
Leveraging Probabilistic Reasoning in Deterministic Planning
for Large-Scale Autonomous Search-and-Tracking

Sara Bernardini
Department of Computer Science

Royal Holloway, University of London
Egham, Surrey, UK, TW20 0EX

sara.bernardini@rhul.ac.uk

Maria Fox, Derek Long, Chiara Piacentini
Department of Informatics

King’s College London
London, UK, WC2R 2LS

firstname.lastname@kcl.ac.uk

Abstract

Search-And-Tracking (SaT) is the problem of searching for a
mobile target and tracking it once it is found. Since SaT plat-
forms face many sources of uncertainty and operational con-
straints, progress in the field has been restricted to simple and
unrealistic scenarios. In this paper, we propose a new hybrid
approach to SaT that allows us to successfully address large-
scale and complex SaT missions. The probabilistic structure
of SaT is compiled into a deterministic planning model and
Bayesian inference is directly incorporated in the planning
mechanism. Thanks to this tight integration between auto-
mated planning and probabilistic reasoning, we are able to
exploit the power of both approaches. Planning provides the
tools to efficiently explore big search spaces, while Bayesian
inference, by readily combining prior knowledge with ob-
servable data, allows the planner to make more informed and
effective decisions. We offer experimental evidence of the po-
tential of our approach.

1 Introduction

In a Search-And-Tracking (SaT) mission, a searching vehi-
cle, the observer, wishes to locate the position of a moving
object, the target, and to track it to destination upon find-
ing it. Examples of SaT missions are a UAV searching for
life-rafts drifting with current, a police helicopter tracking a
suspected criminal over a road network and a small drone
escorting a worker who performs risky tasks in a factory.

SaT is an important component of many autonomous
surveillance and Search-and-Rescue (SaR) operations, but
it remains challenging due to the uncertainty inherent in it:
the target location is unknown and moving, its motion model
is often indeterminate and detection capabilities are imper-
fect. In addition, search platforms have limited resources,
e.g. fuel or battery, and face many operational constraints,
e.g., search paths must be equally spaced and parallel. De-
spite these constraints, the observer needs to make decisions
quickly as it operates in time-critical situations.

Efficient solutions to SaT have been proposed under re-
strictive simplifying assumptions such as the search area be-
ing small, the temporal horizon being short and the target’s
motion model being simple (e.g., targets being stationary or
in Markovian motion) (Stone 1975; Bourgault, Furukawa,
and Durrant-Whyte 2006; Lavis and Furukawa 2008; He,
Bachrach, and Roy 2010; Lin and Goodrich 2014). Several

of these solutions are based on Recursive Bayesian Esti-
mation (RBE) and a greedy search over a very short plan-
ning horizon (typically, a one-step lookahead). Although this
purely probabilistic approach is successful for small-scale
and simple SaT problems, it fails in the face of all the con-
straints that characterise real-world SaT operations. When
the geographical area of search is large (hundreds of square
km) and heterogeneous, the temporal horizon is long (hours)
and the target moves in an unpredictable way according to
its own intentions, probabilistic techniques become compu-
tationally too expensive.

To control complexity, Bernardini et al. (2013) reformu-
late SaT from a continuous optimisation problem into a
combinatorial search problem by discretising it in time and
space. SaT is modelled as a planning task consisting of de-
ciding where to search and which search manoeuvres to per-
form in order to maximise the likelihood of recovering the
target. This problem is then solved by using an off-the-shelf
high-performing planner, OPTIC (Benton, Coles, and Coles
2012). In a radical departure from RBE techniques, the prob-
abilistic aspects of the search problem are compiled away
and a deterministic formulation is used to solve it. Plan-
based SaT may find good policies for large-scale problems
with predictable target behaviours, but it struggles with se-
rious inaccuracies when the target acts in a more sophisti-
cated way by neglecting its physical motion in the environ-
ment and the outcome of previous searches. In (Bernardini,
Fox, and Long 2015), an improvement of plan-based SaT
is presented, which is obtained by incorporating informa-
tion about the target motion model in the generation of the
manoeuvres that the planner considers for selection. This in-
formation is derived from running Monte Carlo Simulation
outside the planner. Although the MCS-based approach is
far more accurate than plan-based SaT, it is still not very
effective over long temporal horizons since it does not take
into account the information learned by the UAV during pre-
vious unsuccessful searches.

In this paper, we propose a new hybrid approach to SaT
that combines automated planning with Bayesian reason-
ing. We offer a completely new formulation of the problem
that captures the probabilistic motion model of the target
within the planning domain and allows the planner to ex-
ploit Bayesian inference to make and update predictions on
the target position over time based on the outcome of past

Proceedings of the Twenty-Sixth International Conference on
Automated Planning and Scheduling (ICAPS 2016)

47

observations. In our approach, we benefit from the strengths
of both planning and probabilistic reasoning: the former en-
ables us to find efficient solutions quickly; the latter miti-
gates the intrinsic uncertainty of SaT missions by updating
prior knowledge for new observations. Our model is very
expressive and allows the planner to create robust plans that
account for the target motion model, the result of previous
searches and the detection capabilities of the sensors avail-
able to the UAV. Our experiments provide evidence that the
integration of planning with Bayesian reasoning through this
hybrid model opens the door to solving complex real-world
SaT problems over long temporal horizons and large geo-
graphical spaces.

2 The Search Problem

Of the two phases of search and tracking, we focus on search
in this paper. We assume that the target, a road vehicle, is
located in the Euclidean 2-space and that this space is char-
acterised by a road network (RN), where each road is a se-
quence of line segments. The target is in uniform motion on
such segments and moves independently of the searcher’s
actions. It needs to reach a specific destination and chooses
an efficient path to do so.

The observer, a fixed-wing UAV, flies a series of manoeu-
vres to locate the target. The UAV is equipped with an imag-
ing system to scan the RN, which is susceptible to error from
the features of the environment. We estimate the UAV search
effort in terms of time and assume that the effort is con-
strained by the UAV’s maximum endurance.

The search problem is concerned with finding a set of ma-
noeuvres for the UAV that maximises the probability of de-
tecting the target given the constraints on the effort.

3 A Hybrid Approach to Search

The UAV exploits standard search patterns (spirals and
lawnmowers) to survey the search region and uses them as
building blocks of a search plan that attempts to maximise
the expectation of discovering the target. Using standard
flight patterns is a sensible choice not only for scalability
reasons, but also because it is line with SaT and SaR inter-
national guidelines (IMO 2013). The plan-based approach
to SaT works in two stages: first, we create a set of candi-
date search patterns, which covers the most promising loca-
tions to discover the target, and then we feed this set into
the planner, which is in charge of selecting a subset of can-
didates and sequencing them over time. The planner looks
for plans that maximise the probability of finding the tar-
get while favouring manoeuvres that minimise the use of the
UAV’s resources (flight time).

We formulate SaT as a deterministic planning task despite
the uncertainty inherent in it. We construct the plans entirely
under the assumption that the target remains undiscovered,
because, if the target is found, the plan is abandoned. Hence,
we do not need to model the target’s position explicitly in so
removing the source of uncertainty of the problem.

To implement this approach to SaT, we need to manage
two tasks: (i) identifying an initial pool of candidate search

patterns from which the planner chooses the ones to exe-
cute; and (ii) identifying a mechanism to establish which se-
quence of patterns is best suited to discover the target.

To address the first task, we could create an arbitrarily
large number of candidates to cover the whole area of oper-
ation. However, to reduce the computational complexity, it is
preferable to keep the number small without compromising
the chances of discovering the target. Building on the work
by Bernardini, Fox, and Long (2015), we perform Monte
Carlo Simulation (MCS) to identify points in the search area
that present the highest probability of finding the target at
different points in time. Then, we create candidate patterns
centred around those points and that are active during the pe-
riod in which the target can plausibly be there. Effectively,
MCS provides us with a fine-grained time-dependent prior
PD for the target location.

As for the second task, i.e. finding a sequence of search
patterns that maximises the probability of finding the tar-
get, the planner needs to be equipped with a mechanism for
making predictions about where the target is driving to as
well as for updating such predictions over time in view of
the target’s motion and the results of the previous searches.
This is when our model based on Bayesian reasoning comes
into play by providing a powerful mechanism for combin-
ing previous knowledge with new observations. We compile
the prior PD provided by the MCS as well as the target mo-
tion model into a planning task specification and prompt the
planner to reason about possible combinations of patterns.
The planner adds each new pattern to the plan under the as-
sumption that the previous one has failed to discover the tar-
get. The failed pattern gives the planner negative informa-
tion regarding the target’s location, which the planner can
take into account to update the current prior PD. As pat-
terns roll on, the posterior probability of the locations in the
vicinity of those that have already been searched become
lower than the posterior of the locations that have not been
explored yet. Upon completion of this iterative process, the
planner is in a position to choose from a wide array of pos-
sible search sequences the one that carries the highest prob-
ability of finding the target and can dispatch that sequence
to the observer. Figure 1 shows the different phases of a SaT
mission and how we tackle them.

4 Compiling Probabilistic SaT Problems into

Deterministic Planning Models

This section focuses on the theoretical framework behind
our hybrid SaT model, Section 5 describes the calculations
that are performed during planning and, finally, Section 6 il-
lustrates how such a framework can be expressed in PDDL
and run through a PDDL planner.

To construct the model, we assume that the target Last
Known Position (LKP) is given as well as a set of target
possible destinations, D, with d = |D|. We also assume that
a PD over the destination is known and consider here a uni-
form PD.As already mentioned, we obtain candidate search
patterns by running MCS. First, we determine an optimal
area where the search should be deployed. We take a cir-
cular sector centred on the target LKP and extending out-

48

�������	
��
��

�����

������	��	���

���������

���
�����

����	���
�
��������������

�
�����

����	���
�
���
����

���	�
������	�
������	�

����
�������
��

������
�������
��

����	���
�����	��

����	���
���

����������
��

��������	��	�	���
��

�����������
 �	��

Figure 1: Phases of a plan-based SaT mission

wards with its symmetry axis aligned with the target’s aver-
age bearing over the period it was observed. We then super-
impose a grid on this sector and build a graph G = (C,E)
based on the RN enclosed in the grid (C is the set of the
cells in the grid and (v, w) ∈ E if there is a road in the RN
that connects the cells v and w). We use this graph to rep-
resents the topology of the search area. Since the nodes in
C are cells in the grid, they can be seen as subsets of R2.
This natural Euclidean embedding will be used throughout
the paper. The set of cells corresponding to the target des-
tinations will still be denoted by D and its elements, which
we call destination nodes, by x1, x2, . . . , xd. We indicate the
cell corresponding to the target LKP by v̄ ∈ C and call it
LKP node. From the graph G, we calculate the shortest path
from the LKP node to each destination node in D by using
Dijkstra’s single-source-shortest-path algorithm.

Given the graph G, let us consider the subgraph deter-
mined by the LKP node v̄, the destination nodes D and fi-
nally the nodes on the shortest paths that connect v̄ to each
x1, x2, . . . , xd (we assume unique shortest paths, but multi-
ple paths from the LKP node to the destination nodes can be
easily incorporated in our model). This subgraph is a tree T
with a set of vertices V ⊆ C rooted in v̄ ∈ V . Given w ∈ V ,
we denote by Tw the subtree of T rooted in w. We denote by
D(w) the set of destination nodes in Tw and call them com-
patible with w. If W ⊆ V , we put D(W) = ∪w∈ WD(w).

We use the tree T to run MCS. We generate a set of par-
ticles, where each particle represents a guess of where the
target might be located at any time point. We assign a des-
tination to each particle by randomly choosing it based on
the destination PD. The speed of the particle on each edge is
randomly sampled from the PD of the target possible speeds
for the type of road corresponding to the edge. Then, we
simulate motion on the tree T assuming that each particle
proceeds towards its destination without detours and travel-
ling at a constant speed on each edge. Simulation is in con-
tinuous time and particles live both on nodes and edges.

Given the total mission time t̄, we establish a set of time
check points t0, . . . , tn, where t0 is the start of the mission
and each t0 < · · · < tn < (t0 + t̄). We simulate the motion
of the particles up to each check point ti and store their ar-

rival node (we take the source node if the arrival position is
on an edge) for each temporal slice. At the end of the simula-
tion, we obtain an approximate representation of where the
target might be located at the different time check points.
The particles end up distributing over the main roads and, as
time passes, clustering around the destinations.

For each time check point ti, we select the two nodes that
have collected the highest number of particles and then gen-
erate two candidate search patterns centred around them,
which are subsets of R

2. Choosing two patterns per time
slice is clearly an approximation, which we use to keep com-
plexity under control. However, our method can be easily
generalised to create more patterns for each time slice. As
for the type of patterns to use, we favour spirals in the part
of the search area that is closest to the origin and in regions
with a high density road, because they ensure precise cov-
erage, while we use lawnmowers in rural areas or elongated
stretches covering major roads [ref-removed].

We denote the set of all search patterns chosen at any time
check point by Σ. Each search pattern σ ∈ Σ has a time
window [t−σ , t

+
σ] associated with it that corresponds to the

activation window of the pattern. This window is set up by
calculating the earliest and latest time of arrival for the target
to the centre of the pattern. For every σ ∈ Σ, we denote by
Vσ the set of nodes in the tree T that are contained by σ (in
the embedding environment R2), i.e. Vσ = {v ∈ V |v ⊆ σ}.
Dσ = D(Vσ) indicates the set of destination nodes compat-
ible with σ. A plan skeleton is a sequence of elements in Σ,
S = (σ1, σ2, . . . , σk̄), with k̄ indicating its length.

For each destination x ∈ D, we call P (k)
S (x) the proba-

bility that the target is driving towards x at time step k after
executing the patterns in S and provided that the searches in
patterns σ1, . . . , σk have failed. Initially, all the destinations
are equally probable. However, in exploring the search area,
we gain information about the intentions of the target and
we can update the probabilities consequently. In a Bayesian
fashion, if a search in σ has proven unsuccessful, we de-
crease the probabilities of the destinations compatible with σ
since it now appears more unlikely that the target is heading
towards one of them. Similarly, we increase the probabilities
of the destinations that are incompatible with σ because the
probability of finding the target there has now increased.

The probability of finding the target by executing a pat-
tern σ depends not only on the presence of the target in the
area covered by it, but also on the accuracy of the sensors
used to scan such an area. We associate a detection proba-
bility to each pattern σ, which we call γσ . This is the prob-
ability of finding the target in an execution of the pattern σ
conditioned to the target having initially chosen any of the
destination nodes in Dσ . The function γσ encodes both the
randomness in the motion of the target and the sensor noise
and is conditioned to the execution of its corresponding pat-
tern σ within the associated time window.

Finally, we call P (S) and T (S), respectively, the proba-
bility and an approximation of the expected time (precisely
defined in the next section) of finding the target by executing
the plan skeleton S. We will consider an objective function
of type G(S) = P (S) − kT (S) where k ≥ 0 is a con-

stant parameter. Maximisation of G(S) leads to plans that
balance, depending on k, high probability of discovery and
time to complete the mission.

5 Iterative Update of Probabilities

To compute the objective function G(S), we develop a for-
mal framework based on dynamic programming for com-
puting the probabilities associated with the destinations, the
total probability and the expected time.

5.1 Notation

Let Fσ represent the event of finding the target in a search of
the area covered by the pattern σ and F̃σ its negation. Given
a plan skeleton S = (σ1, σ2, . . . , σk̄), we define F (k)

S as the
event of finding the target at time step k by executing S and
F̃ (k)

S its negation, i.e.:

F (k)
S = Fσ1

∪ · · · ∪ Fσk
F̃ (k)

S = F̃σ1
∩ · · · ∩ F̃σk

For each time step k, we associate a PD to each destina-
tion x ∈ D, indicated as P (k)

S (x) and defined as follows:

P
(k)
S (x) = P(target → x|F̃ (k)

S) (1)

P
(k)
S (x) is the probability at time step k that the target is

driving to destination x provided that the searches in patterns
σ1, . . . , σk have failed. We have that P (0)

S (x) = 1
d since we

assume a uniform prior PD for the destinations.
The probability P (S) of finding the target by executing

the plan skeleton S and the probability P (k)(S) of finding
the target within time step k are given by:

P (S) = P(F (k̄)
S) (2) P (k)(S) = P(F (k)

S) (3)

The approximated expected time is defined by assuming
that if the target is discovered by executing the pattern σ, the
discovery time is given by the midpoint tσ of the activation
window [t−σ , t

+
σ] (tσ = (t+σ − t−σ)/2). In formula:

T (S) :=
k̄∑

j=1

tσj
(P (j)(S)− P (j−1)(S))

In the next section, we calculate P (S) and T (S) in an
iterative fashion.

5.2 Iterative Formulas for P (S) and T (S)

We start by analysing the destination probabilities P (k)
S (x),

which play a pivotal role in our computation. A recur-
sive formula for P (k)

S (x) can be obtained by starting from
P

(k−1)
S (x) and using a total probability argument:

P
(k−1)
S (x) = P

(k)
S (x) · P(F̃σk

|F̃ (k−1)
S) +

P(target → x|F̃ (k−1)
S ∩ Fσk

) · P(Fσk
|F̃ (k−1)

S)
(4)

The different terms in this equation can be rewritten as
follows. Let us put P (k−1)

S∗ := P(Fσk
|F̃ (k−1)

S). This term

represents the probability that the target is found during the
execution of pattern σk at time step k conditioned to the
event that it has not been discovered earlier, F̃ (k−1)

S . It is
thus the product of two terms: (i) the probability that the
target has chosen any of the destinations compatible with σk

(i.e. a destination in Dσk
) computed according to the distri-

bution P
(k−1)
S (x), which encodes the fact that the target has

not been discovered earlier; and (ii) the probability that the
observer finds the target when it is in view, i.e. the detection
probability γσk

.
In formula:

P
(k−1)
S∗ =

∑
y∈Dσk

P
(k−1)
S (y) · γσk

(5)

Let us consider now the term P(target → x|F̃ (k−1)
S ∩

Fσk
). To expand it further, we need to distinguish whether

the destination x is in the set of destinations compatible with
the pattern σk or not. Evidently, if x �∈ Dσk

, this term is
equal to 0. On the other hand, if x ∈ Dσk

, this term can be
computed by simply conditioning the probability distribu-
tion P

(k−1)
S (x) to the subset of the destinations Dσk

which
are compatible with σk. We thus obtain the following ex-
pression:

P(target → x|F̃ (k−1)
S ∩ Fσk

) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P
(k−1)
S (x)

∑

y∈Dσk

P
(k−1)
S (y)

if x ∈ Dσk

0 if x �∈ Dσk

(6)

If we substitute Equations 5 and 6 in 4, we obtain the fol-
lowing recursive structure for the computation of P (k)

S (x):

P
(k)
S (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P
(k−1)
S (x)·(1−γσk

)

1−P
(k−1)
S∗

if x ∈ Dσk

P
(k−1)
S (x)

1−P
(k−1)
S∗

if x �∈ Dσk

(7)

A recursive structure for the computation of P (k)(S) can
now be obtained as follows:

P (k)(S) = P(F (k−1)
S) + P(Fσk

|F̃ (k−1)
S) · P(F̃ (k−1)

S) (8)
or, in more compact notation,

P (k)(S) = P (k−1)(S) + P
(k−1)
S∗ · (1− P (k−1)(S)) (9)

with P (0)(S) = 0.
By coupling the equations 5, 7 and 9, we obtain an exact

recursive formula for the computation of P (S) = P (k̄)(S).
Finally, the approximated expected time to find the target

while executing plan S can be computed iteratively as:
T (k+1)(S) = T (k)(S) + tσk+1

(P (k+1)(S)− P (k)(S))
T (0)(S) = 0

T (S) = T (k̄)(S)
(10)

50

6 PDDL Model and Planning Mechanism

We express the formal framework described in Section 5 in
PDDL2.2 (Edelkamp and Hoffmann 2004) and make use
of a high-performing planner, POPF-TIF (Piacentini et al.
2015), coupled with an external solver, to solve the search
problem. We describe the model first, then the problems and
finally the planning mechanism in the rest of this section.

6.1 PDDL Model

The iterative structure of equations 7, 9 and 10 is reflected
in the PDDL model, which contains functions corresponding
to the destination probabilities P (k)

S (x), the total probability
P (k)(S) and the approximated expected time T (k)(S), both
at the current step and at the previous one:
(prob ?d - destination)
(previous-prob ?d - destination)
(total-prob)
(previous-total-prob)
(expected-time)
(previous-expected-time)

The model includes two types of actions: a flight action
that allows the UAV to fly from one waypoint to another and
the search actions that correspond to the flight patterns. The
actions are durative and their duration is fixed in the problem
instance to be the correct (computed) value for the execution
of the corresponding search. Each search pattern σ can only
be executed when it is active, i.e. during the window of op-
portunity [t−σ , t

+
σ] that coincides with the period in which the

target could plausibly be in the area that the pattern covers.
The effect of a search pattern action, other than to move

the UAV from the pattern entry point to its exit point, is to
update the destination probabilities P (k)

S (x), the total proba-
bility P (k)(S) and the approximated expected time T (k)(S)
according to equations 7, 9 and 10. Since the plan is aban-
doned when the target is discovered, the effect of a search
action takes place only when that pattern has failed to dis-
cover the target. The planner exploits this information when
it adds the next pattern to the plan by decreasing the proba-
bility of the destination compatible with the last pattern and
increasing the probability of the others. The numerical value
of each update is calculated by the external solver, as explain
in Section 6. As an example, the following is the description
of the action doSpiral in PDDL2.2:
(:durative-action doSpiral

:parameters (?from ?to - waypoint ?p - pattern)
:duration (=?duration (timefor ?p))
:condition (and
(at start (beginAt ?from ?p))
(at start (endAt ?to ?p))
(at start (at ?from))
(at start (active ?p)))

:effect (and
(at end (at ?to))
(at start (not (at ?from)))
(at end (assign (is-last ?p) 1))
(forall (?d - destination)

(and (at end (assign (previous-prob ?d) (prob ?d)))))
(at end (assign (previous-total-prob) (total-prob)))
(at end (assign (previous-expected-time) (expected-time)))
(forall (?d - destination)

(and (at end (increase (prob ?d) (heuristic-change)))))
(at end (increase (total-prob) (heuristic-approximation)))
(at end (increase (expected-time) (heuristic-approximation)))))

6.2 Problem Instances

The initial state of a planning problem contains all the des-
tinations and the candidate patterns from which the planner

chooses the ones to execute. For each destination, the proba-
bility at step 0 is specified (1d). Each candidate search pattern
is assigned the following information: (i) a fixed duration,
which is the computed value for the execution of the corre-
sponding search; (ii) an opportunity window, which speci-
fies when the pattern is active; and (iii) entry and exit way-
points. All these pieces of information are computed during
the candidate generation phase based on the geometry of the
pattern, the map of the environment and the motion mod-
els of the target and the UAV. They are then compiled into
a planning problem automatically and fed into the planner
together with the domain model.

We use a plan metric that measures the value of the plan in
terms of the probability of finding the target and the expected
time to do that. The objective function G(S) = P (S) −
kT (S) is expressed as follows:

(:goal (and (> (total-prob) 0)))
(:metric maximize (- (total-prob) (* k (expected-time))))

The parameter k ≥ 0 decides the trade-off between prob-
ability of discovery and time to complete the mission.

6.3 Planning Mechanism and External Solver

The plans are built using the planner POPF-TIF (Piacentini
et al. 2015), built on top of the partial order temporal plan-
ner POPF2 (Coles et al. 2010). POPF-TIF handles numeric
semantic attachments through the coupling of an external
solver. To achieve communication between the planner and
the external solver, two groups of numeric state variables
are identified, V dep and V special. The V dep variables are set
by the state progression of the core planner and their values
are used by the external solver to calculate the values of the
V special variables. These values are in turn used in the next
state progression of the planner, while a user-defined linear
approximation of the V special variables is employed in the
heuristic evaluations.

In our domain, the V special variables calculated by
the external solver are the destination probabilities
P

(k)
S (x), the total probability P (k)(S) and the approx-

imated expected time T (k)(S), respectively indicated
as (prob ?d - destination), (total-prob),
(expected-time). These quantities depend on their
own values in the preceding state and on the last pattern
added to the plan. The numeric fluents that keep track
of these values represent the V dep: (previous-prob
?d - destination), (previous-total-prob),
(previous-expected-time) and (is-last ?p).
The functions (heuristic-approximation) and
(heuristic-change) are used by the heuristic.

The parameters that are state independent, which are γσk

and Dσk
in our case, are given to the external solver in an

input file when calling the planner. Our algorithm gener-
ates these parameters after the candidate generation phase.
In particular, each candidate pattern is assigned a set of com-
patible destinations, which are selected based on the topol-
ogy of the map, and a probability of detection γ, which is
computed based on several parameters such as the quality
of the sensors, the type of terrain that the pattern covers, the
distance from the target LKP and the estimated velocity of

51

POPF-TIF

Output: Plan

State Progression
Search

Reachability Analysis
Temporal Relaxed Planning Graph

Heuristic Evaluation
Relaxed Plan Construction

Current
State

Current
State

Heuristic and
Helpful Actions

External Solver

Input External Solver

vspecial

vdep

PDDL Model

Figure 2: Coupling POPF-TIF with an external solver

the target. Figure 2 shows the planner POPF-TIF and the ex-
ternal solver working in tandem.

We use the anytime version of POPF-TIF which performs
cost-improving search: it finds a first solution very quickly,
since a plan with one search action is already a feasible solu-
tion, but it then spends the additional time improving on this
solution by adding further manoeuvres to the plan or by try-
ing different collections of manoeuvres. The plans produced
are monotonically improving, so the final plan is selected
for execution. We use a time-bounded search limited to 1
minute and a parameter k = 0.1 for the objective function
G(S), although there are configurable values.

Example: In Figures 3-6, we show pictorially how our hy-
brid algorithm works. Starting from the prior distribution
provided by the MCS, it reasons about the target motion,
the results of unsuccessful searches and the effectiveness
of search sensors and produces a posterior distribution that
flexibly leads the UAV towards promising areas of the map
that are still unexplored. The figures highlight how the plan
formulated by the planner changes depending on the value
of γ (which we assume constant on all patterns to simplify
the example). Figure 3 shows the tree T that connects the
LKP node to the destination nodes through their respective
shortest paths extracted from the RN. Per each time slice ti,
our algorithm generates two candidate search patterns cen-
tred around the nodes that have collected the highest num-
ber of particles via MCS (red squares are the nodes with the
highest probability, which lay on the top branch that leads
to 21 destinations out of 25, and green squares are the sec-
ond best nodes). Figure 4 shows the plan that is formulated
when the detection probability γ is between 0.8 and 1. Since
this probability is high, the planner trusts the UAV’s sensors
and, after failing to find the target in an execution of the first
spiral, concludes that the target is not there. Hence, at the
next step, it changes strategy by going to explore the other
branch of the tree. The same happens at the third step. On
the other hand, if the detection probability is lower, between
0.55 and 0.8, before changing strategy, the planner keeps ex-
ploring the most promising branch, the top one, and tries the
bottom one only at the third step. This is shown in Figure 5.
Finally, if the detection probability is poor, below 0.55, the

���
���
���

���
���
�	�

��������

����

����
��
��
��
��

����

�����������	�
����
��������
�����������������������

Figure 3: For each time slice, the candidate spirals (in yel-
low) are generated around the first and second most probable
cells.

���
���
���

���
���
�	�

��������

����

����
��
��
��
��

����

�������������

Figure 4: Plan obtained with a high detection probability γ.

planner ignores the feedback of the sensors and insists on
the branch that includes the nodes with the highest probabil-
ity of discovery (see Figure 6). At first sight, this last plan
might seem the best since it contains all the most probable
nodes according to MCS. However, let us consider a high
detection probability, γ = 0.9, and calculate the error prob-
ability of this plan, which is defined as E(S) = 1 − P (S).
Such a probability comes to 0.164. Even assuming perfect
detection (γ = 1), the error probability is still 0.160. On the
other hand, the plan shown in Figure 4 has an error proba-
bility of 0.002 with γ = 0.9, which is much lower than both
the probabilities obtained for the plan in Figure 6.

7 SaT Simulation

In order to validate our hybrid approach to SaT, we imple-
mented a simulation featuring a fixed-wing UAV involved in
a complete SaT mission, building on a similar simulation by
Bernardini et al. (2013). The area of operations is a part of
Scotland about 100 kilometres square and the target follows
a path acquired via Google Maps, with a selected origin and
destination (both configurable). The UAV is equipped with
an imaging system that allows the target to be observed and
that is susceptible to error. Although the exact value of γ
that we use in the algorithm depends on the specific pattern,
we usually get values around 0.3 for urban terrain, 0.5 for a

���
���
���

���
���
�	�

��������

����

����
��
��
��
��

����

����������������

����

Figure 5: Plan obtained with a good detection probability γ.

���
���
���

���
���
�	�

��������

����

����
��
��
��
��

����

����������

Figure 6: Plan obtained with a poor detection probability γ.

suburban terrain and 0.7 for rough terrain.
During tracking, the UAV simulator follows the target by

spiralling over it. Once the target has been lost, the simulator
performs the following steps: 1) It runs MCS, which pro-
duces a PD map for the target location at different time steps
(the most probable cells at the different time check points
are visualised in different colours, see Figure 7); 2) It gen-
erates a set of candidate search patterns based on the PD
map and synthesises a planning task specification featuring
these candidates (see yellow circles in Figure 7); 3) It feeds
the domain and the problem into the planner and the param-
eters into the external solver; and 4) After one minute, it
dispatches the generated plan to the UAV and simulates its
execution (see red circles in Figure 8).

As for MCS, after experimenting with different granular-
ities, we now adopt a grid square size of 500 meters. The
graphs extracted from the RN have around 300,000 nodes
and 180,000 edges, on average. The target starting point is
Stirling. We choose as the set of possible destinations the
first 15 most populated cities in Scotland and assign them
equal probability. We generate 10,000 particles and, since
the total mission time for our application is about one hour
and a half, we consider 17 time check points spaced 300
seconds apart. To make the problem more interesting, we
assume that, when losing the target, the UAV is blind for 15
minutes. This way the target has time to escape from the area
where it has been lost and the UAV needs to enact a smart

Figure 7: Initial state: circles are search patterns that the
planner will consider, which are centred on the grid cells
that carry the highest probability of rediscovering the target.

Figure 8: Plan: search patterns selected by the planner for
execution.

strategy to rediscover it.

8 Results and Discussions

We conducted a series of experiments to assess the perfor-
mance of our hybrid approach to SaT. Currently, it is diffi-
cult to compare our approach with RBE methods, as the as-
sumptions behind them are very different from ours (small
geographical areas, around 1 km square, and short tempo-
ral horizons, around 1-2 minutes). The complexity of RBE
methods typically explodes when large instances are con-
sidered. Instead, we assess our strategy against comparable
ones, which we extract from the work by Bernardini et al.
(2013) and Bernardini, Fox, and Long (2015).

In (Bernardini et al. 2013), it has been demonstrated that
a plan-based approach outperforms static strategies that in-
volve performing a fixed set of patterns and that are used in
several real-world applications (e.g. by BAE Systems Inc.).

Here, we are interesting in showing how the incorporation
of Bayesian reasoning into the plan-based SaT approach al-
lows the planner to find better solutions for more complex
problems. To this aim, we compare our hybrid approach with
a plan-based strategy that also uses MCS to produce a target
PD map at the time of loss, but that does not update such
a map over time, which makes this method oblivious to the
history of past searches. We refer to this strategy as MCS-

based. After identifying the most probable cells for each
time check point, this algorithm generates patterns around
the best cells in each time slice. The planner is then in charge
of choosing which one to execute and for how many times
and their ordering. This method is equivalent to our hybrid
approach when the probability of detection is very low. In
this case, indeed, the UAV never trusts its sensors and al-
ways chooses the patterns that are centred on the most prob-
able cells (see Figure 6).

The MCS-based strategy is known to work very well
when the test environment tends to support a greedy search-
ing approach, i.e. when the target moves in an area with a
few main roads, when the UAV remains blind for only a
short period of time after losing the target (a couple minutes)
and when its sensors are rather reliable (Bernardini, Fox, and
Long 2015). However, as shown by the experiments below,
the performance degrades in more complex situations, and
in particular, when the road network is complex. In addi-
tion, in our experiments, we prevent the observer from spot-
ting the target for 15 minutes following losing it. This allows
us to focus on the benefits of the improved search strategy,
by removing the cases where the target is luckily reacquired
during the flight to the first search pattern. This effect also
accounts for situations in which a target is lost due to enter-
ing a no-fly zone area or by exploiting evasive actions. Our
hybrid approach is capable of tackling these realistic circum-
stances by generating plans with high chances of success.

To compare the hybrid and the MCS-based strategies,
we generated 15 routes that lead from Stirling (the tar-
get starting point) to the fifteen most populated cities of
Scotland (Glasgow, Edinburgh, Dundee, East Kilbride, Liv-
ingston, Hamilton, Cumbernauld, Dunfermline, Kirkcaldy,
Perth, Coatbridge, Airdrie, Falkirk, Motherwell and Ruther-
glen) and executed the simulation on each route 1000 times
(the simulation has a non-deterministic spotting model and
target behaviour) for each of the 2 strategies.

Figure 9 shows the proportion of runs in which the tar-
get was tracked to its destination against those in which it
was ever lost (we remove Perth since the target is never lost
on this road). The MCS-based policy has a very low overall
success rate, only 10%. On the other hand, the hybrid tech-
nique bears an overall success rate of 56%. We achieved an
enormous improvement over the MCS approach, despite the
difficulty of these problems. The target is usually lost in ur-
ban areas where there are many crossroads through which it
can take any direction and it has 15 minutes to escape from
the UAV vision field. When start searching, the UAV has
only a set of hypotheses about the target destination.

Figure 10 displays the average time that the observer
tracks the target plotted against journey duration. The hy-
brid approach tracks the target more successfully, showing
that its success in discovering the target is much better than
the MCS approach.

Figure 11, which displays how the probability of finding
the target changes over time for one specific destination (Ed-
inburgh), demonstrates that the hybrid policy dominates the
other and is very robust by offering significant probability of
discovery even after more than one hour.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Gl Ed Du EK Li Ha Cu Dun Ki Co Ai Fa Mo Ru

R
a
ti
o

Destination

Ratio between number of runs where target is tracked to destination and where it is ever lost

MCS-based
Hybrid

Figure 9: Proportion of the runs in which the target was
tracked to its destination against those in which it was lost.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 2000 3000 4000 5000 6000 7000 8000 9000

A
v
e
ra

g
e
 t
ra

c
k
e
d
 p

e
ri
o
d
 (

s
e
c
)

Duration (sec)

Average journey duration against average tracked period

MCS-based
Hybrid

Figure 10: Average time over which the target was tracked
to destination against the average journey length.

9 Conclusions and Future Work

We have presented a hybrid approach to autonomous SaT
that combines the benefits of using automated planning and
probabilistic reasoning. Our experiments show that our strat-
egy is effective in tackling complex real-world SaT mis-
sions. Our approach to SaT can be easily modified to sup-
port other applications. It can be employed to tackle prob-
lems under uncertainty in which MC methods can help in
formulating a set of initial hypotheses and planning can be
leveraged to prove or disprove the validity of such hypothe-
ses by iteratively updating their probabilities in light of new
observations in a Bayesian fashion.

References

Benton, J.; Coles, A.; and Coles, A. 2012. Temporal
Planning with Preferences and Time-Dependent Continu-
ous Costs. In Proceedings of the Twenty Second Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS-12).
Bernardini, S.; Fox, M.; Long, D.; and Bookless, J. 2013.
Autonomous Search and Tracking via Temporal Planning.
In Proceedings of the 23st International Conference on Au-
tomated Planning and Scheduling (ICAPS-13).

54

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000 6000

P
ro

b
a
b
ili

ty
 o

f
re

d
is

c
o
v
e
ri
n
g
 t
a
rg

e
t

Time since target sighted

Probability of rediscovering the target over time

MCS-based
Hybrid

Figure 11: The probability (percentage) of recapturing the
target over time while it is heading towards Edinburgh.

Bernardini, S.; Fox, M.; and Long, D. 2015. Combin-
ing Temporal Planning with Probabilistic Reasoning for Au-
tonomous Surveillance Missions. Autonomous Robots. In
Press.
Bourgault, F.; Furukawa, T.; and Durrant-Whyte, H. F. 2006.
Optimal Search for a Lost Target in a Bayesian World. In
Field and Service Robotics, volume 24 of Springer Tracts in
Advanced Robotics. Springer Berlin. 209–222.
Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D. 2010.
Forward-Chaining Partial-Order Planning. In Proceedings
of the 20th International Conference on Automated Plan-
ning and Scheduling (ICAPS-10).
Edelkamp, S., and Hoffmann, J. 2004. PDDL2.2: The lan-
guage for the classical part of the 4th international planning
competition. In Proceedings of the 4th International Plan-
ning Competition (IPC-04).
He, R.; Bachrach, A.; and Roy, N. 2010. Efficient plan-
ning under uncertainty for a target-tracking micro-aerial ve-
hicle. In Robotics and Automation (ICRA), 2010 IEEE In-
ternational Conference on, 1–8.
IMO. 2013. International Aeronautical and Maritime
Search and Rescue Manual (IAMSAR). United States Fed-
eral Agencies.
Lavis, B., and Furukawa, T. 2008. HyPE: Hybrid Particle-
Element Approach for Recursive Bayesian Searching and
Tracking. In Proceedings of the 2008 Robotics: Science and
Systems Conference, 135–142.
Lin, L., and Goodrich, M. A. 2014. Hierarchical Heuristic
Search Using a Gaussian Mixture Model for UAV Coverage
Planning. IEEE Transactions on Cybernetics 44:2532–2544.
Piacentini, C.; Alimisis, V.; Fox, M.; and Long, D. 2015.
An extension of metric temporal planning with application
to AC voltage control. Artificial Intelligence 229:210–245.
Stone, L. D. 1975. The Theory of Optimal Search. Opera-
tions Research Society of America.

55

