
Search Portfolio with Sharing

Sandip Aine
Indraprastha Institute of Information

Technology, New Delhi, India
sandip@iiitd.ac.in

Maxim Likhachev
Carnegie Mellon University

Pittsburgh, PA, USA
maxim@cs.cmu.edu

Abstract

Over the years, a number of search algorithms have been
proposed in AI literature, ranging from best-first to depth-
first searches, from incomplete to optimal searches, from
linear memory to unbounded memory searches; each hav-
ing their strengths and weaknesses. The variability in perfor-
mance of these algorithms makes algorithm selection a hard
problem, especially for performance critical domains. Algo-
rithm portfolios alleviate this problem by simultaneously run-
ning multiple algorithms to solve a given problem instance,
exploiting their diversity. In general, the portfolio methods
do not share information among candidate algorithms. Our
work is based on the observation that if the algorithms within
a portfolio can share information, it may significantly en-
hance the performance, as one algorithm can now utilize
partial results computed by other algorithms. To this end,
we introduce a new search framework, called Search Port-
folio with Sharing (SP-S), which uses multiple algorithms to
explore a given state-space in an integrated manner, seam-
lessly combining the partial solutions, while preserving the
constraints/characteristics of the candidate algorithms. In ad-
dition, SP-S can be easily adopted to guarantee theoretical
properties like completeness, bounded sub-optimality, and
bounded re-expansions. We describe the basics of the SP-S
framework and explain how different classes of search algo-
rithms can be integrated in SP-S. We discuss its theoretical
properties and present experimental results for multiple do-
mains, demonstrating the utility of such a shared approach.

Introduction

State space search is a widely used problem solving ap-
proach in AI with applications in classical planning (Bonet
and Geffner 2001), robotics (Likhachev and Ferguson 2009),
learning (Yuan and Malone 2013), bio-informatics (Keed-
well and Narayanan 2005), and many other domains. Con-
sequently, a significant amount of research effort has been
put into designing efficient search algorithms, resulting in a
large repository of techniques. The most well-known search
algorithm is the A* (Hart, Nilsson, and Raphael 1968) algo-
rithm, which is a best-first search that uses domain specific
cost-to-goal estimates (heuristics) to guide the search-space
exploration. If the heuristic is admissible (i.e., it provides a

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

lower bound on the true cost-to-goal), A* is provably opti-
mal, both in terms of the solution quality and the number of
state expansions.

Unfortunately, A* often requires exponential run time and
memory, making it inapplicable for large-scale problems.
This motivated the development of other search methods, al-
gorithms that improve A*’s memory footprint (Chakrabarti
et al. 1989; Korf 1985), and more importantly, algo-
rithms that attempt to attain an effective trade-off between
the solution cost and run time, enabling users to solve
large scale complex problems within reasonable time lim-
its. Several such trade-off based algorithms are based on
weighted A* (WA*) (Pohl 1970), where the heuristic func-
tion is inflated by a constant w (w > 1.0, to give the
search a goal-directed focus. Other approaches include beam
search (Lowerre 1976) and variants (Zhou and Hansen
2005; Vadlamudi, Aine, and Chakrabarti 2013), window
A* (Aine, Chakrabarti, and Kumar 2007; Vadlamudi, Aine,
and Chakrabarti 2011), algorithms that inadmissibly restrict
the exploration space (using parameters like beam widths
or window sizes); A*ε (Pearl and Kim 1982), EES (Thayer
and Ruml 2011), algorithms that use inadmissible priori-
ties to order state expansions, but control the inadmissi-
ble expansions using admissible bounds; greedy and speedy
searches (Wilt and Ruml 2014), algorithms that order state
expansions using cost-to-goal or distance-to-goal estimates
only; etc.

Therefore, we observe that a given planning problem can
possibly be solved using multiple algorithms. Often it is
hard to decide which particular algorithm to use, especially
when we are looking for fast and accurate solutions for
large scale problems, as the performance of a search algo-
rithm critically depends on the search space characteristics,
which are not easy to predict. For example, WA* approaches
work very well for many domains (Zhou and Hansen 2002;
Likhachev, Gordon, and Thrun 2004), but they rely heavily
on the heuristic accuracy, and subsequently, perform poorly
in the presence of large local minima (Wilt and Ruml 2012).
In contrast, beam search can be very useful for solving large
scale problems with relatively weak heuristics (Thayer and
Ruml 2010), since it does not suffer from local minima as
much as WA* does. However, it does not guarantee com-
pleteness and has no control over the solution quality.

Algorithm portfolios (Gomes and Selman 2001; Valen-

Proceedings of the Twenty-Sixth International Conference on 
Automated Planning and Scheduling (ICAPS 2016)

11



zano et al. 2010; Helmert et al. 2011; Gerevini, Saetti, and
Vallati 2009) attempt to overcome this selection problem by
using multiple algorithms to solve a given instance. If any
of the candidate searches finds a solution, the portfolio re-
turns a success. These approaches have been very success-
ful in solving challenging planning/optimization problems,
especially for domains where it is hard to find a single best
algorithm.

Most portfolio based planners consider the candidate al-
gorithms as separate entities (black boxes) that do not share
information. Our work is motivated by the observation that
majority of the search algorithms compute a solution (path
from start to goal) by iteratively discovering paths to inter-
mediates states, following a Dynamic Programming formu-
lation. Such intermediate paths are generally qualified using
the path cost only, independently of which algorithm actu-
ally computed the path. This means that the candidate algo-
rithms can share these intermediate paths and leverage dif-
ferent algorithms’ strengths not only when solving different
instances (as done in portfolios), but also when solving a sin-
gle instance. Furthermore, sharing intermediate paths may
help in limiting repeated works, as one algorithm can now
reuse the partial solutions computed by another algorithm,
and does not need to recompute them.

We present an algorithmic framework, called Search Port-
folio with Sharing (SP-S), that integrates multiple search
algorithms within a single flow, enabling maximal sharing
of states/paths among the candidate algorithms. This makes
SP-S more powerful than a collection of algorithms, as it can
use partial solutions from different algorithms to solve an in-
stance which is not solvable (within resource constraints) by
any candidate algorithm on its own. In addition, SP-S uses
an (bounded) admissible algorithm to anchor the state ex-
pansions, so that it can guarantee completeness and bounded
sub-optimality, limited re-expansions, and other efficiency
properties.

It may be noted that recent works on multi-heuristic
searches (Röger and Helmert 2010; Aine et al. 2014; Phillips
et al. 2015) have demonstrated the benefits of a multi-
pronged search with sharing and anchor based control. In
a way, SP-S can be seen as an extension to the Multi-
heuristic A* (Aine et al. 2014) framework for search algo-
rithm portfolios. However, integrating multiple search algo-
rithms within a unified flow brings forth a new set of chal-
lenges, as the individual algorithms can have different explo-
ration characteristics and constraints. In SP-S, we address
this by adapting the sharing (and control) approach for dif-
ferent categories of search algorithms in a fashion that max-
imizes the sharing of partial solutions while maintaining the
individual characteristics and constraints.

The rest of the paper is organized as follows. We start
with a high level description of SP-S and state some of its
desirable properties. Next, we discuss different categories of
search algorithms and describe how these algorithms may
fit into SP-S. Then, we explain the SP-S framework in detail
and describe its theoretical properties. Finally, we present
experimental results evaluating an example instantiation of
SP-S for challenging problem domains such as large sliding
tile puzzles (unit and square cost), 6D robot arm planning,

and 3D navigation.

Related Work

Algorithm portfolios

For many domains, there is no single algorithmic approach
(and/or heuristic) that consistently provides the best perfor-
mance. Algorithm portfolios leverage the strengths of di-
verse approaches by running multiple algorithms to solve
a given problem. A portfolio may include different algo-
rithms or heuristics (Gomes and Selman 2001; Helmert et
al. 2011) or it may have a single algorithm but run it with
different parameters (Xu, Hoos, and Leyton-Brown 2010;
Valenzano et al. 2010), either sequentially or in parallel
(Valenzano et al. 2012). Studies on multiple planning and
optimization domain have demonstrated the efficacy of such
ensemble planning, when compared to the single best algo-
rithms (Helmert et al. 2011; Xu et al. 2008; OMahony et al.
2008). The utility of portfolios has inspired a considerable
amount of research on algorithm selection and scheduling,
within a given portfolio (Kotthoff 2014; Hoos et al. 2015;
Kotthoff, Gent, and Miguel 2012; Malitsky and O’Sullivan
2014).

The fundamental difference between the algorithm port-
folios and SP-S stems from the fact that the portfolios con-
sider the candidate algorithms as separate entities with no
(or little) communication. Although, some of the forma-
tive works on the portfolio approach (Huberman, Lukose,
and Hogg 1997) discussed the possibility (and value) of co-
operation among the portfolio algorithms, in practice most
portfolios do not share information or they do it at a very
high level (Helmert et al. 2011). Some notable exceptions
are found in portfolio based SAT solvers (Hamadi, Jabbour,
and Sais 2008; Malitsky et al. 2013), where sharing is more
common. Unfortunately, most such techniques are domain
dependent and cannot be easily generalized for classical
search algorithms (which are usually domain independent).
In contrast, SP-S combines multiple algorithms within a sin-
gle search framework, with maximal information sharing
and anchor based control. This makes SP-S more robust than
portfolios in solving hard problems and enables it to guaran-
tee a number of theoretical properties that are not generally
supported by the portfolio methods.

Multi-heuristic search

Another set of algorithms that closely relates to SP-S are the
multi-heuristic search algorithms (Röger and Helmert 2010;
Aine et al. 2014). These algorithms utilize multiple heuris-
tics independently to explore a search space and thus, are
more powerful in solving challenging planning problems
where a single heuristic may easily get stuck in a local min-
imum.

While the philosophy of SP-S is close to the multi-
heuristic searches, especially MHA* (Aine et al. 2014),
which supports similar theoretical properties, their primary
difference stems from the fact that MHA* is single search
algorithm with multiple heuristic functions whereas SP-S
is a set of different search algorithms that are used to ex-
plore a search space in a collaborative manner. Also, to

12



use multi-heuristic searches a user needs to provide a set
of diverse (yet informative) heuristics which is a non-trivial
challenge for most domains (Aine, Sharma, and Likhachev
2015). SP-S does not require such additional information
and can work with a set of known algorithms, and yet ben-
efit from multi-pronged explorations (with sharing), while
preserving equivalent theoretical guarantees.

Search Portfolio with Sharing (SP-S)

Notation: In the following, S denotes the finite set of states
of a given problem. sstart denotes the start state and sgoal
denotes the goal state. c(s, s′) denotes the cost of the edge
between s and s′, and if there is no such edge, then c(s, s′) =
∞. The successor function SUCC(s) := {s′ ∈ S|c(s, s′) �=
∞}, denotes the set of all reachable successors of s. An
optimal path from sstart to s has cost g∗(s). g(s) denotes
the current best path cost from sstart to s. h(s) denotes the
heuristic for s, typically an estimate of the best path cost
from s to sgoal. A heuristic is admissible if it never overesti-
mates the best path cost to sgoal and consistent if it satisfies,
h(sgoal) = 0 and h(s) ≤ h(s′) + c(s, s′), ∀s, s′ such that
s′ ∈ SUCC(s) and s �= sgoal.

Overview

SP-S builds on the observation that many graph searches are
based on the Dynamic Programming principle, where the
problem of computing a path from sstart to sgoal can be
decomposed into independent sub-problems of computing a
path from sstart to s and a path from s to sgoal. Thus, there
is no reason why a path from sstart to s cannot be com-
puted by one algorithm, whereas the path from s to sgoal is
computed by another algorithm. Following this principle, we
design SP-S with a set of diverse search algorithms, mem-
bers of which are simultaneously used to explore a search
space (independently). If a new/better path to a state is dis-
covered by any of the algorithms, it is shared with the other
searches (whenever possible). The architecture of SP-S fol-
lows the MHA* model (Aine et al. 2014), where one search
is used as an anchor search (a search that controls the others
expansions) and the other searches act as auxiliary searches.

We start by outlining a set of desirable properties in
SP-S. Later, we will use these properties to make the de-
sign choices. Following are the properties we would like to
satisfy with SP-S,
• Completeness and bounded sub-optimality: SP-S

should be provably complete and bounded sub-optimal,
i.e., for a user defined constant w (w ≥ 1.0), the solution
returned by SP-S should have cost ≤ w.g∗(sgoal).

• Avoiding repeated/spurious work: SP-S should try to
minimize the work done (expansions) across all the
searches. In particular, it should limit state re-expansions,
and also avoid expanding states that cannot produce a so-
lution within the chosen bound.

• Individual search constraints/characteristics: SP-S
should not violate the constraints (for example memory
requirements) of the candidate algorithms. In addition,
SP-S should ensure that individual searches maintain their
basic characteristics (state selection and pruning).

Search algorithm DFS BFS UCS A* WA* IDA* GS SS BS WS
(Bounded) admissibility No No Yes Yes Yes No No No No No
Best-first order No No Yes Yes Yes No Yes Yes Yes Yes
Frontier restriction No No No No No Yes No No Yes Yes
SP-S category A A B B B A C C D D

Table 1: Classifying search algorithms in terms of admissi-
bility, ordering and frontier restriction. Legend: DFS - depth-
first search, BFS - breadth-first search, UCS - uniform cost
search, IDA* - iterative deepening A*, GS - greedy search,
SS - speedy search, BS - beam search, WS - window A*.

Next, we discuss a categorization of some of the widely
used search algorithms with respect to certain properties,
that will help us decide how these algorithms can be in-
tegrated in SP-S to support its desirable properties. Please
note that these categories are not meant to be exhaustive,
they only highlight certain characteristics of different search
algorithms that are critical for SP-S. Following are the prop-
erties we consider for categorizing searches in SP-S,

• (Bounded) admissibility: A search algorithm is called
(bounded) admissible (in SP-S), if it guarantees that when
a state s is selected for expansion, g(s) ≤ w ·g∗(s), where
w (≥ 1.0) is a chosen constant. All other algorithms are
termed inadmissible. For example, uniform cost search
(UCS), A* and WA* with a consistent heuristic func-
tion are (bounded) admissible searches, whereas greedy
search, A*ε, beam search are not.
Note that there are several algorithms which returns a
provably bounded sub-optimal solutions when arbitrary
state re-expansions are allowed (for example A*ε, EES).
However, in SP-S we do not consider them as (bounded)
admissible searches as we intend to restrict the number
of state expansions. For this reason, we use a stricter rule
(g(s) ≤ w · g∗(s)) to decide whether an algorithm is con-
sidered (bounded) admissible or not.

• Best-first order: Best-first searches expand states from
a prioritized list, always selecting the minimum prior-
ity state for expansion (for minimization problems). A*,
WA*, greedy search are some examples of best-first
searches, while depth-first (DFS) and breadth-first (BFS)
searches are examples of algorithms that does not expand
states in a best-first manner 1. Note that best-first search
does not imply admissibility (for example greedy search).

• Restriction of search frontier: Unrestricted searches
only impose an ordering to select states to store and ex-
pand (either admissible or inadmissible), however they
do not limit the search frontier in any way. In contrast,
some search algorithms (such as beam search) use exter-
nal parameters (for example, beam-width in case of beam
search) to restrict/prune the search frontier. In SP-S, we
classify them as restricted searches. Typically, a restricted

1Note that both DFS and BFS can be run as a best-first search
by using depth as a priority (maximum depth in case of DFS and
minimum depth in case of BFS). However, here we consider the
classic stack/queue based implementations of DFS/BFS that do not
require prioritized lists.

13



search is also an inadmissible search (according to the
above definition).
In Table 1, we list some well known search algorithms

and show how they differ in terms of these properties. In
SP-S, we partition these algorithms into 4 categories, cate-
gory A for search algorithms that do not follow best-first or-
der (DFS, BFS, IDA*), category B for (bounded) admissible
algorithms (UCS, A*, WA*), category C for best-first, inad-
missible and unrestricted algorithms (greedy search, speedy
search), and category D for best-first restricted searches
(beam search, window A*).

Algorithm

Algorithm 1 SP-S: 1 Anchor + n Auxiliary Searches
Inputs: sstart, sgoal, Sub-optimality bound w (≥ 1)
Output: A path from sstart to sgoal with cost ≤ w · g∗(sgoal)

1: procedure EXPANDSTATE(s, i)
2: Remove s from all the search frontiers
3: if ADMISSIBLE(i) then
4: CLOSEDa ← CLOSEDa ∪ s
5: else
6: CLOSEDi ← CLOSEDi ∪ s
7: for all s′ ∈ SUCC(s) do
8: if s′ was not seen before then
9: g(s′) ← ∞

10: if g(s′) > g(s) + c(s, s′) then
11: g(s′) ← g(s) + c(s, s′)
12: if s′ /∈ CLOSEDa then
13: for i′ ∈ {0, . . . , n}∧ ADMISSIBLE(i′) do
14: UPDATEFRONTIER(s′, i′)
15: if s′ /∈ CLOSEDi then
16: if ¬ADMISSIBLE(i) then
17: UPDATEFRONTIER(s′, i)
18: for i′ ∈ {1, . . . , n}∧ i′ 	= i do
19: if ¬ADMISSIBLE(i′) then
20: if SHAREWITHAUX(s′, i′) then
21: UPDATEFRONTIER(s′, i′)
22: procedure INITIALIZESEARCHES(sstart)
23: g(sstart) ← 0
24: for i ∈ {0, . . . , n} do

25: Insert sstart in ith search frontier
26: procedure MAIN
27: CLOSEDa ← ∅, CLOSEDi ← ∅
28: INITIALIZESEARCHES(sstart)
29: while ¬TERMINATIONCRITERIA(sgoal) do � Defined

by anchor
30: for i ∈ {1, . . . , n} do

31: s ← PICKSTATE(i) � Defined by ith Aux. Search
32: if WITHINBOUND(s) then � Defined by anchor
33: EXPANDSTATE(s, i) � Aux. expansion
34: if TERMINATEDAUX(i) then
35: REINITIALIZEAUX(i) � Optional
36: sa ← PICKSTATE(0) � Defined by anchor
37: EXPANDSTATE(sa, 0) � Anchor expansion
38: return solution path

A high level pseudocode of SP-S is included in Algo-
rithm 1. SP-S explores the search space using the candi-

date algorithms in a round-robin fashion till it gets to the
solution within the chosen bound or proves that such a so-
lution does not exist. Note that, in Algorithm 1 we use a
common EXPANDSTATE function for every algorithm in
SP-S, which points to the assumption that the searches in
SP-S must support the notion of state expansion (the cost
update part in lines 7-11, generally applicable for all Dy-
namic Programming based searches). On the other hand, the
searches may differ in state selection, ordering and pruning
(PICKSTATE, UPDATEFRONTIER, SHAREWITHAUX func-
tions, which are defined by the candidate algorithms).

We use index 0 to denote the anchor search, other searches
are indexed from 1 . . . n. During a round, SP-S always ex-
pands from the anchor. However, for others, the expansions
are controlled using the WithinBound function which en-
sures a selected state is only expanded if its cost (g + h)
is within w-times of the optimal solution cost.

SP-S uses two CLOSED lists to distinguish between inad-
missible and (bounded) admissible state expansions (admis-
sible state expansion ensures g(s) ≤ w · g∗(s)). If a state is
expanded in an admissible search, SP-S does not re-expand
it. However if a state is expanded in an inadmissible search,
it may get re-expanded later in an admissible search, if a
better quality path to it is discovered.

Next, we discuss certain design aspects of SP-S showing
how it accommodates algorithms from different categories
(Table 1).

• Anchor and auxiliary searches: SP-S requires instanti-
ation of an anchor search and a set of auxiliary searches.
The choice of anchor is crucial as it defines the termi-
nation criteria (TERMINATIONCRITERIA function). For
SP-S to be bounded sub-optimal, the anchor needs to be
a (bounded) admissible algorithm (category B), as other-
wise SP-S cannot guarantee bounds on solution quality.
Furthermore, an admissible anchor can provide a lower
bound on the solution cost at any intermediate stage,
which can be used to control the expansions in auxil-
iary searches (WITHINBOUND function). In contrast, the
auxiliary searches in SP-S can be completely arbitrary, as
long as they support the notion of state expansions. How-
ever, the choice of auxiliary searches determines the shar-
ing of states/paths, which we discuss next.

• Path sharing: Path sharing (g values and successor
states) among searches is an important feature of SP-S
which enables it to combine partial solutions from dif-
ferent algorithms and to limit repeated works. However,
such sharing needs to be regulated, so that SP-S does not
violate the constraints of an auxiliary search, nor does it
alter its state expansion characteristics. Please note that
whether a state (path) can be shared depends entirely on
the properties of the receiver search, and not on the search
that discovers the state/path.
In SP-S, we use the following three rules to define the
sharing policy. (i) Any state (path) can be shared with
searches in category B and C (best-first order, unrestricted
frontier). (ii) Whether a state (path) can be shared with a
search in category D depends on the constraints of that
search and needs to be decided dynamically. For exam-

14



ple, for beam search with beam-width k, SP-S can only
insert k states (per level) in its frontier, without violating
the memory constraints. (iii) We cannot share states with
searches in category A (non best-first) as these searches
do not use priorities, and thus, inclusion of states from
other searches may affect their characteristics. For exam-
ple, in DFS (stack) or BFS (queue), the expansion order
will break, if states from other searches are inserted in
their frontier. In Algorithm 1, the SHAREWITHAUX func-
tion defines whether a state can be shared with an auxil-
iary search. Note that, the anchor (and admissible auxil-
iary searches) belong to category B, thus, any state can be
shared with them.

• Re-initialization: As noted earlier, SP-S does not share
arbitrary states with auxiliary searches in category A
or D. Therefore, it may happen that such an auxiliary
search gets terminated early as it has no states to expand
(empty frontier/all states in the frontier violate bounds).
In that case, SP-S may re-initialize the search using states
from the anchor (REINITIALIZEAUX function). Note that
this is optional. For searches in category B and C, re-
initialization is generally not applicable. However, if we
do not want to share all the states up-front (for category
C), re-initialization can be used as a form of lazy sharing.

Role Functions
Category Anchor Auxiliary ADMISSIBLE SHAREWITHAUX REINITIALIZEAUX

A No Yes No No Yes
B Yes Yes Yes Yes N/A
C No Yes No Yes Yes
D No Yes No Restricted Yes

Table 2: Roles and functions for searches from different cat-
egories (in SP-S). Legend: N/A - not applicable.

In Table 2, we list how searches from different categories
can be integrated in SP-S in terms of (possible) roles and
functions (as described in Algorithm 1).

Algorithm 2 SP-S Anchor: Termination and Pruning
1: Assumptions: The anchor search is w1-admissible. It stores

the states in a prioritized list OPEN.
2: procedure TERMINATIONCRITERIA(sgoal)
3: if OPEN.EMPTY() then
4: return TRUE � Search fails
5: w2 = w/w1

6: if g(sgoal) ≤ w2 · OPEN.MINKEY() then
7: return TRUE � Search succeeds
8: return FALSE � Continue
9: procedure WITHINBOUND(s)

10: w2 = w/w1

11: if s = null ∨ g(s)+h(s) > w2 ·OPEN.MINKEY() then
12: return FALSE
13: return TRUE

Analytical Properties

The theoretical properties of SP-S rely on the anchor search
which defines two key functions, TERMINATIONCRITERIA

and WITHINBOUND. In Algorithm 2, we include an instan-
tiation of these functions assuming that the anchor is a w1-
admissible search (w ≥ w1 ≥ 1.0, where w is the user
defined sub-optimality bound for SP-S), such as consistent
heuristic WA* with w1 as the weighing factor. In the follow-
ing three theorems, we use this instantiation to derive the
analytical results for SP-S 2.

Theorem 1 (Bounded sub-optimality). SP-S is complete
and bounded sub-optimal, i.e, SP-S is guaranteed to termi-
nate and when it does, g(sgoal) ≤ w · g∗(sgoal).
Proof. The w-admissibility of SP-S stems from the fact that
the anchor is always a (bounded) admissible search. Bor-
rowing from (Aine et al. 2014), we can show that if anchor
is w1-admissible, then OPEN.MINKEY() ≤ w1 · g∗(sgoal),
and if g∗(sgoal) �= ∞, OPEN can never be empty be-
fore termination. Which in turn ensures that if g(sgoal) ≤
w2 · OPEN.MINKEY(). It follows that g(sgoal) ≤ w1 · w2 ·
g∗(sgoal) = w · g∗(sgoal). On the other hand if OPEN is
empty, then g∗(sgoal) = ∞, i.e., there is no finite cost solu-
tion. �

Theorem 2 (Bounded re-expansions). No state is expanded
more than twice in SP-S. Also, a state expanded in an inad-
missible (auxiliary search) can only be re-expanded in the
anchor if its g value is lowered since the last expansion.

Proof. If a state is expanded in an admissible search, it is
removed from all frontiers and put into CLOSEDa. Such
a state is never put back to any search frontier (check at
line 12, Algorithm 1), and thus can never be re-expanded.
If a state is expanded in an inadmissible (auxiliary) search,
it is removed from all the frontiers and stored in CLOSEDi.
Now, the check at line 15, Algorithm 1 ensures that it can
only be put into an admissible frontier, that too if only its g-
value gets lowered (line 10, Algorithm 1). Therefore, a state
can at most be expanded twice. �

Theorem 3 (Efficiency). In SP-S, any state s with g(s) +
h(s) > w · g∗(sgoal) will never be expanded.

Proof. This is ensured by the WITHINBOUND function. As,
OPEN.MINKEY() ≤ w1 · g∗(sgoal), and SP-S only expands
a state s if g(s) + h(s) ≤ w2 · OPEN.MINKEY(), it follows
that a state s with g(s) + h(s) > w · g∗(sgoal) is never
expanded. �

Scheduling

In Algorithm 1, SP-S explores the candidate searches in a
round-robin fashion. Such a uniform strategy may not be an
efficient one if we have many algorithms in the portfolio and
only few of them perform well for a particular instance. Al-
gorithm portfolios generally use offline training to profile
the performance of candidate algorithms for a given domain,

2Note that, if the anchor is w1-admissible, an auxiliary search
from category B is considered admissible, only if it guarantees w′

1-
admissibility, where w′

1 ≤ w1. Otherwise, it is used as an inadmis-
sible search.

15



Algorithm 3 SP-S with DTS
Inputs: sstart, sgoal, Sub-optimality bound w (≥ 1)
Output: A path from sstart to sgoal with cost ≤ w · g∗(sgoal)

1: procedure INITIALIZESCHEDULE(sstart)
2: hmin ← h(sstart)
3: for i ∈ {0, . . . , n} do
4: α[i] ← 1;β[i] ← 1

5: procedure CHOOSESEARCH
6: r[0] ∼ Beta(α[0], β[0])
7: for i ∈ {1, . . . , n} do
8: s ← PICKSTATE(i)
9: if WITHINBOUND(s) then

10: r[i] ∼ Beta(α[i], β[i])
11: else
12: r[i] ← −∞
13: if TERMINATEDAUX(i) then
14: REINITIALIZEAUX(i)

15: return argmaxi r[i]

16: procedure UPDATESCHEDULE(i)
17: hcur ← min(h(s), ∀s ∈ OPEN)
18: if hcur < hmin then
19: hmin = hcur

20: α[i] ← α[i] + 1 � Get reward 1
21: else
22: β[i] ← β[i] + 1 � Get reward 0
23: if α[i] + β[i] > C then

24: α[i] ← C
C+1

α[i];β[i] ← C
C+1

β[i]

25: procedure MAIN()
26: CLOSEDa ← ∅, CLOSEDi ← ∅
27: INITIALIZESEARCHES(sstart)
28: INITIALIZESCHEDULE(sstart)
29: while ¬TERMINATIONCRITERIA(sgoal) do
30: i ← CHOOSESEARCH()
31: s ← PICKSTATE(i)
32: EXPANDSTATE(s, i)
33: UPDATESCHEDULE(i)

34: return solution path

and use such profiles to select/order the candidates for se-
quential exploration (Helmert et al. 2011). These methods
are not directly applicable for SP-S, as SP-S allows sharing
of states (which means we cannot create profiles by running
the candidate algorithms individually and need to consider
all possible combination of algorithms).

Instead, in SP-S we adopt the Dynamic Thompson Sam-
pling (DTS) based approach described in (Phillips et al.
2015), to schedule the searches online without using any
prior knowledge. DTS scheduling is simple. It models the
search selection problem as a multi-armed bandit problem
and always expands from the search which is expected to
”progress” quickly. In SP-S, we store the minimum heuristic
value of the states in the anchor frontier in parameter hmin,
i.e., hmin = min(h(s), ∀s ∈ OPEN). If an expansion from
a search reduces this hmin, it gets a reward 1, otherwise
it gets a reward 0. This way, the searches that help SP-S
progress toward goal get selected more often, as compared
to searches that do not. However, when a search gets stuck
(say at a local minima), DTS quickly adjusts its distribution

and other candidates are preferred.
We include the pseudocode for SP-S with DTS in Algo-

rithm 3. The changes introduced are quite simple. Instead of
exploring all the searches in round-robin manner, SP-S with
DTS selects a particular search in each iteration, using the
CHOOSESEARCH routine (line 30) following DTS. Once a
search is selected, it expands from that search and updates its
distribution depending on whether the minimum h value of
the anchor frontier is reduced or not (UPDATESCHEDULE
routine, line 33). The parameter C is used to control the
temporal history of the scheduler, i.e., it determines allowed
range of the α+β values. If α+β exceeds C, it is normalized
to C.

Note that the CHOOSESEARCH routine only considers an
auxiliary search for selection if it satisfies the bound check
(line 9), on the other hand, the anchor search is always con-
sidered. This ensures that the analytical properties of SP-S
with DTS remain identical to that of SP-S with round-robin
scheduling, i.e., the Theorems described in the previous sec-
tion are equally applicable for SP-S with DTS.

Experimental Results

We built a search portfolio using the following algorithms,
WA* (anchor search), greedy search (GS), beam search (BS)
and window A* (WS). We compared SP-S with the individ-
ual algorithms of the portfolio, portfolio of the same algo-
rithms without sharing (SP-wS), and EES (Thayer and Ruml
2011), which is a composite bounded sub-optimal search al-
gorithm. In all the experiments, we used a sub-optimality
bound of 5.0 for the bounded sub-optimal searches (WA*,
EES, SP-S) 3. We ran beam search with beam-width 300 and
window A* with window-size 5. In SP-S, we dynamically
restricted the state sharing for beam search and window A*,
according to the beam and window-size constraints. For the
portfolios (SP-wS and SP-S) we investigated two scheduling
strategies, namely round-robin (RR) and DTS. We evaluated
SP-S for the following domains.

Sliding Tile Puzzle (Unit Cost)

For this domain, we benchmarked the algorithms on ran-
domly generated test-suites of 100 8× 8, 9× 9 and 10× 10
puzzles (all solvable). We used the Manhattan distance plus
linear conflicts as a consistent heuristic. Each planner was
given a time limit of 180 seconds for solving a given in-
stance.

We include the results for this domain in Table 3. From the
table, we observe that among the individual algorithms beam
search performs the best, however the other algorithms also
contribute in coverage by solving different instances. For the
portfolio methods, first thing we note that the DTS schedul-
ing generally outperforms round-robin scheduling (for both
SP-wS and SP-S), highlighting the importance of dynamic
selection of algorithms. Finally, the results clearly show

3Note that, we used SP-wS without any information sharing
among the algorithms (neither the states nor the bounds), thus
SP-wS was not a bounded sub-optimal algorithm as the portfolio
had algorithms like greedy search, beam search and window A*,
none of which are bounded sub-optimal.

16



Indiv. Algo. SP-wS SP-S
Size WA* GS BS WS ∪ EES RR DTS RR DTS

8×
8

IS 52 15 73 61 92 38 88 89 94 98
RT 31.31 41.93 14.42 31.32 - 51.04 52.46 44.59 27.97 22.76
SC 794 1451 712 734 - 1145 771 791 776 783

9×
9

IS 25 7 48 46 78 19 60 66 73 82
RT 63.42 63.83 21.19 38.78 - 114.60 126.08 73.51 47.70 51.27
SC 1039 2157 983 1007 - 1453 983 1004 987 990

10
×

10

IS 7 2 22 18 38 5 14 19 35 48
RT 36.67 174.00 30.22 40.35 - 121.28 116.92 95.15 81.04 64.62
SC 1130 1719 1234 1155 - 1583 1059 1055 1119 1174

Table 3: Comparison of different algorithms and portfolios
for unit cost sliding tile puzzles (time limit 180 seconds).
Legend: IS - instances solved (out of 100), RT - average run
time, SC - average solution cost. Column marked by ∪ de-
notes the total number of unique instances solved by any of
the individual algorithm.

the superiority of SP-S over SP-wS (and the others). Not
only it provides better coverage/trade-off compared to all
the other approaches, in most cases (especially with DTS),
SP-S solves more instances than the union of all portfolio al-
gorithms. Note that, the selection and scheduling techniques
for portfolio methods attempt to get as close as possible to
this union number (Helmert et al. 2011), as portfolios (w/o
sharing) can never solve more instances. In contrast, by shar-
ing paths, SP-S can and does solve instances that are not
solved by any candidate algorithm, corroborating our claim
that SP-S can be more powerful than a collection of indi-
vidual algorithms. Note that, as SP-S solves more (hard) in-
stances than the other algorithms, the average run time re-
sults are somewhat biased against it. Even then, we observe
that SP-S with DTS is faster than the other portfolio solvers.

Sliding Tile Puzzle (Square Cost)

For square cost puzzles, the cost of moving a tile is the
square root of the value in the tile face, i.e, unlike the clas-
sical sliding tile puzzle, here the operator costs are not uni-
form.

It has been noted (Wilt and Ruml 2011), that such non-
uniform cost problems are generally harder to solve, com-
pared to the uniform cost ones. In fact, as shown in Ta-
ble 4, WA* performs very poorly in this domain. In SP-S
(and SP-wS), we modified the inadmissible algorithms to
use a distance based priority instead of the cost based ones
(as suggested in (Wilt and Ruml 2011)), i.e., these searches
mimic the priorities used for the unit cost domain. It may
be noted that this change does not alter the sub-optimality
guarantee of SP-S as the bound is derived using the anchor
search (WA*) which uses a cost based priority.

Results for this experiment are included in Table 4, which
show that while the individual algorithms’ performances
change significantly from the unit cost domain, SP-S con-
sistently provides the best results, and in most cases is able
to solve more problems than the union of all candidate algo-
rithms. These results highlight the importance of portfolios,
as a slight alteration in the domain (from unit to square cost)
can cause large variation in an algorithm’s performance (for

Indiv. Algo. SP-wS SP-S
Size WA* GS BS WS ∪ EES RR DTS RR DTS

8×
8

IS 2 19 66 73 90 12 81 84 95 95
RT 16.00 28.11 11.06 16.39 - 43.92 31.69 27.28 24.70 20.08
SC 3666 6917 3368 3838 - 4403 3619 3731 3709 3732

9×
9

IS 1 5 39 55 72 8 62 67 77 84
RT 59.23 69.75 17.24 24.85 - 29.72 84.67 70.55 46.77 49.02
SC 5886 10811 5529 5661 - 7138 5428 5396 5660 5536

10
×

10

IS 0 5 30 32 51 2 39 42 61 61
RT - 84.50 19.69 29.00 - 134.82 111.54 101.38 119.03 95.15
SC - 13311 7190 7569 - 10782 7227 7338 7455 7502

Table 4: Comparison of different algorithms and portfolios
for square cost sliding tile puzzle problems (time limit 180
seconds). Note that, here GS, BS and WS use distance based
priorities. Legend: IS - instances solved (out of 100), RT -
average run time, SC - average solution cost.

example, WA*), and also show that when using portfolios,
sharing of states and bounds can provide considerable im-
provement over running the algorithms independently.

6D Robot Arm Planning

We used a planar 6-DOF robot arm with a fixed base sit-
uated at the center of a 2D environment (100 × 100 grid)
with obstacles. The environment is the same as described
in the publicly available SBPL library (http://www.sbpl.net).
The planning objective here is to compute obstacle-free path
to move the end-effector from its initial configuration to
the goal configuration. We evaluated the algorithms on a
test-suite of 100 instances with randomly placed obstacles
(we used three obstacles, one circular, one T-shaped and
one rectangular) and random start-goal pairs. A consistent
heuristic was computed by running a 2D Dijkstra search
from goal to start on an underlined grid. We set a time limit
of 60 seconds for solving each problem instance.

Indiv. Algo. SP-wS SP-S
WA* GS BS WS ∪ EES RR DTS RR DTS

IS 51 38 46 42 63 44 59 62 62 71
RT 2.76 2.02 3.52 4.36 - 2.49 2.87 1.41 0.84 0.79
SC 70.86 77.61 66.58 61.69 - 73.63 72.51 73.95 68.20 67.42

Table 5: Comparison of different algorithms and portfolios
for 6D robot arm planning (time limit 60 seconds). Legend:
IS - instances solved (out of 100), RT - average run time, SC
- average solution cost.

We include the results of this experiment in Table 5. From
the results we notice that for this domain the diversity in
coverage is not much, there are only 12 instances that are not
solved by WA* but solved by other algorithms, which dimin-
ishes the scope of SP-S. However, SP-S with DTS still per-
forms best, solving more problem instances and providing
considerable run time improvement over other algorithms,
while computing equivalent (and sometimes better) quality
solutions with the same (provable) bounds as WA*/EES.

17



3D Navigation

For 3D (x, y, heading) navigation, the planning objective
was to compute smooth paths that satisfy the minimum turn-
ing radius constraints for a car-like robot. We generated 100
maps of size 1000 × 1000 with random start-goal states
and obstacles. The test suite was built using a combina-
tion of maps (50 each), simulating indoor and outdoor envi-
ronments (following (Aine and Likhachev 2016)). We com-
puted a consistent heuristic by running a 16-connected 2D
Dijkstra search from goal to start, after inflating the obsta-
cles with the robot’s in-radius. Each planner was given 30
seconds to solve an instance.

Indiv. Algo. SP-wS SP-S
WA* GS BS WS ∪ EES RR DTS RR DTS

IS 97 94 89 92 99 96 97 99 99 99
RT 2.12 0.98 3.88 2.42 - 2.76 3.85 1.94 1.87 0.92
SC 62.21 471.52 56.31 57.95 - 74.60 301.91 274.32 57.92 59.75

Table 6: Comparison of different algorithms and portfolios
for 3D path planning (time limit 30 seconds). Legend: IS -
instances solved (out of 100), RT - average run time, SC -
average solution cost.

The results of this experiment are included in Table 6.
From the results, we observe that coverage is not an is-
sue here (all algorithms were able to solve most instances),
whereas cost vs run time trade-off is, and in that front,
SP-S (with DTS) performs better than others, leveraging the
strengths of candidate algorithms while minimizing state re-
expansions. However, the improvement here is not as pro-
nounced as observed in other domains. Also note, that in
this domain, the inadmissible searches (especially greedy
search) can sometimes produce arbitrarily bad solutions, af-
fecting the quality of results provided by SP-wS.

Conclusions

We have presented a search portfolio (SP-S) that integrates
multiple search algorithms within a single flow, enabling
maximal sharing of intermediate paths, and described how
different type of search algorithms can be used in SP-S. We
have shown how SP-S can be adopted to guarantee useful
theoretical properties and experimentally demonstrated its
efficacy for multiple domains.

In the future, we would like to explore different sharing
and scheduling strategies, analyzing their impact on the per-
formance of SP-S. We also plan to apply SP-S for other
domains, such as satisficing planning. Another future direc-
tion is to extend SP-S beyond classical discrete search algo-
rithms and explore how can we efficiently incorporate other
algorithmic techniques (for example sampling based search)
within the SP-S flow. We are also interested in efficient par-
allelization of SP-S.

Acknowledgement

This work was supported by NSF grant IIS-1409549.

References

Aine, S., and Likhachev, M. 2016. Truncated incremental
search. Artificial Intelligence.
Aine, S.; Swaminathan, S.; Narayanan, V.; Hwang, V.; and
Likhachev, M. 2014. Multi-Heuristic A*. In Proceedings of
the Robotics: Science and Systems (RSS).
Aine, S.; Chakrabarti, P. P.; and Kumar, R. 2007. AWA* - A
window constrained anytime heuristic search algorithm. In
Veloso, M. M., ed., IJCAI, 2250–2255.
Aine, S.; Sharma, C.; and Likhachev, M. 2015. Learning to
search more efficiently from experience: A multi-heuristic
approach. In Proceedings of the Eighth Annual Symposium
on Combinatorial Search, SOCS 2015, 11-13 June 2015, Ein
Gedi, the Dead Sea, Israel., 141–145.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1-2):5–33.
Chakrabarti, P. P.; Ghose, S.; Acharya, A.; and Sarkar, S.
C. D. 1989. Heuristic search in restricted memory. Artificial
Intelligence 41(2):197–221.
Gerevini, A.; Saetti, A.; and Vallati, M. 2009. An auto-
matically configurable portfolio-based planner with macro-
actions: Pbp. In ICAPS.
Gomes, C. P., and Selman, B. 2001. Algorithm portfolios.
Artificial Intelligence. 126(1-2):43–62.
Hamadi, Y.; Jabbour, S.; and Sais, L. 2008. Manysat: a par-
allel sat solver. Journal on Satisfiability, Boolean Modeling
and Computation 6:245–262.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
netics 4(2):100–107.
Helmert, M.; Röger, G.; Seipp, J.; Karpas, E.; Hoffmann, J.;
Keyder, E.; Nissim, R.; Richter, S.; and Westphal, M. 2011.
Fast downward stone soup. Seventh International Planning
Competition 38–45.
Hoos, H.; Kaminski, R.; Lindauer, M.; and Schaub, T. 2015.
aspeed: Solver scheduling via answer set programming.
Theory and Practice of Logic Programming 15(01):117–
142.
Huberman, B. A.; Lukose, R. M.; and Hogg, T. 1997. An
economics approach to hard computational problems. Sci-
ence 275(5296):51–54.
Keedwell, E., and Narayanan, A. 2005. Intelligent Bioinfor-
matics: The Application of Artificial Intelligence Techniques
to Bioinformatics Problems. John Wiley and Sons.
Korf, R. E. 1985. Depth-first iterative-deepening: An opti-
mal admissible tree search. Artificial Intelligence 27(1):97–
109.
Kotthoff, L.; Gent, I. P.; and Miguel, I. 2012. An evalu-
ation of machine learning in algorithm selection for search
problems. AI Communications 25(3):257–270.
Kotthoff, L. 2014. Algorithm selection for combinatorial
search problems: A survey. AI Magazine 35(3):48–60.

18



Likhachev, M., and Ferguson, D. 2009. Planning Long Dy-
namically Feasible Maneuvers for Autonomous Vehicles. I.
J. Robotic Res. 28(8):933–945.
Likhachev, M.; Gordon, G. J.; and Thrun, S. 2004. ARA*:
Anytime A* with provable bounds on sub-optimality. In Ad-
vances in Neural Information Processing Systems 16. Cam-
bridge, MA: MIT Press.
Lowerre, B. 1976. The Harpy Speech Recognition System.
PhD thesis, Carnegie Mellon University.
Malitsky, Y., and O’Sullivan, B. 2014. Latent features for
algorithm selection. In Seventh Annual Symposium on Com-
binatorial Search.
Malitsky, Y.; Sabharwal, A.; Samulowitz, H.; and Sellmann,
M. 2013. Boosting sequential solver portfolios: Knowledge
sharing and accuracy prediction. In Learning and Intelligent
Optimization. Springer. 153–167.
OMahony, E.; Hebrard, E.; Holland, A.; Nugent, C.; and
OSullivan, B. 2008. Using case-based reasoning in an al-
gorithm portfolio for constraint solving. In Irish Conference
on Artificial Intelligence and Cognitive Science, 210–216.
Pearl, J., and Kim, J. H. 1982. Studies in semi-
admissible heuristics. IEEE Trans. Pattern Anal. Mach. In-
tell. 4(4):392–399.
Phillips, M.; Narayanan, V.; Aine, S.; and Likhachev, M.
2015. Efficient search with an ensemble of heuristics. In
Proceedings of the Twenty-Fourth International Joint Con-
ference on Artificial Intelligence, IJCAI 2015, Buenos Aires,
Argentina, July 25-31, 2015, 784–791.
Pohl, I. 1970. Heuristic Search Viewed as Path Finding in a
Graph. Artif. Intell. 1(3):193–204.
Röger, G., and Helmert, M. 2010. The more, the merrier:
Combining heuristic estimators for satisficing planning. In
ICAPS, 246–249.
Thayer, J. T., and Ruml, W. 2010. Anytime heuristic search:
Frameworks and algorithms. In Third Annual Symposium on
Combinatorial Search.
Thayer, J. T., and Ruml, W. 2011. Bounded suboptimal
search: A direct approach using inadmissible estimates. In
IJCAI, 674–679.
Vadlamudi, S. G.; Aine, S.; and Chakrabarti, P. P. 2011.
MAWA*—A Memory-Bounded Anytime Heuristic-Search
Algorithm. IEEE Transactions on Systems, Man, and Cy-
bernetics, Part B: Cybernetics 41(3):725–735.
Vadlamudi, S. G.; Aine, S.; and Chakrabarti, P. P. 2013. In-
cremental beam search. Inf. Process. Lett. 113(22-24):888–
893.
Valenzano, R. A.; Sturtevant, N. R.; Schaeffer, J.; Buro, K.;
and Kishimoto, A. 2010. Simultaneously Searching with
Multiple Settings: An Alternative to Parameter Tuning for
Suboptimal Single-Agent Search Algorithms. In ICAPS,
177–184.
Valenzano, R.; Nakhost, H.; Müller, M.; Schaeffer, J.; and
Sturtevant, N. 2012. Arvandherd: Parallel planning with
a portfolio. European Conference on Artificial Intelligence
(ECAI).

Wilt, C. M., and Ruml, W. 2011. Cost-based heuristic
search is sensitive to the ratio of operator costs. In Pro-
ceedings of the Fourth Annual Symposium on Combinatorial
Search, SOCS 2011, Castell de Cardona, Barcelona, Spain,
July 15.16, 2011.
Wilt, C. M., and Ruml, W. 2012. When does weighted A*
fail? In SOCS. AAAI Press.
Wilt, C. M., and Ruml, W. 2014. Speedy versus greedy
search. In Seventh Annual Symposium on Combinatorial
Search.
Xu, L.; Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2008.
Satzilla: Portfolio-based algorithm aelection for sat. Journal
of Artificial Intelligence Research 565–606.
Xu, L.; Hoos, H.; and Leyton-Brown, K. 2010. Hydra: Auto-
matically configuring algorithms for portfolio-based selec-
tion. In AAAI, volume 10, 210–216.
Yuan, C., and Malone, B. 2013. Learning optimal bayesian
networks: A shortest path perspective. J. Artif. Intell.
Res.(JAIR) 48:23–65.
Zhou, R., and Hansen, E. A. 2002. Multiple sequence align-
ment using anytime A*. In Proceedings of 18th National
Conference on Artificial Intelligence AAAI’2002, 975–976.
Zhou, R., and Hansen, E. A. 2005. Beam-stack search:
Integrating backtracking with beam search. In Proceedings
of the 15th International Conference on Automated Planning
and Scheduling (ICAPS-05), 90–98.

19


