Stronger Privacy Preserving Projections for Multi-Agent Planning

Shlomi Maliah and Guy Shani and Roni Stern

Ben Gurion University of the Negev, Israel

Abstract

Collaborative privacy-preserving planning (CPPP) is a multi-agent planning task in which agents need to achieve a common set of goals without revealing certain private information. In many CPPP algorithms the individual agents reason about a projection of the multi-agent problem onto a single-agent classical planning problem. For example, an agent can plan as if it controls the public actions of other agents, ignoring their unknown private preconditions and effects, and use the cost of this plan as a heuristic for the cost of the full, multi-agent plan. Using such a projection, however, ignores some dependencies between agents’ public actions. In particular, it does not contain dependencies between actions of other agents caused by their private facts. We propose a projection in which these private dependencies are maintained. The benefit of our dependency-preserving projection is demonstrated by using it to produce high level plans in a new privacy preserving planner that is able to solve more benchmark problems than any other state-of-the-art privacy preserving planner. This more informed projection does not explicitly share private information. In addition, we show that even if an adversary agent knows that an agent has some private objects of a given type (e.g., trucks), it cannot infer how many such private objects the agent controls. This introduces a novel strong form of privacy that is motivated by real-world requirements.

Introduction

Collaborative privacy preserving planning (CPPP) is a multi-agent planning task in which agents need to achieve a common set of goals without revealing certain private information. CPPP has important motivating examples such as planning for organizations that outsource some of their tasks and collaboration between military units where compartmentalization is required. CPPP recently received much attention and new efficient solvers, scaling up to larger, more challenging domains, are constantly proposed (Maliah, Shani, and Stern 2015; Nissim and Brafman 2014; Luis and Borrajo 2014; Tozicka, Jakubuv, and Komenda 2014; Jakubuv, Tozicka, and Komenda 2015, inter alia).

Even though research on CPPP is flourishing, classical planners are substantially more mature, offering fast solvers with strong heuristics (Hoffmann 2001; Helmert and Domshlak 2009). An attractive approach, hence, is to project the multi-agent problem onto a classical planning problem, employ a classical solver, and then extend the resulting public plan using private actions (Brafman and Domshlak 2008).

Due to privacy, each individual agent has only a partial view of the world, containing its own public and private facts and actions. The agent also knows about the public actions of other agents, but is aware only of their public preconditions and effects. One can treat the agent view of the world as a classical planning problem, pretending that the agent controls the public actions of others. Then, one could solve this classical projection and obtain a plan.

In this single-agent projection of the MA world, the agent is unaware of dependencies between other agents’ public actions, originating from their private facts and actions. This results in an over optimistic assumption about agents’ abilities. Take, for example, a blocksworld domain with two agents, where each agent controls a different arm, and conceals which block is held by the arm. The precondition of unloading a block \(A \) on top of block \(B \) by agent 1 is that the agent is holding block \(A \). As this is a private information, agent 2 is unaware of this precondition, and thus believes that agent 1 can put \(A \) everywhere without picking it up.

Thus, a solution to this single-agent projection is typically not a sound solution to the multi-agent planning task, and some mechanism to communicate additional information is needed for constructing a sound plan. For example, in the MAFS algorithm (Nissim and Brafman 2014) agents broadcast partially encrypted states to all agents whenever a public action is performed. Methods of this type use a multi-agent planning mechanism, where all agents plan together, jointly revealing additional important information.

In this paper we take a different approach. We suggest a stronger projection, where all agents publish a projection of their private view of the world, containing only public actions. The joint projection is fed into a classical planner, resulting in a high level plan for achieving the goals, composed only of public actions (Brafman and Domshlak 2008; Maliah, Shani, and Stern 2014). Then, each agent extends the plan by adding private actions that allow it to accomplish its part in the public plan.

The main drawback of the simple projection is the lack of information concerning dependencies between the public actions of an agent and between public actions and the initial state of the world. Therefore, we focus on identifying these
dependencies and sharing them in a privacy preserving manner. We define new facts that represent action dependencies, and explain when to add or delete these dependency facts.

The usefulness of the proposed projection is demonstrated in practice in a simple planner that uses a solution of the projected problem as a high-level plan, extending it to a full plan jointly by all agents. While the resulting planner is not complete, it is able to solve more benchmarks from the distributed multi-agent competition (CoDMAP) (ˇStolba, Komenda, and Kovacs 2015) than any other state-of-the-art privacy preserving planner.

Sharing the proposed projection between the agents does not violate the privacy requirement as the proposed projection does not contain any private information (fact or action) explicitly. This form of privacy is the current standard in the privacy preserving planning literature. Another contribution of this work is the introduction of a more strict form of privacy that we call object cardinality privacy. This form of privacy addresses a realistic requirement in which agents are interested in hiding from other agents the number of private objects they control of specific types.

For example, a logistic company may wish to hide the number of trucks it controls, and the military would not disclose the number of bases in an area. An algorithm is said to preserve object cardinality privacy if an adversary, listening to the communication during planning, cannot distinguish between worlds where agents possess different quantities of private objects. We discuss the relationship between object cardinality privacy and other definitions of privacy, and show that our projection also preserves this type of privacy.

The contributions of this paper are hence two-fold: we provide the new definition of privacy – object cardinality privacy– and suggest a new strong projection, showing it both preserves object cardinality privacy and is key to the construction of a new planner to outperform existing state-of-the-art planners.

Privacy Preserving Model

Research on privacy preserving planning focuses on variants of the multi-agent STRIPS model (MA-STRIPS) (Brafman and Domshlak 2013) mainly due to its simplicity.

Definition 1 (MA-STRIPS). An MA-STRIPS problem is represented by a tuple \(\langle P, \{A_i\}_{i=1}^k, I, G \rangle \) where:

- \(k \) is the number of agents
- \(P \) is a finite set of facts (can be true or false).
- \(A_i \) is the set of actions agent \(i \) can perform.
- \(I \) is the start state.
- \(G \) is the goal condition.

Each action \(a = (\text{pre}(a), \text{eff}(a), c(a)) \) is defined by its preconditions (\(\text{pre}(a) \)), effects (\(\text{eff}(a) \)), and cost (\(c(a) \)). Preconditions and effects are logical formulas of \(P \). A state is a conjunction of facts (true or false). The goal \(G \) is also a conjunction of facts. The result of applying an action \(a \) to a state \(s \) is denoted by \(a(s) \). A solution to a planning task is a plan \(\langle a_1, \ldots, a_k \rangle \) such that \(G \subseteq a_k(\ldots(a_1(I)\ldots) \), i.e., a sequence of actions that transforms the initial state (\(I \)) to a state satisfying the goal condition (\(G \)).

Figure 1 illustrates a simple logistics example in which the agents are trucks tasked with delivering packages. The set of facts \(P \) represents the location of the two packages and the six trucks. Each truck has three actions: move, load, and unload, corresponding to moving the truck between locations, loading a package and unloading it. Trucks can only drive along the edges in Figure 1. Agents are heterogeneous and their range is restricted, such that location \(i, j \) can only be reached using truck \(i \). The rectangles are logistic centers visited by multiple trucks that load or unload packages.

Privacy

Privacy-preserving MA-STRIPS extends MA-STRIPS (Brafman and Domshlak 2008) by defining sets of variables and actions as private, known only to a single agent. Let \(\text{public}(P) \) be a set of public facts, whose value is always known to all agents. Let \(\text{private}_i(P) \) be a set of facts whose existence and value is known only to agent \(i \). Each agent has a set of actions it can execute, where \(\text{private}_i(A) \) is a set of private actions, that no other agent knows about, and their execution is hidden from other agents, and \(\text{public}_i(A) \) is a set of public actions. A private action can have only private effects. A public action may have both public and private effects. Upon the execution of a public action, all agents observe its public effects. For ease of exposition we assume that all goals are public, although our method can be extended to handle private goals.

A solution to a privacy-preserving MA problem, is a sequence of public and private actions. We say that the sequence of public actions in such a solution is a valid high-level plan if it can be extended to a full plan using the agents’ private actions.

Extending a valid high-level plan to a full plan can be done by all agents concurrently, where each agent plans independently to achieve the preconditions of its actions in the high-level plan (Maliah, Shani, and Stern 2014).
Consider a public action \(a \) of agent \(i \) from the perspective of agent \(i \). The action is public, so agent \(i \) knows about \(a \)'s existence. However, if \(a \) has private preconditions and effects, they are only known to agent \(j \) and are hidden from agent \(i \). Formally, we define the local view of action \(a = \langle \text{pre}(a), \text{eff}(a), c(a) \rangle \) by agent \(i \), denoted \(\pi_i(a) \), as
\[
\pi_i(a) = \langle \text{public}(P) \cap \text{pre}(a), \text{public}(P) \cap \text{eff}(a), c(a) \rangle
\]
Clearly, \(\pi_i(a) = a \) if \(a \) is an action of agent \(i \).

Definition 2 (Local View). Given an MA-STRIPS problem \(\pi = (P, \{A_i\}_{i=1}^k, I, G) \), the local view of agent \(i \) is defined by the tuple \(\pi_i = (\pi_i(P), \{\pi_i(A_j)\}_{j=1}^k, \pi(I), \pi(G)) \) where:

- \(\pi_i(P) = \text{public}(P) \cup \text{private}_i(P) \)
- \(\pi_i(I) = I \cap \pi_i(P) \)
- \(\pi_i(G) = G \cap \pi_i(P) \)

In our running logistic example, assume now that each truck is owned by a different company, and that one company does not want to share its location and coverage (which locations it can reach) with other companies. The only actions that are public are load/unload actions from/at logistic centers. The only facts that are public are facts representing whether a package is at one of the logistic centers. Load/unload actions from/at private locations and move actions are private actions. The location of the trucks, and facts representing whether a package is at one of the private locations, are all private facts. The local view of agent 3 consists of the facts representing packages at \(A, B, C, D, E, \) and (3,1); the facts representing possible locations of truck 3; the move, load, and unload actions of truck 3; and the load/unload actions of all agents from/to logistic centers. For example, the local view of a load action of another agent has a precondition regarding the location of the package only, ignoring the private precondition of the location of the truck.

Definition 3 (Privacy-Preserving MA-STRIPS). A privacy-preserving MA-STRIPS problem is defined by an MA-STRIPS problem and the public(\(\cdot \)) and private\(_i(\cdot) \) functions for every \(i \in [1, n] \). The task is to find a solution without revealing private information during planning.

In Section we discuss concrete definitions for private information that must not be revealed during planning.

Classical Projections and Regression

We now discuss projections of a privacy-preserving multi-agent problem into classical single-agent planning, and the regression of formulas through action sequences, both of which are key concepts in our projection algorithm.

Classical Projections

A classical projection of a privacy-preserving multi-agent problem is a compilation of the problem into a classical single-agent problem. For example, one can consider the local view (Definition 2) of the agent as a classical planning problem, pretending that the agent controls the public actions of other agents as well.

A classical projection is **sound** if the sequence of public actions in any solution to the projected problem, can be extended using only private actions to a solution to the original multi-agent problem. As efficient privacy preserving projections tend to be lossy, not capturing all the information in the original problem, achieving soundness is difficult.

We say that a classical projection is **complete** if given a solution to the original privacy preserving problem, there exists a solution to the projected planning problem with the same sequence of public actions. An example of a complete classical projection is the local view projection.

Classical projections are of interest because they can be solved by each agent, providing a heuristic estimation for the cost of solving the original problem (Nissim and Brafman 2014). Moreover, some privacy preserving algorithms use the solution to the projected planning problem as a high level plan and try to extended it to a complete plan by adding private actions of the individual agents (Jakubuv, Tozicka, and Komenda 2015; Tozicka, Jakubuv, and Komenda 2015).

Dependencies

While a local view of an agent is a complete single-agent projection, it fails to consider some dependencies between public actions of another agent. In particular, the local view of agent \(i \) contains no information about private dependencies of other agents’ public actions.

Definition 4. A public action \(a \) facilitates the achievement of a private fact \(f \), if \(f \) is an effect of \(a \), or there exist a sequence of private actions \(a_1, \ldots, a_k \) such that:

- \(f \) is an effect of \(a_k \),
- each \(a_i \) takes as precondition an effect of some \(a_j \) s.t. \(j < i \),
- \(a_1 \) takes as precondition an effect of \(a \).

Definition 5 (Private Dependency). An action \(a \) is said to have a private dependency if it has a private fact \(f \) as a precondition such that one of the following hold: (1) there is another public action \(a' \) that facilitates achieving \(f \), (2) \(f \) is either true in the start state or can be achieved from it by only applying private actions. We call the first type of private dependency an action-to-action dependency and call the second type an init-to-action dependency.

In our logistic example (Figure 1), the public action \(\text{unload} p t3 A \) has a private precondition \(\text{on} p t3 \), and the public action \(\text{load} p t3 B \) achieves it. Thus, \(\text{unload} p t3 A \) has a private dependency of the type “action-to-action”. The local views of the other agents do not include this private dependency: the public \(\text{unload} p t3A \) action will appear in the local views of all agents (except agent 3) without the precondition \(\text{on} p t3 \), since it is a private fact. As a result, agents will believe that unloading a package at arbitrary public locations is always possible. As an example of an “action-to-init” private dependency, consider the public action \(\text{unload} p2 t2 B \), which has a private precondition \(\text{on} p2 t2 \). This precondition can be achieved by a private action \(\text{load} p2 t2 (2,1) \), which in turn require the private fact \(\text{at} p2 B \), which is true in the initial state. All agents (except agent 2) do not know about this precondition of \(\text{unload} p2 t2 B \) and would assume that t2 can always unload p2 at B, even if p2 was
already moved beyond the reach of \(t2 \). In this work we suggest a stronger projection where information about private dependencies is shared, based on the concept of \textit{regression}.

\textbf{Regression}

Regression is a fundamental tool in automated planning, in which we seek the conditions needed to reach a state, achieve a fact, or perform an action. More generally, if a formula \(\phi \) describes a constraint on state facts and \(a \) is an action then the regression of \(\phi \) through \(a \), denoted \(\text{rg}_a(\phi) \), is a formula that describes the minimal constraints on state facts such that if we apply \(a \) to a state that satisfies \(\text{rg}_a(\phi) \) we will reach a state that satisfies \(\phi \).

In the context of classical planning, Rintanen (2008) describes how to compute the regression of a formula \(\phi \) through an action \(a \). We now review these definitions.

For ease of exposition, we assume here that both the effect and the precondition of an action are conjunctions of literals. That is, we do not allow conditional effects or disjunction of preconditions. We assume that the initial state is induced by an \textit{init} action, which assigns to all predicates their value at the initial state of the problem. The \textit{init} action can only be applied once and has no preconditions. We also assume that both the preconditions and effects of all actions are consistent, e.g., for a given literal \(l \), no effect or precondition contains both \(l \) and \(\neg l \). These are not real restrictions, and we could use Rintanen’s full regression definition at the cost of a more complicated exposition.

In this restricted representation, Rintanen’s regression of a formula \(\phi \) through an action \(a \), defined only over a single literal or a conjunction of literals, is simplified as follows:

\textbf{Definition 6 (Regression).}

\begin{align*}
\text{rg}_a(l) &= \text{pre}(a) : l \in \text{eff}(a) \quad (1) \\
\text{rg}_a(l) &= \text{false} : \exists l' \in \text{eff}(a) \text{ s.t. } l, l' \text{ are mutex} \quad (2) \\
\text{rg}_a(l) &= l : l, \neg l \notin \text{eff}(a) \quad (3) \\
\text{rg}_a(\phi) &= \bigwedge_{l \in \phi} \text{rg}_a(l) : \phi = l_1 \land l_2 \land \ldots \land l_k \quad (4)
\end{align*}

Rintanen shows that if \(s \models \text{rg}_a(\phi) \) then \(a(s) \) satisfies \(\phi \).

Given a set of actions \(A \), we define the regression tree of a conjunction formula \(\phi \) using actions in \(A \), denoted \(T_{rg}(\phi, A) \). Intuitively, the regression tree of \(\phi \) represents all possible sequences of regression functions \(\text{rg}_a(\cdot) \) that can be applied to \(\phi \), i.e., all sequences of actions in \(A \) that achieve \(\phi \). The nodes of the regression tree are labeled by formulas (given our restricted action definition, these formulas are only conjunctions of literals), and the edges are labeled by actions. We denote the formula associated with node \(n \) by \(n.\phi \). The set of outgoing edges of a node \(n \) are labeled by all actions \(a \in A \), s.t. \(\exists l \in n.\phi : l \in \text{eff}(a) \). That is, all actions that provide at least one literal in \(n.\phi \).

Algorithm 1 shows the construction of the regression tree.

The tree is constructed top down, starting from the root. Leaves are labeled by either \textit{true} or \textit{false}. Every sequence of edges in every path from a \textit{true} leaf to the root in the regression tree corresponds to a plan that achieves \(\phi \) — the formula at the root of the tree. During the construction of the tree, we may reach a node \(n \) that has an ancestor node \(n' \) for which \(n.\phi \models n'.\phi \). This means a cycle has been identified in the regression tree, and we need not further develop \(n \). To remove the cycle, we set \(n.\phi \) to \textit{false}.

\textbf{Dependency-Preserving Projection}

We now present our novel projection, which we call the \textit{dependency-preserving projection} (DP projection). DP projection shares private dependencies without explicitly sharing private information. Unlike the local view projection, a DP projection is generated by all agents collaboratively, either sequentially, one agent at a time, or in parallel.

Intuitively, the DP projection contains all public facts, and replaces every public action \(a \) with a set of actions, \(\alpha(a) \), where each action in \(\alpha(a) \) represents executing \(a \) after a set of public actions that enable achieving \(a \)’s private preconditions. More formally, let \(A_b \) be a set of public actions that facilitates the achievement of all private preconditions of a public action \(a \). For each such set we create an action \(\alpha_b \), whose preconditions ensure that \(a \) is executed after the execution of all actions in \(A_b \). The set \(\alpha(a) \) is composed of all such actions \(\alpha_b \).

Ensuring that \(a \) is executed only after all actions in \(A_b \) is done by maintaining a set of facts \(f_{a'} \) for every public action \(a' \), which is true if the effects of \(a' \) were achieved. Thus, the projection \(\pi_{DP} \) consists all public facts in \(\pi \), a public fact \(f_a \) and a set of actions \(\alpha(a) \) for every public action \(a \).

Next, we present and explain the exact details of how each agent generates appropriate \(\alpha(a) \) actions from its local view. The conjunction of the projected actions and facts by all agents produces the complete DP projection.

\begin{algorithm}
\caption{Computing the regression tree \(T_{rg}(\phi, A) \) for a conjunction of literals \(\phi \) with a set of action \(A \)}
\begin{algorithmic}[1]
\State \textbf{Regress}(\phi, A)
\begin{algorithmic}
\State \textbf{Input}: \phi, a conjunction of literals
\State \textbf{Input}: A, a set of actions to regress with
\State \textbf{Output}: n, the root of the regression tree
\State \(n \leftarrow \) a tree node
\If {\phi = \text{false}} \text{return} \text{false}; \EndIf
\ForEach {ancestor \(n' \) of \(n \)}
\If {\phi \models n'.\phi \text{ then}}
\State \(n.\phi \leftarrow \text{false} \)
\EndIf
\EndFor
\If {\phi \text{ is not empty}}
\State \(n.\phi \leftarrow \phi \)
\ForEach {action \(a \)}
\If {\text{eff}(a) \cap \phi = \emptyset \text{ then}}
\State \(n_a \leftarrow \text{Regress}(\text{rg}_a(n.\phi, A) \text{ Add } n_a \text{ to } n.\text{children} \)
\Else
\State \(n.\phi \leftarrow \text{true} \)
\EndIf
\EndFor
\State \text{return} \(n \)
\end{algorithmic}
\end{algorithm}
Creating the Regression Tree

For a public action \(\alpha \) of agent \(i \), we use regression to identify unique sets of public actions of \(i \) that enable the agent to execute \(\alpha \). Each of these sets of actions will be mapped to a single action in \(\alpha(a) \) and added to \(\pi_{DP} \). In more details, we construct a regression tree for \(\text{pre}(a) \) over a slightly revised local view of agent \(i \) in which all public actions (except for \(a \)) have no preconditions. This revised local view (denoted \(\pi'_i \)) is used instead of agent \(i \)'s local view (\(\pi_i \)) because in constructing \(\alpha(a) \) we do not model the conditions required for executing other public actions. Rather, \(\alpha(a) \) models how other public actions enable executing \(a \).

Specifically, \(\pi'_i \) is equal to \(\pi_i \) except that every public action \(a_p \) in \(\pi_i \) is replaced by a revised action \(a'_p \):

\[
\text{pre}(a'_p) = \text{true} \quad (5)
\]

\[
\text{eff}(a'_p) = \left(\bigwedge_{l \in \text{eff}(a_p)} l \right) \land \left(\bigwedge_{l' \in \text{pre}(a_p), \neg l' \in \text{eff}(a_p)} l' \right) \quad (6)
\]

That is, \(a'_p \) has no preconditions and has the effects of \(a_p \). In addition, the preconditions of \(a_p \) are added to the effects of \(a'_p \) if they are not deleted by \(a_p \) as these facts must be true after \(a_p \) was executed. This captures the state of the world immediately after \(a_p \) was executed. Consider, for example, an action \(a \) with precondition \(p \) and effect \(q \). Immediately after \(a \) was executed, \((p \land q) \) must hold. Furthermore, this process helps us in detecting conflicts between public actions, as we show later in Example 1.

Every agent \(i \) uses the set of revised actions \(\pi'_i \). A to construct a regression tree for every action \(\alpha \) by calling Algorithm 1 with parameters \(\text{pre}(a) \) and \(\pi'_i \). For brevity, we will denote the resulting regression tree as \(T_{\alpha}(a) \). The branches of \(T_{\alpha}(a) \) ending at leaves labeled by \(\text{true} \) represent plans to achieve the precondition of \(\alpha \), taking into consideration agent \(i \)'s local view and assuming that other agents’ public actions can always be executed.

Example 0.1. Let us look at the smaller logistics example in Figure 2, where an agent has one private city \(B \) and two public logistic centers \(A \) and \(C \). Figure 3 shows the regression tree constructed for action \((\text{unload } p t A) \) with precondition \((at t A) \) and \((on p t) \). As the revised action \(\text{load} \), for the public action \(p t A \) action has the precondition \(\text{true} \) and effect \((on p t) \) \((at t A) \), regressing through this action results in the \(\text{true} \) formula at node \(n_2 \). On the other hand, due to the conflict between \((at t A) \) and the effect \((at t C) \) of the revised action for \((load p t C) \), the regression result is \(\text{false} \) for node \(n_4 \) (following rule 2 in Definition 6). \(n_5, \phi \) is satisfies the formula at \(n_1 \), and is hence replaced by \(\text{false} \), denoting a cycle.

Figure 2: A simple logistics example.

Figure 3: Partial regression tree for \((unload p t A) \) in Fig. 2.
quences of private and public actions. If the agent published two different projected actions, each corresponding to a different route, then the other agents would learn that the agent surely covers more than a single private location, thus revealing private information.

Removing Consumed Dependencies

Let \(a_0 \) be a projected action and let \(B \) be a plan in the regression tree that generated \(a_0 \) (i.e., the set of public actions that \(a_0 \) represents). It may be that the actions in \(B \) or the action \(a_0 \) itself consume some private effect \(e \) of a public action \(a' \). In that case, all other projected actions that rely on \(a' \) can no longer depend on the effects of \(a' \) to hold. To take this into account, we add \(\neg f_{a'} \) to the delete effects of \(a_0 \). We denote by \(\text{delete}(a_0) \) the set of such public actions (actions whose private effects are deleted by other actions along \(B \)). In summary, for a set of public actions \(A_B \) used in a branch \(B \) of the regression tree for action \(a \) we generate an action \(a_0 \) such that:

\[
\text{pre}(a_0) = \text{public(pre}(a)) \cup \bigwedge_{a' \in A_B} f_{a'} \quad (7)
\]

\[
\text{eff}(a_0) = \text{public(}\text{eff}(a)) \cup f_a \cup \bigwedge_{a' \in \text{delete}(a_0)} \neg f_{a'} \quad (8)
\]

Example 0.2. Consider the regression tree given in Figure 3, created for the action \(\text{unload} \) at \(A \). The regression tree has three branches ending at \text{true} leaves—the branches ending at \(n_2 \), \(n_8 \), and \(n_9 \). We create three projected actions \(a_{n_2} \), \(a_{n_8} \), and \(a_{n_9} \) corresponding to these branches. The projected action \(a_{n_8} \), for example, has precondition \(\text{load}_{p \in C} \), because \((\text{load} \ p \ C) \) adds a private fact \((\text{on} \ p \ A) \). The effects of \(a_{n_8} \) are to add the facts \((\text{at} \ p \ A) \) and \(f_{\text{unload} \ p \ A} \) and delete the fact \(\text{load}_{p \in C} \), as it destroys the private effect \((\text{on} \ p \ A) \)

Note that replacing location \(B \) with a set of connected private locations \(B_1, ..., B_n \), would result in a different regression tree, but all the \text{true} leaves in this tree would correspond to either the package at \(A \) or \(C \), or loading the package at its initial private location. Thus, the projection would be identical regardless of the number of private locations. We exploit this property of the DP projection in Section .

Constructing the DP Projection

Algorithm 2 summarizes the process of how the DP projection is constructed collaboratively by all agents. Every agent adds for each of its public actions \(a \) (1) a single dependency fact \(f_a \) and (2) the set of projected actions \(\alpha(a) \). In addition, we add a dependency fact \(f_{\text{init}} \), initialized to true, denoting the initialization of the private facts in the initial state of each agent to true. Importantly, we do not specify or share which private facts are true in the initial.

Space Complexity

Next, we analyze the space complexity of our DP projection. In Algorithm 2, every agent \(i \) constructs for each of its public action \(a \) a single dependency fact \(f_a \) and a set of projected actions \(\alpha(a) \). There is a single projected action in \(\alpha(a) \) for every set of public actions that appear in the same branch in the regression tree of \(a \) and achieve a private fact. Since only actions of agent \(i \) can achieve its private facts, the number of projected action in \(\alpha(a) \) is at most exponential in the number of agent \(i \)'s public actions. Thus, the main complexity in the space complexity of our DP projection is the number projected actions. However, as we show later in our experimental evaluation, the size of the DP projection in all current benchmarks was manageable as the number of branches in the generated regression trees and the number of public actions along these branches were relatively small. This is because each regression tree only models the private dependencies of the action it was generated for, and not the private dependencies of other actions.

Application of a DP Projection

We employ the DP projection in a privacy preserving planner. First, the agents collaboratively generate the DP projection following Algorithm 2. Then, an off-the-shelf classical planner finds a solution to the DP projection, resulting in a high-level plan. Finally, each agent extends this high-level plan to be able to execute the public actions in it. This means each agent successively solves single agent planning problems, designed to ensure that the high level actions are executed in the designated order. Solving each of these problems is done using an off-the-shelf single agent planner.

Theoretically, it is possible that the generated high-level plan cannot be extended to a complete plan. While in our experiments this never happened, it is possible in case of such a failure to call a complete privacy preserving planner. We call the resulting planner the DP-projection planner, or simply DPP.

Preserving Object Cardinality Privacy

An algorithm is privacy preserving, as defined in Definition 3, if one can prove that it does not "reveal private information". Most research on privacy preserving planning considers a private information as revealed only if it is explicitly communicated to another agent. For example, if agent

Algorithm 2: Computing the DP projection

\[
\begin{align*}
\text{DP-Project}(\pi) \quad & \text{Input: } \pi, \text{ a privacy preserving MA-STRIPS problem} \\
& \text{Output: } \pi_{DP}, \text{ a DP-projection of } \pi \\
\pi_{DP}.P & \leftarrow \text{public}.P \cup \{f_{\text{init}}\} \\
\pi_{DP}.I & \leftarrow \text{public}.I \cup \{f_{\text{init}} = \text{true}\} \\
\pi_{DP}.G & \leftarrow \text{public}.G \\
\pi_{DP}.A & \leftarrow \emptyset \\
\textbf{foreach} \text{agent } i = 1 \ldots k \textbf{ do} \\
& \textbf{foreach} \text{action } a \in \text{public}(A_i) \textbf{ do} \\
& \quad \text{Add } f_a \to \pi_{DP}.P \\
& \quad \text{Add } f_a = \text{false} \to \pi_{DP}.I \\
& \quad \text{Add } \alpha(a) \to \pi_{DP}.A \\
\text{return } \pi_{DP}
\end{align*}
\]
\(a_1\) publishes during planning that it intends to bring a truck \(t\) to a private location \(loc\), then clearly \(a_1\) revealed the existence of this private location, as well as an ability to achieve the private fact \((at\ t\ loc)\), breaking the privacy constraint. On the other hand, if the agent only publishes that it can achieve a private fact with the arbitrary name \(p\), then it is unclear what private information has been revealed. Thus, some privacy preserving MA-STRIPS planners are built on obfuscating the private information they publish by applying some cryptographic tool (Luis and Borrajo 2014; 2015; Borrajo and Fernandez 2015).

As noted by Brafman (2015), this form of privacy preserving is weak, as there is no constraint on what other agents can infer from the information sent during planning and during execution. For example, if the public plan consists of an agent \(a_2\) picking up a package and the pickup action requires a truck to be present at the location of the package, then all agents now know that \(a_1\) controls at least one truck. Recent work by Brafman (2015) considered a stronger and well-defined form of privacy preserving.

Definition 7 (Strongly Private). A variable or a specific value of a variable is strongly private if other agents cannot deduce its existence from the information available to them.

The information available to an agent is assumed to be (1) its local view, (2) the messages passed between the agents during planning, and (3) the sequence of public actions (of all agents) in the resulting plan. A multi-agent planning algorithm is said to be strongly privacy preserving if all private information remains strongly private (Brafman 2015).

While appealing, achieving such a strong form of privacy may be difficult. In fact, the only algorithm proven so far to have this strict form of privacy – a secure version of MAFS – is only guaranteed to preserve this privacy in a short list of specific domains (logistics, satellites, rovers) and under very restricted conditions (unit action cost and heuristic functions that ignore private actions).

Object-Cardinality Privacy In the creation of the DP-projection we proposed as well as in the corresponding algorithm DPP, some information about the dependencies between public actions is published. Thus, any planner using it cannot by strongly privacy preserving. On the other hand, the DP-projection does not share explicitly any private information, and thus it does preserve the more common weaker form of preserving privacy claimed by most privacy preserving planners. Next, we define stronger privacy preserving property in which the cardinality of private objects is strongly private (Definition 7), and prove that generating the DP projection preserves this property.

Definition 8 (Cardinality of Private Objects). Overloading previous notation, denote by \(\text{private}_i(t, a)\) the set of objects of type \(t\) that are private for agent \(a_i\). The cardinality of private objects of type \(t\) for agent \(a_i\) is \(|\text{private}_i(t, a)|\).

The notion of objects and types has been native to the planning domain description language (PDDL) for a while now, and is used in the recent multi-agent extension of PDDL (Kovacs 2012) and in the official domain descriptions used in the recent CoDMAP (Štolba, Komenda, and Kovacs 2015). Briefly, objects and types are used to conveniently parameterize actions and facts, such that an action or a fact can be defined with respect to an object of a given type. For example, in a logistics domain, the trucks able to pick up packages are all objects of the type \(truck\). Then, the pick up action and location fact can be defined once to all trucks, parameterized by an object of type \(truck\). For example, the action \(load\) is parameterized by an object \(t\) of type truck and an object \(p\) of type package, and its preconditions include the fact that \(t\) is at the same location as \(p\). Concretely, the privacy extension of multi-agent PDDL (Štolba, Komenda, and Kovacs 2015) supports defining for every agent \(a_i\) a list of private objects of any type \(t\), which is exactly \(\text{private}_i(t, a)\).

Hiding the cardinality of private objects is motivated by real-world scenarios. Consider, for example, the logistic problem above. It is realistic to assume that the agents that collaborate in the planning task, i.e., the various delivery companies, know that packages are delivered using trucks between logistic centers. On the other hand, it is likely that each company would like to hide its logistics capabilities, such as the number of trucks that it controls, or the number of private logistic centers it maintains.

Formally, let us denote by \(M_i\) the messages sent by agent \(i\) to other agents during planning, and denote by \(T\) the set of all object types.

Definition 9 (Preserving Cardinality of a Type). The cardinality of type \(t\) for agent \(i\) is preserved during a planning process if no other agent \(a_j\) can infer the value of \(|\text{private}_i(t, a)|\) from the set of messages \(M_i\).

There are cases where the cardinality of private objects is revealed by the local view of other agents. Consider for example an agent \(a_i\) controlling two trucks. If other agents are aware of two separate actions for loading the same package at the same logistic center by \(a_i\), then the other agents can easily infer that \(a_i\) controls at least two trucks, even if the names of the objects or the action are obfuscated. Hence, the cardinality of objects that participate in preconditions of public actions may be compromised by the domain description, even before planning commences. Thus, in our logistics example, agents can only hide the number of private locations that they control.

Definition 10 (Preserving object cardinality privacy). A planning algorithm preserves object cardinality privacy if for any agent and type \(t\in T\) the cardinality of private objects of type \(t\) can only be revealed during the planning process if it could have already been inferred from the local view prior to planning.

Clearly, generating the DP projection (Algorithm 2) does not violate the weak form privacy, in the sense that no private fact is shared between the agents. Theorem 1 shows that this process also preserves object cardinality privacy.

Theorem 1 (DP Projection Preserves object cardinality privacy). The process of generating the DP projection preserves object cardinality privacy, and sharing the DP projection in a planning algorithm does not break object cardinality privacy.
Experimental Results
We experimented with benchmarks from the 2015 CoDMAP competition (ˇStolba, Komenda, and Kovacs 2015).2 We run DPP on a 2.66 GHz machine with 4 cores and 8 GB of memory. Note that while the computer had multiple cores, we implemented DPP to run on a single core. DPP was implemented using the FastDownward (FD) planner (Helmert 2006) for the high-level planning and the FastForward (FF) planner (Hoffmann 2001) for extending high-level plans. FD was configured to use preferred operators, deferred heuristic evaluation, and two heuristics: FF and a landmark-based heuristic. This is a common configuration used also by the LAMA planner (Richter and Westphal 2010).

We compare DPP with the best performing and most relevant privacy-preserving planners: GPPP (Maliah, Shani, and Stern 2015), MAPlan/FF+DTG (an extension of the MAPS algorithm (Nissim and Brafman 2014) using the FF and DTG heuristics together), MAPR-p, PMR (Luis and Borrajo 2014), and PSM-VRD (Tozicka, Jakubuv, and Komenda 2015). Details on these planners can be found in the CoDMAP website. Details on these planners can be found in the CoDMAP website.

Table 1 presents the number of instances solved under a 30 minutes timeout over the CoDMAP instances.

<table>
<thead>
<tr>
<th>Domain</th>
<th>GPPP</th>
<th>MAPR</th>
<th>PMR</th>
<th>MAPPlan/FF+DTG</th>
<th>PSM-VRD</th>
<th>DPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>blocksworld</td>
<td>12</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>depot</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>13</td>
<td>17</td>
<td>19</td>
</tr>
<tr>
<td>driverlog</td>
<td>14</td>
<td>20</td>
<td>19</td>
<td>17</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>elevators</td>
<td>20</td>
<td>19</td>
<td>19</td>
<td>11</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td>logistics</td>
<td>20</td>
<td>19</td>
<td>0</td>
<td>18</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>rovers</td>
<td>19</td>
<td>19</td>
<td>20</td>
<td>12</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>satellites</td>
<td>18</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>sokoban</td>
<td>9</td>
<td>0</td>
<td>6</td>
<td>18</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td>taxi</td>
<td>20</td>
<td>0</td>
<td>19</td>
<td>20</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>wireless</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>4</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>woodworking</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>zenotravel</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>20</td>
<td>13</td>
<td>20</td>
</tr>
<tr>
<td>sum</td>
<td>184</td>
<td>139</td>
<td>147</td>
<td>197</td>
<td>167</td>
<td>224</td>
</tr>
</tbody>
</table>

Table 1: Coverage results for a timeout of 30 minutes over the CoDMAP instances.

Proof outline: The DP projection relies on the dependency tree for each public action a_t of agent i. Given a regression tree, one could add private objects of any type t and private actions that are parametrized by them such that they will not modify the number of true leaves, or the sequence of public actions in each true branch (see Example 0.2). Moreover, we could add any number of private objects of type t and private actions that would modify the number of leaves, yet each leaf in the new tree would contain the same set of public actions as a leaf in the original tree. In these cases, although the number of private objects was modified, the projection does not change.

Experimental Results
We further analyze the actual size of the DP projection and runtime of creating it (using Algorithm 2). We chose a challenging problem on each domain, and compute various metrics during the projection construction. Table 2 reports the size of the original problem, in terms of the number of public and private actions of all agents, and the number of actions in the projection. We further report the maximal depth of a regression tree in our experiments, as well as the time it took to compute the projection in seconds.

<table>
<thead>
<tr>
<th>Domain</th>
<th>Public</th>
<th>Action count</th>
<th>Private</th>
<th>Projection</th>
<th>Depth</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>blocks</td>
<td>2448</td>
<td>0</td>
<td>23256</td>
<td>2</td>
<td>0.057</td>
<td></td>
</tr>
<tr>
<td>depot</td>
<td>6134</td>
<td>0</td>
<td>74174</td>
<td>3</td>
<td>0.142</td>
<td></td>
</tr>
<tr>
<td>driverlog</td>
<td>56448</td>
<td>1248</td>
<td>1110720</td>
<td>2</td>
<td>2.66</td>
<td></td>
</tr>
<tr>
<td>elevators</td>
<td>768</td>
<td>112</td>
<td>447747</td>
<td>11</td>
<td>498.2</td>
<td></td>
</tr>
<tr>
<td>logistics</td>
<td>264</td>
<td>52</td>
<td>480</td>
<td>3</td>
<td>0.019</td>
<td></td>
</tr>
<tr>
<td>rover</td>
<td>1196</td>
<td>1642</td>
<td>1196</td>
<td>3</td>
<td>1.53</td>
<td></td>
</tr>
<tr>
<td>satellite</td>
<td>3139</td>
<td>42099</td>
<td>3139</td>
<td>2</td>
<td>19.9</td>
<td></td>
</tr>
<tr>
<td>sokoban</td>
<td>1856</td>
<td>0</td>
<td>4172</td>
<td>2</td>
<td>0.665</td>
<td></td>
</tr>
<tr>
<td>taxi</td>
<td>153</td>
<td>0</td>
<td>153</td>
<td>2</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>wireless</td>
<td>5814</td>
<td>0</td>
<td>113414</td>
<td>3</td>
<td>7.98</td>
<td></td>
</tr>
<tr>
<td>woodworking</td>
<td>8226</td>
<td>0</td>
<td>8226</td>
<td>2</td>
<td>0.168</td>
<td></td>
</tr>
<tr>
<td>zeno-travel</td>
<td>288</td>
<td>1098</td>
<td>1008</td>
<td>3</td>
<td>0.266</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Projection computation metrics over a large problem from each domain.

2http://agents.fel.cvut.cz/codmap/results/
the regression trees in this domain. Hence, this is the only domain in the set of benchmarks that poses a true challenge to the regression tree computation.

One way to reduce this is by using symmetries in the regression tree. For example, if we ignore the identity of passengers, and focus only on their number, we can learn more general regression trees faster. Another method for scaling up would be to use an approximate regression mechanism, by, e.g., regressing only one precondition at a time.

Conclusion

We presented the [dependency-preserving projection](#) (DP projection), a strong projection of a privacy preserving multi-agent problem onto a classical single-agent planning problem. Generating the DP projection is a collaborative process in which some information about private dependencies is shared while privacy is preserved. We showed that the DP projection also preserves a strong form of privacy in which the cardinality of private objects of a given type cannot be inferred by any adversary agent. The benefit of our DP projection is demonstrated in a planner that effectively uses the DP projection to solve more benchmark problems than any other state-of-the-art privacy preserving planner.

In the future we will evaluate the use of the DP projection as a heuristic for guiding the search of a complete solver, such as MAFS.

Acknowledgments: We thank the reviewers for their useful comments. This work was supported by ISF Grant 933/13, and by the Helmsley Charitable Trust through the Agricultural, Biological and Cognitive Robotics Center of Ben-Gurion University of the Negev.

References

