
Recursive Polynomial Reductions for Classical Planning

Jan Tožička, Jan Jakubův, Martin Svatoš, Antonı́n Komenda
{jan.tozicka, jan.jakubuv, martin.svatos, antonin.komenda}@agents.fel.cvut.cz

Agent Technology Center, FEE, CTU in Prague
Technická 2, 166 27 Praha 6, Czech Republic

Abstract

Reducing accidental complexity in planning problems is a
well-established method for increasing efficiency of classical
planning. Removal of superfluous facts and actions, and prob-
lem transformation by recursive macro actions are represen-
tatives of such methods working directly on input planning
problems. Despite of its general applicability and thorough
theoretical analysis, there is only a sparse amount of experi-
mental results.
In this paper, we adopt selected reduction methods from liter-
ature and amend them with a generalization-based reduction
scheme and auxiliary reductions. We show that all presented
reductions are polynomial in time to the size of an input prob-
lem. All reductions applied in a recursive manner produce
only safe (solution preserving) abstractions of the problem,
and they can implicitly represent exponentially long plans in
a compact form. Experimentally, we validate efficiency of the
presented reductions on the IPC benchmark set and show av-
erage 24% reduction over all problems. Additionally, we ex-
perimentally analyze the trade-off between increase of cover-
age and decrease of the plan quality.

Introduction

Classical planning problems are hard in general. Precisely,
the unbounded decision variant is PSPACE-complete for
grounded models as shown by (Bylander 1994). However,
some of the commonly used benchmark problems are easy,
that is polynomial in time to the size of the problem defini-
tion (Helmert 2003) and some special cases are even very
easy—linear in time (Slaney and Thiébaux 2001). Appro-
priate encoding of such problems is of high importance for
planning techniques which depend on hidden structures in
the planning problems. This “superfluous hardness” was de-
noted by (Haslum 2007) as accidental complexity, a term
borrowed from software engineering to denote removable
(as opposed to intrinsic) complexity in programs. Addition-
ally, his work showed how the complexity can be partially
reduced and how the reductions help to downsize some of
planning benchmarks.

The most prevailing approach to classical planning is cur-
rently state-space search with automatically derived heuris-
tics. Still, the most successful planners rely on preliminary

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

reduction of the planning problem by reachability analy-
sis, e.g., in (Hoffmann and Nebel 2001; Helmert 2006),
that is removal of a subset of actions which can be proven
to be inapplicable during the search. Reachability analysis
can dramatically reduce the size of the planning problem
thus increase efficiency of the following search. Problem re-
duction by reachability analysis is one of transition system
reduction techniques (Haslum 2007; Chen and Yao 2009;
Coles and Coles 2010; Nissim, Apsel, and Brafman 2012),
which are related to reductions by macro actions (describ-
ing sequences of actions) identified from the planning prob-
lem (Jonsson 2009; Bäckström, Jonsson, and Jonsson 2012).
Although these approaches were recently shadowed by the
tremendous advances in domain-independent heuristics, we
argue they can be beneficial for classical planning, espe-
cially as they can be used with any (black-box) planner.

Most of the problem reduction methods in literature
are based on graph representation of possible changes of
state facts by actions—domain transition graphs (Helmert
2006)—and causal influences among actions in the plan-
ning domain—causal graphs (Knoblock 1994; Bacchus and
Yang 1994). Both graphs represent mentioned hidden struc-
tures in the problems, technically projections of the planning
problems. We define presented reductions over complete de-
scription of a planning problem, therefore we do not “project
out” any information. As (Pochter, Zohar, and Rosenschein
2011), we represent the planning problem as a graph, how-
ever with different semantics. In our description, precondi-
tions and effects represent edges, not vertices and we do not
explicitly comprise planning variables as vertices, but we
use vertices for variable and value pairs.

We build on selected transition system reductions inspired
by (Haslum 2007) and by (Coles and Coles 2010), and add
a new action generalization scheme towards stronger prob-
lem reduction. This additional scheme reduces a pattern ir-
reducible by (Haslum 2007) or by (Coles and Coles 2010)
as it generalizes two actions by partial lifting. In contrast
to (Haslum 2007), where some of the reductions can be
exponential, we use only polynomial reduction schemes in
planning problem size. Despite this, our reduction schemes
can implicitly represent exponentially long plans in a com-
pact form (i.e., polynomially), as shown by (Bäckström
and Jonsson 2012) for recursive macros. That is we com-
bine principles of pure reduction (e.g., removing superflu-

Proceedings of the Twenty-Sixth International Conference on
Automated Planning and Scheduling (ICAPS 2016)

317

ous variables or actions) without any influence on the result-
ing plan with selected macro-like reductions (e.g., combin-
ing several actions into one) supplemented by action recon-
struction rules used for reconstruction of the resulting plan.
Similarly as (Haslum 2007), we praise benefits of possibility
to use a black-box planner, therefore our reduction schemes
are offline (in contrast to e.g., partial order reduction tech-
niques (Wehrle and Helmert 2012) which work online dur-
ing the search). In contrast to (Coles and Coles 2010) and
to (Wehrle et al. 2015), we do not target optimality preserv-
ing reductions, only correctness and completeness, i.e., safe
abstractions in terms of (Hoffmann, Kissmann, and Torralba
2014). We show the proposed set of reduction rules favor-
ably affects planning efficiency on an exhaustive set of con-
temporary planning benchmarks.

Formalism
Classical planning problems are often described by
STRIPS (Fikes and Nilsson 1971) where possible system
states are described by facts, and applicable actions are
described in terms of precondition and effect formulas. In
this work, we use Finite Domain Representation (FDR)
based on Multi-Valued Planning Task (Helmert 2006) and
SAS+ (Bäckström 1992) of planning problems, which is a
widely used equivalent of STRIPS. In FDR, system states
are described in terms of multi-valued variables, and actions
are described by precondition and effects on variable values.

An FDR planning problem Π is a quadruple Π =
〈V,A, I,G〉, where V is a finite set of domain variables,
A is a finite set of actions, I is the initial state, and G is
the goal condition. Every finite-domain variable v ∈ V is
associated with a finite domain dom(v) of possible values.
We consider pair-wise disjoint domains. An assignment is a
function from V0 ⊆ V such that every variable v ∈ V0 is
assigned a value from its domain dom(v). An action a is a
pair of assignments called in turn the precondition and the
effect. A state s is an assignment of all variables V . Finally,
the initial state I is a state, and the goal condition G is an
assignment.

Assignment t0 agrees with assignment t1 on V0 ⊆ V
when t0(v) = t1(v) for all v ∈ V0, provided both t0 and
t1 are defined on V0. Assignment t0 agrees with assignment
t1 when t0 agrees with t1 on all variables relevant to t0. Ac-
tion a = 〈pre, eff 〉 is applicable in state s iff pre agrees with
s. A state progression function γ(s0, a) is defined whenever
a is applicable in s0 and it yields the state s1 = γ(s0, a)
which agrees with eff which agrees with s0 on variables not
specified in eff . For an FDR problem Π = 〈V,A, I,G〉, a
plan π is a finite sequence of actions from A. The state pro-
gression function can be iteratively extended to γ�(s0, π)
defined on plans instead of actions. Plan π is a solution of
Π when γ�(I, π) is defined and agrees with G. Let sol(Π)
denote all solutions of problem Π.

We find it convenient to describe reductions of planning
problems in terms of full transition graphs (FTG). The full
transition graph FTG(Π) of problem Π is a directed graph
whose nodes are actions and all legal variable-value pairs.
For every action a = 〈pre, eff 〉 from Π, graph FTG(Π) con-
tains a precondition edge (〈v, x〉 → a) whenever pre(v) =

x, and it contains an effect edge (a → 〈v, y〉) whenever
eff (v) = y. Furthermore, FTG contains an implicit precon-
dition edge (〈v, x〉 ��� a) for every value x of variable v
whenever eff (v) is defined but pre(v) is not defined. A pre-
vail precondition edge is a precondition edge (〈v, x〉 → a)
such that there is no edge (a → 〈v, y〉) for any y.

Moreover FTG contains two additional special actions
initial (aI = 〈∅, I〉) and goal (aG = 〈G, ∅〉) actions. These
two actions can be used by any reduction instead of any other
action if it is not stated otherwise. The graph FTG(Π) is thus
uniquely determined by problem Π.

In an FTG, as opposed to causal graphs or domain tran-
sition graphs, no information is abstracted. Hence FTG
just provides an equivalent description of an FDR problem
which allows us to easily describe and implement all the re-
ductions.

Reduction Preliminaries

In this section we provide a formal ground for description
of polynomial FDR reductions. We formally define proper-
ties of polynomial reductions. We prove basic results con-
cerning recursive application of arbitrary polynomial reduc-
tions. Namely, that recursive application always terminates
(Lemma 1), and that the result of a recursive application can
itself be computed in polynomial time (Theorem 1).

An FDR reduction is characterized by preservation of
solvability and by instance size reduction. The instance size
covers not only variable and action count but also the sizes
of involved variable domains and number of preconditions,
effects and goal variables:

|Π| = |V |+ |vertices(FTG(Π))|+ |edges(FTG(Π))|
Definition 1. An FDR reduction ρ is a partial function from
FDR problems to FDR problems such that

1. Π is solvable if and only if ρ(Π) is solvable, and

2. it reduces the instance size, that is, |ρ(Π)| < |Π|, and

3. there is a solution extension function ←−ρ (π) such that←−ρ (π) ∈ sol(Π) for every solution π of ρ(Π).

The problem is irreducible (with respect to ρ) if ρ(Π) is
not defined.

A direct consequence of the above definition is that a com-
position, or a recursive application, of several reductions is
itself a reduction. Hence it is solution preserving. We define
polynomial reductions with respect both to problem reduc-
tion and solution extension.

Definition 2. FDR reduction ρ is polynomial when

1. ρ(Π) can be computed in time polynomial in |Π|, and

2. ←−ρ (π) can be computed in time polynomial in |π|.
We suppose that the computation of ρ(Π) terminates in

polynomial time even when ρ is not applicable to Π. That is
to say, the applicability of ρ to Π has to be decidable in time
polynomial in |Π|. For convenience, we define the reduction
relation → as follows.

318

0

1

k-1

| k|=0

.

.

.

0

1

k-2

k-1

k-1

k-2

1

0

.

.

.

1 sol(1)

0 sol(0)

k-1 sol(k-1)k-1

{ }=sol(k)

Figure 1: Recursive application of FDR reductions and
backward solution extension. Input problem Π0 is reduced
either to an irreducible or a trivially solved problem Πk. A
solution of Πk is then extended to a solution of the input
problem Π0.

Definition 3. Write Π0 → Π1 when there is a polynomial
reduction ρ such that ρ(Π0) = Π1. Let � be iterative appli-
cation of set of reductions ρ0, . . . , ρn defined by following
procedure 1:

repeat
for i ← 0 to n do

repeat
Π ← ρi(Π);

until Π has not changed;
end

until Π has not changed;

Different algorithms are possible. Their results can differ
because, in general, application of one reduction can disable
application of another reduction.

The reduction relation represents an arbitrary polynomial
reduction application. All the results from this section are,
however, also valid for an arbitrary reduction collection.
Transitive closure � represents recursive reduction appli-
cation. It suggests a natural method to find a solution of a
planning problem by reductions and backward extensions
depicted in Figure 1. We prove that recursive reductions al-
ways terminate.

Lemma 1. The reduction relation → is terminating, that is,
there is no infinite chain of reductions Π0 → Π1 → · · · .

Proof. Follows directly from the fact that reductions reduce
instance size (Def. 1) which is lower bounded by 0. More-
over, the length of that chain is limited by |Π0|.

When arbitrary polynomial reductions are applied recur-
sively, the resulting problem is always computed in polyno-
mial time. The following theorem formally states the claim.

Theorem 1. When Π0 � Π1 then Π1 can be computed from
Π0 in time polynomial in |Π0|.

1Here, we suppose that ρi(Π) = Π whenever ρi(Π) is not de-
fined.

Proof. From the proof of Lemma 1 follows that (1) every
reduction application can be computed in time polynomial
in |Π0|, and (2) the count of reductions in the sequence is
limited by |Π0|.

In contrast, a backward recursive plan extension does not
necessarily yield a polynomial function. The backward ex-
tension can be exponential in the size of a solution of Π1,
even in the instance size |Π0|. This happens naturally for
FDR problems whose solution sizes are exponential in the
instance size but it can happen even for problems with poly-
nomial solutions. We can only say that the plan extension is
polynomial in the size of the extended solution of Π0 as long
as there is no extension step that decreases the length of the
solution, which is the case of presented reductions.

Reductions

The previous section described polynomial reductions in
general. In this section we formally describe and prove cor-
rectness of three specific reductions. The first one, General-
ize Action (ρga), is novel, to the best of our knowledge, not
similar to any previously published reduction schemes. The
other two can be used to achieve similar results as (Haslum
2007) and (Junghanns and Schaeffer 2001). We proceed by a
discussion of related literature and conclude by a case study
taken from (Haslum 2007).

To describe reductions, we use a renaming operator which
changes the value of a variable in an assignment. Formally,
renaming [t]x→y of value x to value y in assignment t is the
assignment defined below.

[t]x→y(v) =

{
y iff t(v) = x

t(v) otherwise

Similarly, we define the delete variable operator [t]−v which
simply removes variable v from the domain of assignment t,
making the value t(v) undefined. And with the same nota-
tion the delete value operator [t]−x which removes a sin-
gle value x from the domain of the related variable, which
means that if t(v) = x then it makes t(v) undefined. The
operators are naturally extended to actions (applying the op-
erator to the precondition and to the effect) and to action sets
(element-wise).

Technically, the following definitions provide partial
function schemes which can be turned into functions by se-
lecting specific values for unbound parameters.

Reduction: Generalize Action (ρga)

Suppose a problem with variable v with a two-valued do-
main dom(v) = {x, y}. Let us have two actions which dif-
fer only in that the first requires value x and the second re-
quires value y as a prevail precondition. In this case, the ac-
tion can be generalized into one without any precondition
on the value of variable v. The backward solution expansion
changes the generalized action in a plan to one of the orig-
inal actions based on the current value of variable v. The
reduction, demonstrated in Figure 2, can be generalized for
n actions and an n-valued domain.

319

pos-plane1 city0

refuel plane1 city0 fl0 fl1

pos-plane1 city1

refuel plane1 city1 fl0 fl1

fuel-plane1 fl0

fuel-plane1 fl1

�

fuel-plane1 fl0

refuel plane1 fl0 fl1

fuel-plane1 fl1

(a) (b)

Figure 2: A novel Generalize Action (ρga) reduction demon-
strated on a part of the FTG of a Zenotravel benchmark
problem. Round boxes represent variable-value pairs (facts),
rectangles represent actions. Dotted edges represent possible
connections to other actions. Our reduction can recognize
that two refuel actions can be safely merged into one omit-
ting the information about position (the refuel action can be
executed in both cities). Hence pattern (a) can be reduced to
a simpler case (b) decreasing action count.

Definition 4. Reduction ρga is applicable to problem Π
when there is variable v with dom(v) = {x, y} and two
actions a1 and a2, such that FTG(Π) contains

1. a prevail precondition edge (〈v, x〉 → a1), and
2. a prevail precondition edge (〈v, y〉 → a2), and
3. it holds that [a1]x→y = a2.

Reduction ρga applied to Π = 〈V,A, I,G〉 yields

ρga(Π) = 〈V, (A \ {a1, a2}) ∪ {[a1]−v}, I, G〉
where variable domains are as in Π.

Theorem 2. Reduction ρga is a polynomial FDR reduction.

Proof. Let Π be given, and let x, y, v, a1, a2 be as in Def. 4.
Let a = [a1]−v . To avoid possible action confusion caused
by value renaming, let us suppose that actions are assigned
unique ids which are preserved by the reduction, and that
plans are sequences of these ids.

Suppose we have a solution π ∈ sol(Π). The solution π′
of ρga(Π) can be obtained from π by replacing all the occur-
rences of actions a1 and a2 by a in π. The other way round,
when a solution π′ of ρga(Π) is given, we can simulate plan
π′ in states of problem Π. When action a should be executed
in state s, we change it to a1 when s(v) = x, or to a2 when
s(v) = y. This procedure yields a solution π of Π and de-
scribes the plan extension function ←−ρga(π′).

Reduction ρga reduces an instance size because it removes
one action. Finally, the reduction is clearly polynomial be-
cause its applicability, application, and plan extension can
be computed in time linear to the input size.

Reduction: Merge Values (ρmv)

Reduction ρmv looks for two actions which, without other
side effects, switch between two different values of a vari-
able. Then, it merges both values and it removes the actions.

state working

break

state broken

repair � state working OR broken

(a) (b)

Figure 3: Example of ρmv reduction.

Figure 3 demonstrates this by reducing case (a) to (b). Solu-
tion expansion is achieved by inserting one of the removed
action where required.

This reduction is closely related to (Haslum 2007, The-
orem 1) which achieve similar results using abstraction by
deleting a variable which has a strongly connected free do-
main transition graph (Haslum 2007). A formal definition
and its correctness follow.

Definition 5. Reduction ρmv is applicable to problem Π
when there are values x, y of variable v, and actions a1,
a2, such that FTG(Π) contains

1. edges (〈v, x〉 → a1 → 〈v, y〉), and
2. edges (〈v, y〉 → a2 → 〈v, x〉), and
3. there are no other edges ingoing/outgoing a1 and a2.

Reduction ρmv applied to Π = 〈V,A, I,G〉 yields

ρmv(Π) = 〈V, [A \ {a1, a2}]x→y, [I]x→y, [G]x→y〉
where variable domains are as in Π, except for the dom(v)
from which the value x is removed.

Theorem 3. Reduction ρmv is a polynomial FDR reduction.

Proof. Similarly to the proof of Theorem 2. The solution
extension is done again by a simulation of plan π′ in states
of problem Π. When some action a without preconditions
fulfilled in the simulated state is encountered, it must be the
case that variable v has value x but value y is required (or
vice versa). Then we can insert action a1 or a2 prior to a to
change the value of v appropriately and continue with the
simulation.

There are cases reducible by (Haslum 2007) but not by
ρmv, and vice versa. ρmv can be applied when only some
of the variable values are strongly connected, which is not
possible by (Haslum 2007, Theorem 1). For practical rea-
sons, the reduction ρmv does not reduce all possible con-
nected components (composed of cycles of size larger than
two) in a free DTG, which do not often appear in the bench-
mark problems anyway. Generalized implementation of ρmv

towards full free DTG reduction would keep the polynomial
guarantees and is left for future work.

320

Reduction: Tunnel Macro (ρtm)

The reduction is related to tunnel macros from (Jung-
hanns and Schaeffer 2001) and to generalized tunnel macros
from (Haslum 2007, Theorem 2), which in general can lead
to an exponential number of added tunnel macros, therefore
does not necessarily reduce instance size nor is necessar-
ily polynomial. Our restricted case assures that the number
of added actions will be limited and thus the reduction will
follow the condition 2 of the Def. 1. First, we restrict the
number of the actions in the tunnel macro to 2. Second, we
allow the reduction only if the number of tunnel macros is
not larger than the number of the source actions in the prob-
lem Π.

The reduction looks for a variable value which is con-
sumed by actions with no side effects. Then, for each combi-
nation of an action producing the value and an action switch-
ing it to another value, the reduction creates a pair action
representing the tunnel macro. Provided that the number of
the pairs does not exceed the number of the source actions,
the reduction is used and the original actions and the value
are removed. Solution expansion is achieved by splitting the
tunnel macros to an ordered sequence of the actions in the
pair. The formal definition of the restricted tunnel macro re-
duction follows:
Definition 6. Reduction ρtm is applicable to problem Π
when there are values x, y1, . . . , yn of variable v, and two
sets of actions B,C for which |B| + |C| ≥ |B||C| holds,
such that FTG(Π) contains
1. edges bi → 〈v, x〉 → cj → 〈v, yj〉 for all bi ∈ B, cj ∈ C,
2. ∀j : x �= yj (x is always a non-prevail precondition),
3. there are no other edges ingoing/outgoing cj ∈ C, and
4. there are no other edges ingoing 〈v, x〉, and
5. at least one of following is true:

(a) there are no other edges outgoing 〈v, x〉, or
(b) |C| = 1 and there are no other edges ingoing 〈v, y1〉.

Reduction ρtm applied to Π = 〈V,A, I,G〉 yields

ρtm(Π) =

{
(5a) 〈V, [Atm \B]−x, [I]−x, [G]−x〉
(5b) 〈V, [Atm]x→y1 , [I]x→y1 , [G]x→y1〉

where Atm = (A\C)∪B×C, where each combined action
from the Cartesian product B × C merges separately pre-
conditions and effects, and variable domains are as in Π. In
the case of (5a) x value can be removed from dom(v) as it
is not used anymore.
Theorem 4. Reduction ρtm is a polynomial FDR reduction.

Proof. The solution extension is simply done by replacing
added macro actions by a pair of original actions. The re-
duction replaces all pairs of actions in the particular order
producing and consuming 〈v, x〉 (only a tractable number of
combinations is used), which cannot be interleaved by other
actions, by one combined action with join preconditions and
effects. The condition for non-prevail preconditions obviates
cases with repeated cj actions and, as the value 〈v, x〉 is re-
moved after adding the B × C combinations, the inconsis-
tencies in preconditions and effects are removed.

Reduction ρtm reduces an instance size, as the reduction
removes value 〈v, x〉 and is used only for sets of actions B
and C such that their Cartesian product is equal or smaller
than sum of original numbers of actions in both action sets
B and C.

The rather restrictive condition on the size of the actions
sets |B| + |C| ≥ |B||C| can be in practice relaxed to
|B| + |C| ≥ l, where l ≤ |B||C| is a reduced number of
needed tunnel macros for sets B and C. In some cases, sev-
eral tunnel macros can be removed as far as they are super-
fluous because of empty effects. For example, when action
cj is inverse to bi action, for some j and i. Such combi-
nations, unnecessary in the reduced problem, are increasing
|B||C| and can obviate use of the reduction.

Case Study: Binary Counter

We demonstrate an implicit polynomial representation of ex-
ponential plans on an simple example of a Binary Counter
taken from (Haslum 2007). A Binary Counter with n bits is
represented by an FDR problem with n variables b1,. . . ,bn

taking values from {0, 1} domains. Variables represent dif-
ferent bits, and actions inci (for 0 < i ≤ n) are de-
signed to increase the value stored by the bits by 1. Let
inc1 = 〈b1 = 0, b1 = 1〉 and inci = 〈prei, eff i〉 for i > 1
is defined as follows.

prei(bi) = 0 prei(bi−1) = 1 · · · prei(b1) = 1
eff i(bi) = 1 eff i(bi−1) = 0 · · · eff i(b1) = 0

Hence to change all the bits from 0’s to 1’s requires a plan
with 2n − 1 actions, that is, exponential in the size of this
FDR representation.

Using n applications of tunnel macro (ρtm) reduction, we
can reduce the Binary Counter FDR problem to a trivially
solved problem. These reductions iteratively use the condi-
tion (5b) of the definition of ρtm. In the first step, the C con-
tains only action inc1 which is the only action setting the
last bit to 1. After merging this action with all actions set-
ting this bit to 0 and after changing the respective variable
initial value to 1, we can see that the value of this variable
never changes and thus we can ignore it. Then we proceed
with the next bits in the same manner until only one variable
with a single value remains. This variable value is both in
the initial state and required by goal condition, thus empty
plan solves this reduced problem.

Suppose, we add decreasing actions deci, dual to inci,
to increase the plan-space size. Even with this additional
hassle, we can achieve the same result by n applications of
Merge Values (ρmv) reduction. Technically, we need also a
trivial “clean up” reduction which removes variables with a
one-valued domain (see ρrv in the next section).

The trivially solved problem obtained by the reductions,
together with a solution expansion method, can be seen as an
implicit polynomial representation of an exponential plan.
This representation can itself be computed in polynomial
time. Furthermore, the solution can be extended in an itera-
tive way, yielding next plan action in time polynomial to the
length of the current solution part.

321

Size Reduction [s] Extension [s] LAMA [s]
4 bits < 0.1 < 0.1 0.1
8 bits < 0.1 < 0.1 0.1

12 bits < 0.1 < 0.1 0.3
16 bits < 0.1 < 0.1 4.6
20 bits < 0.1 0.2 111.8
24 bits < 0.1 10.2 —
28 bits < 0.1 — —
32 bits < 0.1 — —

Table 1: Experimental results for a Binary Counter.

Table 1 shows experimental results for the Binary Counter
problem (with deci operators) for varied number of bits. Re-
duction is the time required for problem reduction, exten-
sion is the time of backward solution expansion, and LAMA
is the planning time of the state-of-the-art classical plan-
ner LAMA (Richter and Westphal 2010) (without any reduc-
tions). As expected, classical planner requires exponential
time to find the solution. On the other hand, the time needed
for the polynomial reduction phase is hardly measurable.
Even though the expansion time grows exponentially, it is
still substantially smaller than classical planner time.

The same effect could be achieved by a blind search with
duplicate detection, however still as the plans are exponen-
tially long the search will not end in polynomial time (sim-
ilarly as extension in Table 1). In case of the reductions ρtm
and ρmv used on the problem, the exponential plan will be
compactly represented and as the reductions are polynomial
such representation will be found in polynomial time (reduc-
tion in Table 1).

Auxiliary Reductions

This section provides informal description of other polyno-
mial reductions implemented in order to undertake experi-
ments described in the next section. Merge with Initial State
(ρmi) reduction is related to inevitable actions (Coles and
Coles 2010, Definition 3) applicable in the initial state. The
remaining reductions are basically “clean up” reductions
which simplify the problem after applications of previous
reductions. This can allow application of another reductions.

Several reductions use mutexes – pairs of values of differ-
ent variables that cannot be simultaneously assigned in one
state. We keep detected mutexes together with FTG to avoid
repeating calculations and update them when necessary. In
our implementation, we use simple method for mutex detec-
tion: two values of different variables are sure to be mutexed
if every operator setting one value always deletes the other
and when both these values are not in I .

Some of these reductions are already implemented in pre-
processing phase of many planners. Nevertheless, we do not
apply them on the original problem only, but also on reduced
problems which significantly boosts their effect.

Merge with Initial State (ρmi) reduction is applicable
when G does not agree with I , that is, when the problem is
not trivially solved and when the problem contains a unique
action a executable in the initial state I . If a is executed only
once, which is tested using simple sufficient but not neces-

sary condition that it consumes a value that is never pro-
duced but by I , we can apply this action to I and remove it
from the problem.

Merge Equivalent Actions (ρma) reduction allows to
merge two actions with equal set of incoming and outgoing
edges in an FTG. During the solution extension, the merged
action is changed back to any of the original actions.

Remove Variable (ρrv) reduction simply removes from
the problem all variables with a one-valued domain. This
value has to be set in the initial state and can not be changed.
All possible references to the removed variables are removed
from action preconditions as well.

Remove Unreachable Values (ρru) reduction detects un-
reachable variable values using delete-relaxation reachabil-
ity analysis. Detected unreachable values are removed from
the problem.

Remove Unreachable Operators (ρro) reduction deletes
unreachable operators whose preconditions are in a mutex.

Remove Dead Ends (ρrd) reduction removes from the
problem value x of variable v such that 〈v, x〉 has no out-
going edges in the FTG, and either G(v) is undefined or
G(v) �= x, and I(v) �= x. An exception is the case when
there is an action a and another value x �= y ∈ dom(v) such
that the FTG contains edges (〈v, y〉 → a → 〈v, x〉). Re-
moving value x might lead to a wrong repeated application
of a in the reduced problem.

Ground Operator Preconditions (ρgv) grounds free pre-
conditions if their values can be determined. More specifi-
cally it tries all possible values and if all but one value is in
mutex with some other precondition then this only possible
value is used.

Ground Simple Operator (ρgr) removes implicit pre-
conditions 〈v, .〉 ��� a of operator with only one effect
a → 〈v, x〉. If variable v contains only two values, i.e.
|dom(v)| = {x, y}, then we can replace both implicit pre-
conditions by a single precondition 〈v, y〉 → a, because the
precondition 〈v, x〉 → a would lead to an action with no
effect.

Experiments

We evaluate the impact of the presented polynomial reduc-
tions on contemporary IPC benchmarks from the determin-
istic track. Each experiment run on E5420 2.5GHz proces-
sor, 2GB RAM with a 5 min limit. The benchmarks contain
total 660 problems from 44 different domains. We start by
analysis of reducibility of the benchmark problems. Then we
evaluate the impact of reductions on classical heuristics used
by greedy best-first search, concentrating on total number of
solved problems (coverage) and runtime. Finally, we present
the impact of the reductions on the LAMA planner featur-
ing combination of planning techniques as multi-heuristic
search, preferred operators, and others. All presented exper-
iments use the Fast Downward planning system2.

Table 2 shows average instance size reductions of bench-
mark problems. We can see that problems in 5 domains were

2http://www.fast-downward.org/

322

Domains Mostly used reductions Reduction

Completely Reduced

gripper ρtm(376), ρga(89), ρmv(23) 100 %
logistics98 ρmv(3055), ρrv(34) 100 %
logistics00 ρmv(114), ρrv(4) 100 %
miconic ρgr(31), ρmv(30), ρrv(16) 100 %
zenotravel ρmv(196), ρga(53), ρrv(6) 100 %
Mostly Reduced >50%

rovers ρma(463), ρmv(348), ρrv(189) 95.5 %
satellite ρmv(435), ρgr(413), ρrv(202) 94.0 %
parcprinter11 ρga(265), ρrv(203), ρgv(113) 60.9 %
parcprinter08 ρga(134), ρrv(83), ρgv(37) 53.7 %
Slightly Reduced 10 – 50%

tpp ρma(1506), ρmv(30), ρrv(5) 46.7 %
tidybot11 ρgv(954), ρrv(47) 44.0 %
woodworking11 ρgv(3800), ρma(830), ρga(81) 36.1 %
driverlog ρmv(91), ρga(24), ρgv(12) 27.0 %
floortile11 ρgv(106), ρmv(2), ρrv(2) 26.4 %
woodworking08 ρgv(1840), ρma(170), ρga(45) 23.1 %
airport ρgv(1503), ρrv(24) 11.6 %
Almost None Reduction <10%

blocks, depot, elevators08, elevators11, freecell, openstacks,
parking11, psr-small, scanalyzer08, scanalyzer11, sokoban08,
sokoban11, storage, transport08, transport11, trucks, visitall11
No Reductions

barman11, mystery, no-mprime, no-mystery, nomystery11, open-
stacks08, openstacks11, pegsol08, pegsol11, pipesworld-notankage,
pipesworld-tankage
Overall Average Reductions 24.2 %

Table 2: Reducibility of benchmark problems.

completely reduced3. Problems of four domains were sig-
nificantly simplified and the average problem reduction was
24.2%. Numbers in parentheses show number of applica-
tions of mostly used reductions averaged per problem. In
most cases, the reduction is calculated within a fraction of
a second and only for the biggest instances it takes few sec-
onds, which is always a fraction of time required by trans-
late step of the Fast Downward system.

Figure 4 shows relative importance of reductions in dif-
ferent domains. The importance is calculated as relative de-
crease in reduction when the respective reduction is dis-
abled. The merge values reduction ρmv seems to be the most
useful of the reductions but even other reductions help in
several domains. The graph also shows that the auxiliary
reductions do more than just cleaning after applications of
main reductions and in some cases they significantly reduce
the problem on their own. In these cases, dead end ρrd and
reachability analyses ρru, ρro helped the most.

Table 3 shows an impact of the reductions on the total cov-
erage of three selected planners without and with (columns
�) reductions together with the ratio of costs of created so-
lutions4. For evaluations, we used greedy best-first search

3Solution of completely reduced problem is an empty plan
which can be directly extended to the solution of the original prob-
lem and thus no execution of the classical planner is required.

4Action costs are not directly addressed by the reductions.

0

0.2

0.4

0.6

0.8

1
tm
g a
mv

Figure 4: Relative importance of reductions. Gray area rep-
resents auxiliary reductions.

with (1) hmax heuristic and (2) hadd heuristic (Bonet and
Geffner 1999), and (3) hFF heuristic (Hoffmann and Nebel
2001). We can see that reductions help all heuristics to in-
crease the coverage while the average decrease in solution
quality is reasonable. In few domains, the decrease in solu-
tion quality is significant, the worst results are for Zenotravel
domain (solution cost is up to 3.5 times higher). The gen-
erated solutions contain many sequences of flying around
a city to consume fuel and then refuelling to certain level
which is required to fly to next city. Nevertheless, these in-
efficiencies could be detected and removed in many cases
by simple linear checking of repeating states in the solution
which indicate action loops. On the other hand, we can see
that the solution found on a reduced problem has been oc-
casionally extended to a solution shorter than that found by
the heuristics search itself.

Figure 5 compares the runtimes. For each problem, a point
is drawn at the position corresponding to the runtime with-
out reductions (x-coordinate) and the runtime with reduc-
tions (y-coordinate). Hence problems below the diagonal
were solved faster with reductions. Notable are the problems
at the right edge which were solved with reductions but not
without. For all the problems, the reduction/expansion times
are included in the runtime. In theory, a decreased instance
size promises a runtime decrease. As the evaluation shows,
in practice, it is not always the case.

Reductions with Multi-Heuristic Search

Table 4 shows how reductions affect the performance of a
state-of-the-art planner LAMA (Richter and Westphal 2010).
We can see that reductions overall help LAMA planner even
though in many domains the coverage decreases. In most
cases, it is caused by the Ground Operator Preconditions ρgv
reduction which seems to hurt the landmark heuristics used
by LAMA. We can observe a correlation between the do-
mains in Table 4 and a smaller reduction ratio: 11 out of
17 domains are Almost None Reduction cases. The reason
for that is that both LAMA and LAMA with reductions were
able to solve all instances of at least Slightly Reduced do-
mains not mentioned in Table 4. It seems that it is caused
by heuristics which LAMA combines. They seem to help in

Newly added action simply copies the cost of a removed action.

323

0.1 1 10 100
0.1

1

10

100

hmax [s]

hm
ax

w
ith

R
ed

uc
tio

ns
[s

]

0.1 1 10 100
0.1

10

100

hadd [s]

1

ha
dd

w
ith

R
ed

uc
tio

ns
[s

]

0.1 1 10 100
0.1

10

100

FF [s]

1FF
w

ith
R

ed
uc

tio
ns

[s
]

Figure 5: Runtime evaluation (logarithmic axes) of greedy best-first search with different heuristics (hmax, hadd, hFF) with and
without reductions with action costs. Problems with unit costs produce similar results.

Normal Action Costs Unit Action Costs

Domains hmax � % hadd � % hFF � % hmax � % hadd � % hFF � %
gripper 6 15 1.35 15 15 1.04 15 15 1.34 6 15 1.35 15 15 1.35 15 15 1.04
logistics00 12 15 1.19 15 15 1.21 15 15 1.34 12 15 1.19 15 15 1.19 15 15 1.21
logistics98 3 15 1.32 12 15 1.36 11 15 1.40 3 15 1.32 12 15 1.32 11 15 1.36
miconic 6 15 1.82 15 15 2.29 15 15 2.40 6 15 1.82 15 15 1.82 15 15 2.29

zenotravel 8 15 3.00 15 15 3.45 15 15 3.39 8 15 3.00 15 15 1.06 15 15 3.45

rovers 2 7 1.50 9 15 1.93 9 15 1.86 2 7 1.50 9 15 1.08 9 15 1.93
satellite 2 5 1.72 12 15 2.43 10 15 2.40 2 5 1.72 12 15 0.83 10 15 2.43

parcprinter11 1 5 1.00 10 12 1.00 5 14 1.02 5 9 1.00 15 15 1.50 15 15 1.06
parcprinter08 8 9 1.00 11 14 1.01 11 15 1.02 9 13 1.00 15 15 1.00 15 15 1.00
tpp 4 4 1.04 9 14 1.17 8 14 1.30 4 4 1.04 9 14 1.20 8 14 1.17
tidybot11 3 4 1.00 10 13 1.00 9 10 1.01 3 4 1.00 10 13 1.03 10 10 1.00
woodworking11 1 1 0.93 9 10 1.04 9 11 1.06 1 1 1.00 2 2 0.99 3 3 1.00
driverlog 10 11 1.31 13 15 1.11 13 14 1.19 10 11 1.31 13 15 1.31 13 14 1.11
floortile11 9 8 1.63 4 7 1.42 6 7 1.43 6 9 1.04 3 6 0.83 3 6 0.98
woodworking08 5 6 1.02 12 14 1.09 13 14 1.08 3 3 1.00 6 7 1.09 6 7 1.00
airport 8 8 1.00 11 7 1.00 9 10 0.97 11 7 1.00 11 7 1.00 10 9 1.00
Total (660) 262 317 1.19 418 452 1.24 407 475 1.26 257 318 1.16 434 484 1.24 463 511 1.23

Table 3: Impact of polynomial reductions on the coverage and on solution quality (column %) of greedy best-first search with
different heuristics (hmax, hadd, hFF) with normal action costs and with unit action costs (most reduced domains).

some situations we solve by reductions (which also partially
holds for hadd and hFF).

Figure 6 evaluates the impact of reductions on runtime
of LAMA planner. Most of the problems notably above the
diagonal are from the sokoban domain where we can see
also decrease in coverage.

Conclusions and Future Work

Besides reformulation of polynomial reduction rules from
literature, we proposed a reduction scheme for action gen-
eralization and several auxiliary reductions. On a classical
example of Binary Counter, we showed that a class of prob-
lems with exponentially long plans can be solved by our
polynomial reductions as well. On contemporary standard
benchmark domains, we have experimentally shown that the
reduction rules used in recursive manner improves efficiency
of planners using different heuristics and search schemes.

Recently, planners based on a general purpose SAT solver
often outperform state-space search based planners (Rinta-
nen 2012). We suppose that during the translation of plan-
ning problem into the SAT problem or during the SAT solv-

ing itself, similar operations to presented reductions are per-
formed and thus the improvement in coverage is expected to
be lower than in the case of state-space search. The verifi-
cation of this hypothesis and more detailed analysis of the
relation between reductions and SAT solver operations are
also part of our future work.

During analysis of the reduced problems, we have noticed
that in some problems, the reductions can reveal symmet-
ric and (reasonably) decoupled sub-problems. Further anal-
ysis and utilization of techniques as (Shleyfman et al. 2015;
Wehrle et al. 2015) and (Gnad and Hoffmann 2015) on (par-
tially) reduced problems are left for future work.

Acknowledgments

This research was supported by the Czech Science Founda-
tion (no. 13-22125S and 15-20433Y) and by the Ministry of
Education of the Czech Republic within the SGS project (no.
SGS13/211/OHK3/3T/13). Access to computing and stor-
age facilities owned by parties and projects contributing to
the National Grid Infrastructure MetaCentrum, provided un-
der the program ”Projects of Large Infrastructure for Re-

324

Domains LAMA � %
airport 9 8 1.00
depot 14 15 1.07
floortile11 2 5 0.91
freecell 13 14 1.07
parcprinter08 12 14 0.96
parcprinter11 10 14 1.00
satellite 13 14 2.24

scanalyzer08 13 12 1.00
scanalyzer11 13 12 1.00
sokoban08 14 11 1.05
sokoban11 13 10 1.04
storage 10 9 1.09
tidybot11 12 10 0.96
transport08 14 15 2.45

transport11 8 15 2.56

trucks 6 7 0.94
visitall11 4 5 1.00
Total (660) 554 564 1.31

Table 4: Impact of polynomial reductions on the coverage of
LAMA planner (domains where the coverage differs).

0.1 1 10 100
0.1

10

100

Lama [s]

1

La
m

a
w

ith
R

ed
uc

tio
ns

[s
]

Figure 6: Runtime evaluation (logarithmic axes) of LAMA
with and without reductions.

search, Development, and Innovations” (LM2010005), is
greatly appreciated.

References

Bacchus, F., and Yang, Q. 1994. Downward refinement and
the efficiency of hierarchical problem solving. AI 71(1):43–
100.
Bäckström, C., and Jonsson, P. 2012. Algorithms and limits
for compact plan representations. JAIR 44:141–177.
Bäckström, C.; Jonsson, A.; and Jonsson, P. 2012. Macros,
reactive plans and compact representations. In Proc. of
ECAI’12, 85–90.
Bäckström, C. 1992. Equivalence and tractability results for
SAS+ planning. In Proc. of KR’92, 126–137.
Bonet, B., and Geffner, H. 1999. Planning as heuristic
search: New results. In Proc. of ECP’99, 360–372.
Bylander, T. 1994. The computational complexity of propo-
sitional STRIPS planning. AI 69(1-2):165–204.

Chen, Y., and Yao, G. 2009. Completeness and optimal-
ity preserving reduction for planning. In Proc. of IJCAI’09,
1659–1664.
Coles, A., and Coles, A. 2010. Completeness-preserving
pruning for optimal planning. In Proc. of ECAI’10, 965–
966.
Fikes, R., and Nilsson, N. 1971. STRIPS: A new approach
to the application of theorem proving to problem solving. In
Proc. of IJCAI’71, 608–620.
Gnad, D., and Hoffmann, J. 2015. Beating LM-Cut with
hmax (sometimes): Fork-decoupled state space search. In
Proc. of ICAPS’15, 88–96.
Haslum, P. 2007. Reducing accidental complexity in plan-
ning problems. In Proc. of IJCAI’07, 1898–1903.
Helmert, M. 2003. Complexity results for standard bench-
mark domains in planning. AI 143(2):219–262.
Helmert, M. 2006. The fast downward planning system.
JAIR 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. JAIR 14:253–
302.
Hoffmann, J.; Kissmann, P.; and Torralba, Á. 2014. Dis-
tance? Who cares? Tailoring merge-and-shrink heuristics to
detect unsolvability. In Proc. of ECAI’14, 441–446.
Jonsson, A. 2009. The role of macros in tractable planning.
JAIR 36:471–511.
Junghanns, A., and Schaeffer, J. 2001. Sokoban: Enhancing
general single-agent search methods using domain knowl-
edge. AI 129(1-2):219–251.
Knoblock, C. A. 1994. Automatically generating abstrac-
tions for planning. AI 68(2):243–302.
Nissim, R.; Apsel, U.; and Brafman, R. 2012. Tunneling and
decomposition-based state reduction for optimal planning.
In Proc. of ECAI’12, 624–629.
Pochter, N.; Zohar, A.; and Rosenschein, J. S. 2011. Exploit-
ing problem symmetries in state-based planners. In Proc. of
AAAI’11, 1004–1009.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. JAIR
39(1):127–177.
Rintanen, J. 2012. Planning as satisfiability: Heuristics. AI
193:45–86.
Shleyfman, A.; Katz, M.; Helmert, M.; Sievers, S.; and
Wehrle, M. 2015. Heuristics and symmetries in classical
planning. In Proc. of AAAI’15, 3371–3377.
Slaney, J. K., and Thiébaux, S. 2001. Blocks world revisited.
AI 125(1-2):119–153.
Wehrle, M., and Helmert, M. 2012. About partial order
reduction in planning and computer aided verification. In
Proc. of ICAPS’12, 297–305.
Wehrle, M.; Helmert, M.; Shleyfman, A.; and Katz, M.
2015. Integrating partial order reduction and symmetry
elimination for cost-optimal classical planning. In Proc. of
IJCAI’15, 1712–1718.

325

