportunity and a contact opportunity are one and the same.

As motivated further below, in the Terra Bella scheduling
problem all opportunities are discrete entities; a pass over
a target or a ground station will be broken down into a fi-
nite set of opportunities, each with a different fixed starting
time, ending time, starting orientation, and ending orienta-
tion. Scheduling is then a selection problem of choosing
which opportunities are in or out of the schedule. For imag-
ing targets, the time duration of these opportunities is fixed
by the exact geometry to be imaged and the camera’s charac-
teristics. For ground stations (where downlinks/contacts can
occur for any continuous period as long as the satellite is in
range), the time duration of these opportunities is fixed to be
one minute. They are set to be adjacent to each other and
abutting in time, so that a continous downlink of k minutes
is achieved by selecting k adjacent downlink opportunities.

The Constellation Scheduling Problem

The hardware-driven constraints on the problem are:
• Satellites can only do one thing at a time, so same-satellite

opportunities that overlap in time are mutually exclusive.
• Satellites have finite agility, where agility is the ability

to change orientation over time. Thus, some pairs of non-
overlapping same-satellite opportunities are also mutually
exclusive (i.e., when the satellite is incapable of transi-
tioning from the ending orientation of one opportunity to
the starting orientation of another opportunity in the time
in-between).

• Ground stations can only do one thing at a time, and need
a non-zero time to reset themselves between different
satellite passes. Same-ground station, different-satellite
opportunities that are too close together or overlap in time
are mutually exclusive.
Beyond hardware-dictated constraints, a variety of addi-

tional constraints and objectives arise when operating such
a large imaging constellation. A human factors problem
emerges for the Terra Bella operations team. Rather than
rely on enough human bandwidth to monitor each satellite’s
scheduled ground station passes, the sheer volume of passes
necessitates that the team be less involved on a per-satellite
basis in real-time.

As a result, the operations team requires that the schedul-
ing algorithm guarantee a minimum contact frequency with
each satellite (“at least every nth orbit, talk for at least m
minutes”, where typically n = 3 and m = 3), to ensure
enough time is reserved for health and safety monitoring.
They also require the automatic balancing of imaging with
downlinking, so that the satellites should neither pass up too
many high value image targets nor build up any large back-
logs of undownlinked image data.

In case of an unplanned occurrence requiring human in-
tervention, the operations team needs the ability to force the
scheduling system to lock a downlink/contact opportunity
into a satellite’s schedule (or lock it out of a satellite’s sched-
ule). Finally, to make the system as user friendly as possible,
it’s required that the algorithm run fast enough that an oper-
ator can interact with the scheduling system and regenerate

a new schedule in a short period of time (where “short” in
operations is considered to be on the order of 15 seconds or
less).

Summarizing, the operations-driven constraints and ob-
jectives are:
• Satisfy the minimum contact frequency for each satellite
• Balance the competing objectives of image collecting and

data downlinking
• Provide human operators the ability to manually ”lock-in”

or ”lock-out” a given contact
• Constellation-wide optimization occurs in a short period

of time (less than 15 seconds)
Finally, a business objective is to maximize the image col-

lection of priority-weighted targets. As the algorithm is al-
ready required to run fast, it is straightforward to alter a tar-
get’s priority weight and regenerate a schedule due to dy-
namic changes in target desirability (e.g., clouds).

The paper is organized as follows. The next section dis-
cusses previous research into satellite scheduling, and why it
was inapplicable to operating the Terra Bella constellation.
Section 3 outlines a new approach, a mixed-integer linear
program (MILP) for constellation-wide scheduling. It spec-
ifies exactly how the various constraints enumerated above
get mathematically encoded as part of a MILP, to yield a
scheduler that simultaneously assigns both downlinks and
image collects. It also explains why this ‘global’ MILP has
issues with meeting the performance goals desired. This
motivates a reformulation into a ‘sequential’ scheduler, with
successive scheduling of first the downlinks and then the im-
age collects. Section 4 describes this sequential approach. In
particular, it details the novel dynamic programming (DP)
heuristics that are used to allow downlinks to get scheduled
in a MILP with awareness of how much and when imaging
activity is taking place, without explicitly having to schedule
image collects until a subsequent step. Section 5 provides
comparison and analysis of the two algorithms and Section
6 concludes.

2 Background

A large body of research exists on optimal scheduling of
Earth-imaging satellites. Maximizing imaging productivity
has been a topic of heavy focus, with research into opti-
mizing the imaging schedule of a single satellite (Bensana
et al. 1996; Gabrel et al. 1997; Vasquez and Hao 2001;
Gabrel and Vanderpooten 2002; Lemaitre et al. 2002; Gabrel
and Murat 2003; Vasquez and Hao 2003; Lin et al. 2005;
Tangpattanakul, Jozefowiez, and Lopez 2015) or of multi-
ple satellites in a coordinated Earth-imaging constellation
(Bianchessi et al. 2007; Yao et al. 2010; Shea and Nasgovitz
2011). Research has also been conducted on optimizing the
downlink activity between a ground station network and a
single satellite or multiple satellites (Burrowbridge 1999;
Barbulescu et al. 2004; Zufferey, Amstutz, and Giaccari
2008; Marinelli et al. 2011; Karapetyan et al. 2015).

In contrast with the above work, in the Terra Bella use
case both imaging and downlinking scheduling must be ad-
dressed in the same algorithm, because the satellites only
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undertake one activity at a time. Anytime both an imaging
target and a ground station are accessible by a satellite, the
scheduling algorithm must choose between these competing
objectives.

In general the problem of co-optimizing the imaging and
downlinking of a large satellite constellation based on high-
fidelity data models has been less thoroughly studied. Some
work has made assumptions that a downlink opportunity
over a ground station is always selected as part of the sched-
ule (Globus et al. 2004), regardless of how much data is on-
board and/or whether there are conflicting image opportuni-
ties that would be more desirable to schedule instead. Other
articles cover constellations where the satellites can simulta-
neously image and downlink (Bianchessi and Righini 2008;
Wang et al. 2011), so don’t address the additional aspect
of having to choose between the two. Finally, something
not previously studied in satellite constellation scheduling
is optimizing imaging and downlinking while also selecting
ground station opportunities to ensure a minimum contact
constraint is met.

Recall that runtime is a chief concern. The algorithm
presented in this paper continues in the spirit of previous
mathematical programming solutions to satellite schedul-
ing problems (Bensana et al. 1996; Gabrel and Murat 2003;
Gabrel 2006; Bogosian 2008). The continuous span of time
that a satellite is in view of a target is turned into a set of
multiple feasible discrete opportunities. This results in a
combinatorial optimization problem to select the opportu-
nities to be included in the schedule. Discretization sets this
algorithm and its antecedents apart from a number of the
other approaches listed above. While it necessarily incurs
accepting some theoretical sub-optimality, it allows the de-
sign of the algorithm to commence from a starting approach
that runs in polynomial time rather than being NP-hard.

Discrete Graph-Based Approaches

Optimal opportunity selection for a single satellite (with-
out any additional objectives or constraints) can be viewed
as a directed acyclic graph (DAG) problem, where satellite
opportunities are nodes in a graph and directed edges en-
code feasible transitions. An example is the graph-based
approach taken at Terra Bella during the first two years of
satellite operations (Augenstein 2014). DAGs are formed
by ordering all opportunities chronologically and then using
an agility model heuristic to determine which pairs of oppor-
tunities should have edges connecting them. Figures 2 and 3
give a pictorial view of this process. (Note that for simplic-
ity only one opportunity is depicted for each imaging target,
when in reality there are several opportunities per target per
pass.)

The highest weighted path through the graph is the op-
timal schedule of the satellite over the time period of the
DAG, and can be calculated via either dynamic program-
ming (DP) (Leiserson et al. 2001) or integer/linear program-
ming (IP/LP) (Nemhauser and Wolsey 1988). A brief re-
view of highest weighted path DP is given here, as one of
the schedulers in this paper makes use of it as a heuristic
(explained in detail in Section 4). Let cj be the priority of
opportunity j and let Cj be the cumulative priority of the

Figure 2: Example Opportunities Near Sea of Japan

Figure 3: Sea of Japan Opps. arranged in DAG

highest weighted path between the start node and node j.
Let pj be a pointer to the node that preceeds node j along
this highest weighted path. From a node-centric perspective,
the calculation at each node j (to determine Cj and pj) is:

Cj = 0
for all {i | edge(i, j) = true} do

if Ci + cj > Cj then
Cj ← Ci + Cj

pj ← i
end if

end for

This calculation is performed for each node in chronolog-
ical order, from start node to end node. After completing,
backtracking via the values of pj (starting with pend) yields
the opportunities in the optimal satellite schedule. Such a
DP process is repeated for multiple DAGs on each satellite,
together spanning the timespan between the current time and
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the end of the scheduling horizon. The highest weighted
path through each graph is calculated, and these output paths
sequentially form the total schedule of a particular satellite.

Constellation-Scale Constraints

If DP is naively applied to the constellation, this process is
repeated for all the satellites (see Figure 4).

Figure 4: Multiple DAGs across many Satellites

However, the DP approach starts to reveal significant
drawbacks as the transition to constellation-scale operations
is made. A major aspect lacking is any awareness of multi-
satellite constraints; each satellite is planned independently
and without consideration of the others in the constellation.
For example, given that only one satellite can talk to a given
ground station at a time, anytime there are two satellites
with conflicting downlinks requires an ad-hoc deconfliction.
As Table 1 shows, with constellation growth the amount of
downlink passes requiring deconfliction rises significantly,
necessitating a lot of ad-hoc behavior.

# of # of ground likelihood that station pass
satellites stations overlaps w/ another satellite’s

2 2 0.199
13 2 0.888

Table 1: Likelihood of Pass Conflicts vs. Constellation Size

What is desired instead is an approach where decisions
such as which satellites get to downlink to a ground station
(and for how long) are based on objectives globally consid-
ered over all satellites and all ground stations over the entire
set of opportunities in the scheduling horizon. For handling
a constellation-scale optimization with the various features
enumerated in Section 1, the need for richer constraints and
objectives requires a change to an IP/LP approach. The com-
binatorial optimization can be encoded as a mixed-integer
linear program (MILP) (Nemhauser and Wolsey 1988) with
boolean variables for opportunity selection and continuous
variables modeling amount of onboard data. The next sec-
tion explains in detail how this is done.

3 Constellation Scheduling as a MILP
Let Simg be the set of image opportunities, let Sdl be the
set of downlink opportunities, and let Sall be the set of all
opportunities (Simg ∪ Sdl).

Each opportunity i has a boolean variable (xi) indicating
inclusion in the schedule. Each opportunity i has a positive
real (yi) for amount of onboard data at end time of oppor-
tunity. Each imaging opportunity i has a priority weight
(ci > 0) indicating how important capturing that image is
(for all downlink opportunities, ci = 0). Opportunities can
also have a penalizing cost of onboard data storage, di.

Objective

The objective function represents the twin goals of collect-
ing the largest amount of prioritized imagery (minimizing
the sum of −cixi) and continually lowering the amount
of undownlinked data onboard the satellite (minimizing the
sum of diyi):

minimize
xi

∑

i∈Sall

(−cixi + αdiyi)

subject to: xi ∈ {0, 1}
yi ∈ R

yi ≥ 0

...

A good choice for how to set the storage penalty di is
based on an objective of minimizing the “wait time” that
image data spends onboard the satellite before it gets down-
linked. Consider a scheme where for all imaging opportu-
nities di is zero and for all downlink opportunities di is the
time duration until the next downlink opportunity occurs.
Then image data is penalized if it is still present onboard the
satellite after the earliest opportunity at which it could be
downlinked. The penalty is proportional to the amount of
data and the duration of time it will be present onboard.

The coefficient α is a parameter that controls the relative
importance of imaging versus downlinking. It is set empir-
ically, and can be adjusted situationally by the Terra Bella
operations team to indicate a stronger preference for one ob-
jective over the other.

Satellite and Ground Station Mutual Exclusion
Constraints

Let there be a set, Ssat−mutex, containing all pairs of same-
satellite opportunities that are mutually exclusive (e.g., due
to lack of agility). Let there be another set, Sgs−mutex, con-
taining all pairs of same-ground station opportunities that
are mutually exclusive (e.g., due to overlapping time). Note
that these sets are quickly precomputed before the optimiza-
tion runs. Then:

xk + xl ≤ 1 ∀ {k, l|〈k, l〉 ∈ Ssat−mutex}
xk + xl ≤ 1 ∀ {k, l|〈k, l〉 ∈ Sgs−mutex}

Onboard Data Model Continuity Constraints

Consider the opportunities to be ordered chronologically by
end time, so i is the opportunity whose end time is soonest

348



after the end time of i − 1. Another set of constraint equa-
tions enforce that the amount of onboard data y increases
(when imaging) and decreases (when downlinking). These
equations are linear and a function of whether opportunity i
is included (xi = 1) or excluded (xi = 0):

yi = yi−1 + aixi ∀ i ∈ Simg

yi ≥ yi−1 − aixi ∀ i ∈ Sdl

For an imaging opportunity, ai is the amount of data that
would be collected if scheduled. For a downlink opportu-
nity, ai is the maximum amount of data that could be down-
linked if scheduled. The inequality exists to handle the case
where downlink capacity ai is larger than the amount of data
coming into the ground station pass yi−1 (the exiting amount
of data yi can never get less than zero).

Note that if opportunity i is not scheduled, yi is simply
the same as yi−1 (no change in amount of onboard data).

Minimum Contact Frequency Constraints

Additional indicator variables are used to formulate the min-
imum contact constraints. Recall from Section 1 that all
downlink opportunities are one minute in duration and abut
other downlink opportunities to the same ground station. Let
a boolean variable wi be an indicator of whether contigu-
ous downlink opportunities i, i+ 1, and i+ 2 have all been
selected for inclusion in the schedule, forming a 3-minute
period of continuous contact between the satellite and the
ground station. Let j index the orbits of a satellite, and let
a boolean variable vj be an indicator of whether at least 3
contiguous minutes of contact will occur in orbit j. Then
the constraint to enforce that at least once every 3 orbits, a
satellite contacts a ground station for at least 3 minutes is
encoded as:

vj ∈ {0, 1}
wi ∈ {0, 1} ∀ i ∈ Sdl

xi + xi+1 + xi+2 ≥ 3wi ∀ {i|ei = si+1, ei+1 = si+2}∑

i∈Oj

wi ≥ vj

vj + vj+1 + vj+2 ≥ 1

In the above expression, the variables si and ei are the
starting and ending times (respectively) of opportunity i, so
the condition of ei = si+1 is a statement that opportunity i
and i+ 1 are contiguous in time.

Also above, Oj represents the set of all downlink oppor-
tunities occuring during orbit j.

Opportunity Lock-In/Lock-Out

Lock-ins and lock-outs are simply the assignment of an in-
dicator variable to be 0 or 1. (Note this assumes logic has
been applied to ensure a user cannot lock-in two mutually
exclusive opportunities).

xi = 1 ∀ i ∈ Slock−in

xi = 0 ∀ i ∈ Slock−out

Summary of Global MILP

Putting the objective and all of the above constraints to-
gether, the global MILP is:

minimize
xi

∑

i∈Sall

(−cixi + αdiyi) (1)

subject to: xi ∈ {0, 1}
yi ∈ R

yi ≥ 0

xk + xl ≤ 1 ∀ {k, l|〈k, l〉 ∈ Ssat−mutex}
xk + xl ≤ 1 ∀ {k, l|〈k, l〉 ∈ Sgs−mutex}

yi = yi−1 + aixi ∀ i ∈ Simg

yi ≥ yi−1 − aixi ∀ i ∈ Sdl

vj ∈ {0, 1}
wi ∈ {0, 1} ∀ i ∈ Sdl

xi + xi+1 + xi+2 ≥ 3wi ∀ {i|ei = si+1, ei+1 = si+2}∑

i∈Oj

wi ≥ vj

vj + vj+1 + vj+2 ≥ 1

xi = 1 ∀ i ∈ Slock−in

xi = 0 ∀ i ∈ Slock−out

Computational Considerations

The MILP formulated above assigns image and downlink
opportunities simultaneously. Because of the onboard data
model, there is a dense set of constraints linking all op-
portunities. In practice, this has negative runtime perfor-
mance implications that preclude the use of this global MILP
(Section 5 will present specific results). The next section
presents an alternative to the global approach; it sequentially
schedules downlinks and then image collects, with a novel
DP heuristic providing the downlink scheduling MILP with
‘awareness’ of imaging activity.

4 A Sequential Algorithm

A path forward to acceptable runtime performance exists by
separating the problems of downlink opportunity selection
and imaging opportunity selection. This uncouples the vari-
ables that are present in the majority of the constraint equa-
tions (the downlink opportunities) from the variables that
are in the majority (the imaging opportunities). Downlink
opportunity selection is done first and imaging opportunity
selection is done second. These two sequential steps are now
presented.

Downlink Scheduling as a DP-aided MILP

While a reduced MILP that schedules only the downlink op-
portunities rather than all opportunities will clearly be faster,
it is still essential to select the downlink opportunities in
a way that matches the imaging activity occurring on each
satellite. An acceptable algorithm preserves the preference
for more downlink time when the satellite has just flown over
a target rich area (e.g., western Europe, where it has likely
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collected a lot of images) and for less downlink time when
the satellite has just flown over a target sparse area (e.g., the
Pacific Ocean).

This can be achieved via a heuristic that approximates
imaging activity without explicitly scheduling image oppor-
tunities. Specifically, two properties need to be approxi-
mated. First, the amount of priority-weighted imagery that
a satellite would encounter during a particular time period is
needed for making trade-off decisions between imaging and
downlinking when opportunities would be mutually exclu-
sive (e.g., image targets in view of a satellite while a ground
station is also in range). Second, a profile of how much im-
agery a satellite would collect as a function of time is needed
to adequately model how much data is onboard, and thus es-
timate the relative demand for downlink.

Approximated Priority-Weighted Imagery A modified
priority weight c̃i for downlink opportunities is now intro-
duced. Where in the previous section the downlink opportu-
nities had zero priority weight (ci = 0), now the downlink
opportunities have associated to them a value c̃i representing
the approximate summed priority weight of all imaging that
could have feasibly been acquired if the downlink opportu-
nity was not used (a “cost of missing out”).

The objective function of the downlink scheduling prob-
lem is now expressed as a desired to both “not miss out on
imagery” (minimizing the sum of c̃ixi) while also continu-
ally lowering the amount of undownlinked data onboard the
satellites (minimizing the sum of diyi):

minimize
xi

∑

i∈Sdl

(c̃ixi + αdiyi)

subject to: xi ∈ {0, 1}
yi ∈ R

yi ≥ 0

...

Approximated Image Data Profile As earlier, a linear set
of constraint equations enforce that the onboard data y is
modeled to be consistent with imaging and downlink activ-
ity (increasing and decreasing the total data amount, respec-
tively).

Recall that the opportunities can be considered ordered
chronologically by end time. In contrast to the global MILP,
now the constraint equations are written between only down-
link opportunities (i ∈ Sdl). The constraint equation that
links all consecutive downlink opportunitives is:

yi ≥ yi−1 − ãixi + b̃i ∀ i ∈ Sdl

The baseline imaging variable b̃i represents an estimate
of how much imaging data would be acquired between the
end of downlink opportunity i − 1 and the end of downlink
opportunity i, if the time was entirely devoted to imaging.

The ãi term includes the amount of data that could be
downlinked during opportunity i (same as above in the

global MILP). It also includes an estimate of the amount of
imaging data that is not acquired between the start and end of
opportunity i, because the satellite is instead occupied with
downlinking.

Putting them together, the value of −ãi + b̃i is equal to
the net change in onboard data given the image data that is
added via collecting between end of downlink i−1 and start
of downlink i and given the image data that is subtracted via
downlinking during downlink i.

DP as a Heuristic for Imaging Activity A good imaging
heuristic that provides values for c̃i, ãi, and b̃i can be found
in the basic single satellite DP algorithm discussed in Sec-
tion 2. Consider a DAG (like the one depicted in Figure 3)
that contains a downlink opportunity i as one of the nodes in
the graph.

Let Cend be the cumulative priority weight of the highest
weighted path, and let Cend | i be the cumulative priority
weight of the highest weighted path that must go through
opportunity i. Then:

c̃i = Cend − Cend | i

Similarly, let Yend be the cumulative amount of image
data collected when scheduling the image opportunities that
form the highest weighted path, and let Yend | i be the cu-
mulative amount of image data collected on the highest
weighted path that must go through i. Also, let Yi be the
cumulative amount of image data collected up until down-
link opportunity i when the highest weighted path must go
through i. Then:

ãi = Yend − Yend | i + ai

b̃i = (Yend | i−1 − Yi−1)− (Yend | i − Yi)

The first term reflects how much data is not collected
due to inclusion of downlink opportunity i in the sched-
ule (Yend − Yend | i), as well as the amount of data ai that
could be downlinked during i. The second term includes the
amounts of imagery data that would be collected after i− 1
and after i (respectively, Yend | i−1−Yi−1 and Yend | i−Yi),
and considers the difference to be an estimate of how much
imaging could be collected between i− 1 and i.

As the DP approach yields an extremely fast calculation
(the DAGs are separable and the highest weighted paths can
be calculated in parallel), this approach provides a computa-
tionally efficient heuristic for determining c̃, ã, and b̃.

Summary of DP-aided MILP Putting the objective and
all of the above constraints together, the DP-aided MILP al-
gorithm used in the sequential approach is:
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minimize
xi

∑

i∈Sdl

c̃ixi + αdiyi (2)

subject to: xi ∈ {0, 1}
yi ∈ R

yi ≥ 0

xk + xl ≤ 1 ∀ {k, l|〈k, l〉 ∈ Ssat−mutex}
xk + xl ≤ 1 ∀ {k, l|〈k, l〉 ∈ Sgs−mutex}

yi ≥ yi−1 + ãixi + b̃i ∀ i ∈ Sdl

vj ∈ {0, 1}
wi ∈ {0, 1}

xi + xi+1 + xi+2 ≥ 3wi ∀ {i|ei = si+1, ei+1 = si+2}∑

i∈Oj

wi ≥ vj

vj + vj+1 + vj+2 ≥ 1

xi = 1 ∀ i ∈ Slock−in

xi = 0 ∀ i ∈ Slock−out

Image Scheduling

Image scheduling is trivial after the downlink MILP. With
the assurance that the downlink scheduling has worked
around imaging as best possible, image scheduling can take
place via a variety of solution methods (DP, IP/LP, etc.). For
the results in the next section, image scheduling was per-
formed via DP as described in Section 2, with any imag-
ing opportunities that are mutually exclusive with scheduled
downlink opportunities removed from consideration.

5 Analysis

The rationale for the sequential scheduling algorithm for-
mulated in the last section is that it is computationally fast
enough to meet the runtime demands of Terra Bella con-
stellation operations. In this section, the performance differ-
ences are quantified between the global MILP model (1) and
the sequential model with DP-aided MILP (2). Three test
cases were formulated, each representative of different steps
in a realistic ramp-up in operating capacity during 2016. The
first test case is with 3 satellites, the second test case is with
7 satellites, and the third test case is with 13 satellites. All
cases involve a 10-hour scheduling horizon with a represen-
tative set of approximately 7000 imaging targets (which can
be imaged by any satellite). Table 2 summarizes the cases.

test # of # of opportunities
case satellites (imaging & downlink)

i 3 13659
ii 7 30516
iii 13 52695

Table 2: Test Cases

Tests were on a machine with 3.2GHz Intel Xeon E5 pro-
cessor and 32GB of memory, using SCIP (Achterberg 2009),
a fast open-source MILP software package in wide use.

Aside from algorithm runtime, other important metrics for
algorithm validation are the sum priority of the scheduled
imagery collects (C), and the average wait time that image
data sits onboard the satellites (D̄). It is desired that the
sum priority of all scheduled collects be as high as possible,
reflecting that the satellites’ imaging activities are focused
on the largest number of and highest priority targets. It is
calculated via:

C =
∑

i∈Simg

(cixi)

The wait time is the time between earliest possible image
downlink time and actual image downlink time. It is desired
that wait time be as low as possible, reflecting that the satel-
lite constellation and ground station network are utilized to
promptly transmit image data to the ground. Using the wait
time storage penalties di defined in Section 3, average wait
time D̄ is calculated via:

D̄ =

∑
i∈Sdl

(diyi)∑
i∈Sdl

(yi)

Table 3 displays the experimental results, with runtime,
C, and D̄ given for each test configuration.

case algorithm runtime (s) C D̄(s)
i global 3600 661× 103 1585.29
i sequential 2.86 783× 103 1550.74
ii global 3600 119× 104 1720.33
ii sequential 5.66 177× 104 1649.56
iii global 3600 183× 104 1780.35
iii sequential 12.41 312× 104 1664.67

Table 3: Operational Metrics vs. Algorithm Used
(Italics indicate timeout before convergence)

All results in Table 3 indicate the superior performance
of the sequential scheduler with DP-aided MILP over the
global MILP. With regards to runtime, the global scheduler
never converged to optimal for any of the test cases within
one hour (which is already far too long for operational use at
Terra Bella), while the sequential scheduler converged to an
optimal solution quickly (e.g., in less than 13 seconds for the
biggest test case). In addition, the sum priority collected C
and average wait time of data D̄ that the sequential scheduler
produces is always more desirable than that from the global
scheduler.

The superiority in D̄ of sequential over global is consis-
tent but minor; for all of the test cases the difference is never
more than two minutes in wait time, which does not have a
large impact on image production. However, the superiority
in C of sequential over global is striking. For the 3-satellite
test case, the sum priority imagery scheduled by the sequen-
tial algorithm in less than 3 seconds runtime is over 18%
more than the sum priority imagery scheduled by the global
algorithm given one hour of runtime. The percentage im-
provements in C are even greater for the larger constellation
test cases.
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6 Conclusion

This paper has presented a scheduling algorithm to operate
an Earth-imaging constellation with a maximum of automa-
tion and a minimum of intensive human oversight. Solv-
ing this challenge was motivated by the unique size and
rapid growth of Terra Bella’s satellite constellation. Given
a varied set of hardware- and operations-derived objectives
and constraints, two MILP approaches were described. One
schedules downlink and imaging opportunities simultane-
ously, while the other schedules downlink and imaging sepa-
rately and sequentially. This latter algorithm leverages a DP
approach to single-satellite scheduling to provide a heuristic
on cumulative image priority and amounts of imagery data
collected. Use of this heuristic allows a reduced MILP to
be solved that just schedules the downlink opportunities, en-
abling a massive computational speedup to achieve the per-
formance required for effective operations.
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