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Abstract

We introduce a multi-agent route planning problem for col-
lecting sensor data in hostile or dangerous environments
when communication is unavailable. Solutions must consider
the risk of losing robots as they travel through the environ-
ment, maximizing the expected value of a plan. This requires
plans that balance the number of agents used with the risk
of losing them and the data they have collected so far. While
there are existing approaches that mitigate risk during task as-
signment, they do not explicitly account for the loss of robots
as part of the planning process. We analyze the unique prop-
erties of the problem and provide a hierarchical agglomera-
tive clustering algorithm that finds high value solutions with
low computational overhead. We show that our solution is
highly scalable, exhibiting performance gains on large prob-
lem instances with thousands of tasks.

Introduction

We introduce a collection planning problem with attrition
risk that includes a risk of losing agents during execution as
part of the planning process. Collection tasks require agents
to collect sensor data at a location and then return to a base
location in order to complete the task. The objective is to
maximize the expected value of the completed tasks, taking
into account the path chosen for each agent and the potential
for losing agents. The problem definition does not specify
how many agents to dispatch and does not require that all
tasks are completed, both of which are often assumed by
similar problems. The value of a solution is determined by
the probability of successful collection (and return) of the
sensor data, the probability of losing each robot, and the rel-
ative value of the individual agents with respect to the tasks
being performed. In some cases, where the risk is too high
or the asset is highly valued, doing none of the tasks is opti-
mal. This intuitive concept is unique among task allocation
problems, that often seek to minimize the cost of completing
all tasks.

This work derives from diverse bodies of work in Multi-
Robot Task Assignment (MRTA) (Gerkey 2004) and Vehicle
Routing Problems (VRP) (Pillac et al. 2013). These fields,
while having been generally distinct in their definitions and
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solution concepts, have common goals. Both seek to mini-
mize or maximize some objective function while providing
a plan that achieves all of the specified tasks. In almost all
cases, the number of agents to be used is specified a pri-
ori, and the expectation is that all tasks will be completed
as part of a valid solution. Additionally, there is an assump-
tion that all specified tasks are to be completed as part of a
valid solution. The collection planning problem introduced
here relaxes these constraints, providing a number of unique
challenges and motivating new solution methods.

To illustrate our problem, consider a team of hunters gath-
ering food for their village from a surrounding landscape
that contains dangerous predators. Any food that is col-
lected must be carried back to the village by the hunter, so
if the hunter is killed by a predator then nothing gathered by
that hunter is returned. There are a number of hunting lo-
cations that are known to have food available, and we wish
to maximize the amount of food gathered without unnec-
essarily exposing the hunters to danger. Sending someone
out to gather one rabbit may not be worth the risk of los-
ing a skilled hunter en route, but sending her out to visit all
of the hunting sites has a high likelihood of encountering a
predator along the very long route. We seek an allocation of
hunters to ordered sets of sites that will find a balance be-
tween the expected amount of food returned to the village,
and the risk of losing the hunters.

In general, risk-based allocation seeks to minimize the
chance of losing one or more things of value. There is
work in both the MRTA and VRP communities that include
a notion of risk mitigation. MRTA algorithms are often re-
silient against the loss of agents during execution (Choi et
al. 2009), but their planning process does not explicitly
consider minimizing the effects of threats. Risk has been
modeled in a number of ways; uncertainties on cost of task
completion (Kang and Ouyang 2011) (Hazon et al. 2013),
uncertainty of travel cost on edges (Nikolova et al. 2006),
and adding risk as a cost constraint to be optimized (Erkut
and Verter 1998) (Talarico et al. 2013). However, these ap-
proaches do not consider the expected loss of vehicles as
part of the planning process.

This work is has a number of similarities with existing
work in robustness for multi-robot systems (Krieger and Bil-
leter 2000), where the goal is to minimize the risk of mission
failure. However, this is often not the primary objective be-
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ing measured, but rather an additional constraint to be an-
alyzed. When the goal is to maximize utility, also referred
to as soft goals, there are also ways to recompile a problem
definition to make finding solutions more tractable (Keyder
and Geffner 2009). Such approaches rely on a logical defi-
nition of a problem space, which can be difficult to engineer
from a problem defined in a continuous space.

Our solution methods, referred to as Progressive Risk-
aware Clustering (PRC), uses hierarchical agglomerative
clustering to generate plans for groups of robots to com-
plete a set of collection tasks with the risk of attrition. Clus-
tering is a common method for solving multi-agent routing
problems, often used to generate initial solutions to guide
the search process. The overwhelming majority of cluster-
ing solutions are intended for problems with a known num-
ber of agents (Campbell et al. 2008) (Zhang et al. 2010)
(Lagoudakis et al. 2004) (Boctor et al. 2003). This is not the
first work to use hierarchical clustering to find task group-
ings (Sabo et al. 2014), but we do not specify the number of
agents to be used.

In the next section, we provide a definition for the Collec-
tion Planning Problem with Attrition-Based Risk (CPPAR)
and provide examples that illustrate the unique aspects of
this problem. We motivate solutions that use a variable num-
ber of agents and show the conditions under which agents
will choose to not complete some or all of the proposed
tasks. Then, we introduce our Progressive Risk-aware Clus-
tering algorithm, which generates multi-agent plans using a
form of hierarchical agglomerative clustering. Finally, we
provide experimental results using our algorithm on a range
problem instances.

Background

A task allocation problem specifies a nonempty set of agents
A = {a1, a2, ..., an} and a nonempty set of tasks T =
{t1, t2, ...tm}. The goal is to find a matching of tasks to
agents that maximizes a global reward function. The reward
function is assumed to be a sum of local rewards, with the lo-
cal reward begin determined by the tasks assigned to a single
agent. We adopt an objective function similar to that found
in (Choi et al. 2009),

max
n∑

i=1

⎛
⎝

m∑
j=1

cij(xi, pi)xij

⎞
⎠ , (1)

where cij is the score for agent i completing task j, and
xij = 1 if agent i is assigned to task j and 0 otherwise. The
vector xi ∈ {0, 1}m is the set of tasks assigned to agent i
where the jth element is xij . The vector pi ∈ (T ∪ {∅})|T |
is an ordered sequence of tasks assigned to agent i, and the
kth element is j ∈ T if agent i executes task j at the kth
point within the path.

We assume each task ti ∈ T has an associated location
vi ∈ V in 2-dimensional space. Additionally, we specify the
location of the base b, where the agents start. This yields the
full set of all location vertices V = {b, 0, 1, ...,m}. We are
also given a set of edgesE = {eij = (i, j) : i �= j and i, j ∈
V }. Each edge eij has a non-negative distance represented

as d(eij), or dij for short . We can represent this structure
as a graph G =< V,E >.

Collection Planning Problem with Attrition Risk
(CPPAR)

Planning for collection adds the additional constraint that
each task in T = {t1, t2, ...tm} is a collection task, requir-
ing the agent collect a sensor reading from the task location
and return it to the start location. Additionally, the environ-
ment has inherent dangers that may, with some probability,
disable or destroy the agent. A task is considered complete
only when the sensor data from the associated location is
delivered to the base station. Because we are providing an a
priori plan, if an agent is disabled during the execution of a
path, all tasks {t1, ..tk} on the path will remain incomplete.
All gathered data is lost with the platform and the remaining
sensor data on the path is never collected.

The probability of the agent surviving an edge traversal
is ps(eij), and each edge has an independent probability of
survival. Each edge is a series of events, with a probability
of successfully traversing the edge as a cumulative proba-
bility over traversing a collection of unit length segments in
sequence. Let ψ be the probability of successfully travers-
ing a unit distance. For an edge eij with distance dij , the
probability of successfully traversing the entire edge is

ps(eij) = ψdij (2)

such that limdij→∞ ps(eij) = 0. The value used for ψ
may be derived from a number of sources: hardware failure
during operation of the vehicle, the platform may become
unreliable after repeated use, or threats may exist that can
destroy the vehicle. While we use discrete distance values
in our examples, this formulation also applies to continuous
distances.

Consider a path for agent ai, πi =
(b, eb1, v1, e12, ..., vj , ejk, vk, ekb, b). The task expected
value of the single agent path is defined as

Et(πi) =
∏

ejk∈πi

ps(ejk)
∑
vp∈πi

cap. (3)

where cik is the score for agent ai completing the task k.
Intuitively, the expected value of the path is the probability
of successfully traversing the entire path times the sum over
the scores for agent ai completing each of the tasks in the
path. In the multi-agent case, the objective is to maximize
the expected value over all agents. Given a set of agent paths
πi ∈ Π, the overall expected task value is

Et(Π) =
∑
πi

Et(πi). (4)

To maximize Et(Π), we must find an assignment of tasks
among agents that maximizes the sum over their individual
expected value. This requires ensuring that the distance of
the path traveled by each agent through their assigned tasks
is also minimized. The result is a trade-off between how
many agents are used, how long their paths are, and the or-
dering of the tasks within each path.
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Including Asset Value

While task completion is an important objective, we must
also consider the relative value of the assets being deployed.
Failure to complete a path not only loses the value of the
assigned tasks, but also the asset itself. We use θi to rep-
resent the asset value for agent ai, which may represent the
cost of manufacturing the vehicle, the relative abundance or
scarcity of the platform, or an external force, such as needing
the platforms for another mission the next planning cycle.

In general, θ provides the value of the platforms with re-
spect to the value of the tasks being completed. For exam-
ple, consider a sophisticated aircraft piloted by agent ai with
a suite of expensive sensors. This aircraft has a high cost to
manufacture, and sending it into a contested environment
needs to be justified. If there is a single, low-value task lo-
cated deep within dangerous territory, it’s likely not worth
sending the platform. Such a platform would have a very
large θi value. However, we may also have the option of us-
ing low-cost, expendable platforms that can be sacrificed to
complete a task, which would be indicated by a low θi value.
The attrition-based expected value for a path is

E(πi) =
∏

ejk∈πi

ps(ejk)
∑
vp∈πi

cip− θi · (1−
∏

ejk∈πi

ps(ejk)).

(5)
This considers not only the expected value of the tasks,

but also the probability and value of losing the asset con-
trolled by the agent. As the path length increases, the prob-
ability of successfully completing the k tasks on the path
decreases, and the probability of losing the asset of value
θa increases. This results in a function that varies based on
the number of tasks on an agent’s path, the distance they
are from the base, and the distance of the path between the
tasks being collected. Similarly to Equation 4, we define the
overall expected value for the set of all agent paths as

E(Π) =
∑
πi∈Π

E(πi). (6)

When θ = 0 for all agents, meaning the assets are expend-
able, the best solution is to send one asset to collect on each
task location. This minimizes the distance traveled to collect
on each task, which also minimizes the risk of not complet-
ing that task. On the other hand, if θ is very large, the assets
may not worth risking to collect on any task. This can yield
valid solutions that perform none of the tasks. Examples of
the effects of θ are given in the following sections.

Effects of Number of Tasks

In the general case, where tasks have an arbitrary location,
it can be difficult to show how the length of an agent path
effects the expected value for an agent. Distances between
tasks and the base can vary, and minor differences can yield
significantly different solutions. If an agent is visiting a set
of tasks, the value of that path is determined by the relative
location of the tasks in the space and the order of tasks vis-
ited. Ideally, the path chosen is the shortest path visiting all
tasks, which is equivalent to solving an instance of the trav-
eling salesperson problem on a subset of problem vertices.

Figure 1: Example single agent problem with 6 tasks 1km
apart on a 1km unit circle (left). An optimal plan will visit a
series of adjacent tasks in order before returning to the base.

In order to isolate the effects of the number of tasks on
expected value, we first present a trivial example with one
agent and tasks evenly space on a 1 kilometer unit circle
(with u = 1 km), shown in Figure 1. Because the distances
between tasks are equal, the only decision is to determine
how many tasks to visit before returning to the base.
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Figure 2: For the example in Figure 1, when ψ = 0.85
the number of tasks in the highest value assignment (filled
boxes) depends on the asset value, θ (top). As the distance
of the tasks from the base is increased (when θ = 2), the
value of completing the tasks is reduced by increased risk to
the asset (bottom). The line plotted between these discrete
points is included for clarity.

In Figure 2, we show the resulting expected value for an
agent plan with an increasing number of tasks from the ex-
ample in Figure 1. Because of the equidistant layout, the
order of the tasks visited does not effect the distance of the
path. As the value of θ is increased, the number of tasks that
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should be collected is reduced. This is due to the additional
risk incurred by the length of the path, which exposes the
agent to more opportunities to be destroyed. If θ is large
enough, the best course of action is to collect on zero tasks
and remain at the base.

We also show the effects of task distance from the base,
which can be thought of as increasing the radius of the ring
of tasks in Figure 1. In this case, while the value of the tasks
is reduced by the additional travel distance, the number of
tasks that maximizes the expected value remains the same.
However, if the distance of the tasks is too far, it is not worth
incurring the risk of traveling to and from the tasks and the
agent remains at the base.

Multi-Robot Interaction

When we are solving for more than one agent, we must con-
sider the joint expected value over all agents. The subset of
tasks that would maximize the expected value for one agent
may not be the best subset to choose when there are other
agents available. As with the single-agent case, the value
of a solution is affected by the distance between tasks, their
distance from the base, and the value of the asset.

To illustrate the effects of θ on multi-agent plans we pro-
vide another simple example, shown in Figure 3, with a base
and 3 collection tasks. The labeled edges indicate the dis-
tance between tasks in kilometers, and the probability of
survival per unit moved is ψ = 0.8. The goal is to gener-
ate an assignment of up to three agents that maximizes the
expected value.

Figure 3: Example set of 3 tasks, denoting the distance be-
tween task locations. The probability of survival per unit
traveled is ψ = 0.8. The objective to to find an assignment
of up to 3 agents that maximizes the expected utility.

In Figure 4, we show three possible assignments using a
different number of agents. We also include the empty as-
signment, ∅, in which no agents are assigned to any tasks.
These are only a subset of all possible assignments, but they
are useful to demonstrate the effects of different asset val-
ues. We consider four scenarios with different platforms
of increasing value, with each having the same value of θ
drawn from {0, 1, 2, 3}. In Table 1 we provide the resulting
expected value for each assignment for different values of θ,
with the best choice shown in bold.

When the assets have no value (θ = 0), the user is will-
ing to risk losing them to maximize collection. In this case,
the optimal solution is to always assign one agent to each
task, as it will minimize the risk of any one task not being

Figure 4: Three possible path allocations of agents to tasks.

Task Assignment

θ (Asset Value) A1 A2 A3 ∅
0 (Expendable) 1.69 1.28 1.02 0
1 (Low Value) 0.38 0.56 0.54 0

2 (Medium Value) -0.93 -0.16 0.05 0
3 (High Value) -2.24 -0.88 -0.44 0

Table 1: Task assignment with the maximum expected value
for varying asset value, θ.

completed. This is analogous to the minimum latency prob-
lem when |A| = |T |, as discussed in [Ngueveu, 2010]. If
the assets have low value (θ = 1), the middle task no longer
provides sufficient score to offset the risk incurred to visit
it. For medium value assets (θ = 2), it is better to risk only
one agent in order to complete the two closest tasks. Finally,
when the assets are of high value (θ = 3), it is no longer
feasible to send agents to any task, as the risk of losing the
asset outweighs the value of completing the tasks.

Some general properties of higher value solutions to the
collection planning problem are:

• Agents will prefer tasks that are closer to the base, as they
have less risk. As θ increase, some tasks may be so far
from the base that they are not worth the risk to complete
them.

• Tasks that are close together will provide an increased
value as a group, since the value of the tasks will exceed
the total distance to travel between them.

• As the distance from the base increases, larger groups of
closely grouped tasks are needed to offset the risk of trav-
eling the distance required to reach them.

Observing these properties led us to look at clustering
techniques for finding agent assignments. While most forms
of clustering that we tested were able to quickly find clusters
that were feasible solutions, hierarchical agglomerative clus-
tering (HAC) (Cormack 1971) proposed task assignments
with the highest observed values. This led us to explore new
ways to adapt it more specifically to this unique problem.
The resulting algorithm is discussed in the next section.

Clustering for Agent Assignments

Hierarchical agglomerative clustering (Cormack 1971) is a
method for grouping instances in a metric space. We use a
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Figure 5: An example dendogram for six instances. Hori-
zontal lines indicate a merge of two clusters, with the height
along the the vertical axis being the distance between the
clusters. The dotted line is an example of using a distance
cutoff value to generate a set of clusters. In this case, the
resulting clusters are {1, 4}, {2}, and {5, 6, 3}.

bottom-up approach, where each instance starts as a single-
ton cluster. Then, a series of successive cluster merges is
executed, terminating when all instances are part of a sin-
gle cluster. The result of this process can be visualized as a
dendogram, as shown in Figure 5. By moving from the bot-
tom to the top, we can reconstruct the series of merges that
occurred and choose a specific distance at which to truncate
the structure, resulting in a set of clusters. When a pair of
clusters are merged, the distance to the other clusters is up-
dated. There are a large number of strategies used for this
update procedure, refer to (Manning et al. 2008) for further
details and discussion.

This approach is appealing for this problem because it
allows for a variable number of clusters depending on the
problem structure and it evaluates groupings of tasks based
on their proximity, which should also minimize inter-task
distance. However, using only the distance between tasks as
the similarity measure has some drawbacks:

• Combining task clusters (or singletons) into a single clus-
ter may increase or decrease the utility, depending on how
large the clusters are.

• The value of a cluster is also dependent on how far from
the base the tasks are, which is not captured by the inter-
task distance alone.

• There is no clear cutoff value for the distance at which we
should stop the clustering process to yield the best groups
of task assignments for all agents.

To address these challenges, we compute the distance be-
tween clusters as the gain in expected value form the merge.
This yields clusters that are variable based on their size, dis-
tance between tasks, and the distance from the base. We
refer to this clustering process as “risk-aware”, with details
provided in the next section.

Progressive Risk-Aware Clustering

We introduce an agglomerative clustering method for find-
ing solutions to the collection planning problem with

attrition-based risk. It provides solutions that exceed the per-
formance of sequential greedy bundle-based methods with
orders of magnitude less computation required. Unlike other
clustering methods used for multi-robot tasking, we are not
required to specify how many clusters we wish to form. This
allows the problem instance and user parameters to guide the
number of agents used.

We set the distance between clusters as the gain in ex-
pected value, which is a function of the numbers of tasks, the
distance between tasks, and the distance of the task group-
ing from the base. We then iteratively combine tasks into
clusters based on the gain in expected value until no positive
gain can be found, or all tasks are in a single cluster.

Given a cluster Ci, let π∗
i be the optimal path for agent i

to visit all tasks in Ci, starting and ending at the base. The
optimal expected value for a cluster of tasks is:

EV ∗(Ci) =
∏

ejk∈π∗
i

ps(ejk)
∑
tp∈Ci

cip

− θi · (1−
∏

ejk∈π∗
i

ps(ejk)). (7)

The exact gain in expected value from merging two clus-
ters is defined as:

GAIN∗(Ci, Cj) = EV ∗({Ci ∪ Cj})
− EV ∗(Ci)− EV ∗(Cj). (8)

In practice, computing the optimal value can be expen-
sive. Finding the optimal path through a set of tasks is an
NP-complete problem, and the path would need to be com-
puted for every possible merging of clusters. Even using
agglomerative clustering with average-linkage has a com-
plexity ofO(n3), making the approximation of cluster value
beneficial to scaling up to hundreds or thousands of tasks.

In order to approximate the value of a cluster, we keep
track of the length of the minimum spanning tree (MST)
over the tasks in the cluster. When two clusters are merged
we can easily update the MST by adding only the closest
edge between the two original MSTs. Finding the edge be-
tween the closest tasks can be done in O(n2) time. Addi-
tionally, we keep track of only the closest element to the
base in the cluster, an O(1) operation.

Let dist(b, Ci) be the distance between the base and the
nearest element of cluster Ci, and MST (Ci) return the dis-
tance of the minimum spanning tree. The approximate path
length for cluster Ci is denoted as d̃(Ci) = MST (Ci) + 2 ·
dist(b, Ci). Our approximate value function for a cluster is
defined as:

Ṽ (Ci) = |Ci| · ψd̃(Ci) − θi · (1− ψd̃(Ci)). (9)

Using this value function, we can compute our approxi-
mate gain for merging two clusters:

GAIN(Ci, Cj) = Ṽ ({Ci ∪ Ci})− Ṽ (Ci)− Ṽ (Cj). (10)
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The Progressive Risk-aware Clustering (PRC) algorithm
(Algorithm 1) is shown below. The merging of two clusters
is conducted as follows: P [ ] is used to track the cluster par-
ents as clusters are merged. Each cluster is represented by
a single task, with all other tasks in that cluster referring to
that task. H[ ] is used to track merge height, and keeps track
of what gain value caused the merge. It is used as an index to
truncate the dendogram of tasks and form the final clusters,
as explained in more detail in the next section.

The properties of a cluster are also tracked and updated,
allowing for fast merging operations. S[ ] indicates the num-
ber of tasks in a cluster. The distance to the base for each
cluster is stored in B[ ], which is updated as the minimum
base distance over both merged clusters. Finally, M [ ] tracks
the distance over the minimum spanning tree for each clus-
ter, and is updated by summing the merged clusters’ MSTs,
plus the shortest distance between a pair of tasks between the
clusters. This shortest distance is equivalent to the single-
linkage strategy for hierachical clustering.

The steps for generating the multi-agent plan (and their
associated commands in Algorithm 1) are as follows:

• Step 1. [Lines 1-12] Initialize singleton clusters from
tasks and associated data structures.

• Step 2. [Lines 13-22] Iteratively merge clusters until they
form a single cluster of all tasks. At each merge track the
gain in EV and update the properties of the new cluster
and it’s relation to other clusters.

• Step 3. [Line 25] Extract clusters from the resulting den-
dogram by returning clusters that were formed with a pos-
itive gain in expected value.

• Step 4. [Lines 26-30] Generate agent path from each clus-
ter. Remove any agent paths that do not have a positive
expected value.

In order to speed up this procedure we utilize ELKI
(Achtert and Hans-peter Kriegel 2008), which provides data
structures that are optimized for large-scale clustering, in-
cluding fast indexing and iteration of distances between a
collection of instances and optimized handling of the result-
ing dendogram data structure.

Performance and Evaluation

We evaluate the performance of PRC over a number of ran-
domly generated problem instances. Tasks are placed in a
100km × 100km 2D Euclidean space, according to a uni-
form random distribution. The probability of survival is
ψ = 0.99 for each km traveled. Each approach is evaluated
based on the expected value (EV) of the solution as well as
the CPU time required to find a solution.

To evaluate the performance of the PRC algorithm, we
compare against the sequential greedy (SG) algorithm spec-
ified in (Choi et al. 2009), which is shown to provide so-
lutions equivalent to those provided by CBBA. We use the
gain in expected value for adding a new task as the scoring
function. All experiments results are provided for 100 ran-
dom instances for each parameter setting.

In order to allow for a fair comparison we provide SG
with one agent per task. While the solutions generated by

Algorithm 1 Progressive Risk-aware Clustering

Input: Task set T = {t1...tn}, graphG =< V,E >, where
V = T ∪ {b}

Output: Set of clusters {C1, ..., Cm}.

1: A ← ∅
2: for i← 1...n do
3: A ← A∪ {{ti}}
4: P [i] ← i
5: H[i] ← ∞
6: S[i] ← 1
7: B[i] ← dist(b, ti)
8: M [i] ← 0
9: for j = (i+ 1)...n do

10: dist[i][j] ← dist(ti, tj)
11: end for
12: end for

13: while |A| > 1 do
14: C∗

1 , C∗
2 ← argmax

C1,C2∈A
GAIN(C1, C2)

15: P [C∗
1 ] ← C∗

2
16: H[C∗

1 ] ← GAIN(C∗
1 , C∗

2 )
17: S[C∗

2 ] ← S[C∗
1 ] + S[C∗

2 ]
18: B[C∗

2 ] ← min(B[C∗
1 ], B[C∗

2 ])
19: M [C∗

2 ] ←M [C∗
1 ] +M [C∗

2 ] + dist(C∗
1 , C∗

2 )
20: for all Ci ∈ A \ C∗

2 do
21: t∗i , t

∗
j ← argmin

xi∈Ci,xj∈C∗
2

22: dist[Ci][C∗
2 ] ← dist(t∗i , t

∗
j )

23: end for
24: end while

25: ExtractClusters()

26: for all Ci ∈ A do
27: if EV ∗(Ci) ≤ 0 then
28: A ← A \ Ci
29: end if
30: end for

the SG algorithm will not necessarily use all of the agents
provided, this allows the algorithm to maximize value. For
example, when θ = 0, the optimal solution is to assign one
agent to each task. An agent that is not used provides no
utility, but also incurs no risk of being lost, so there is no
penalty or gain for any unused agents.

Because our problem has a score function that does not
have a diminishing marginal gain (DMG) property (Choi et
al. 2009) and allows for values less than zero, we also con-
sider an alternative sequential greedy solver that bids only on
positive gains in score when adding a task to a bundle. This
sequential greedy gain (SG-Gain) algorithm performs sig-
nificantly better on this problem than SG, as shown in Fig-
ures 7 and 8. SG allows for negative bids, assigning tasks to
the agent that has the “least negative” score and effectively
bidding on all tasks. Therefore, we use SG-Gain as the base-
line for comparison for our experiments.
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Sequential
Greedy
(Gain)

Progressive
Risk-aware
Clustering

(a) θ = 0 (b) θ = 1 (c) θ = 2 (d) θ = 3 (e) θ = 4

Figure 6: Comparison of solutions provided by Sequential Greedy (Gain) and PRC for a problem instance with 100 sites. The
base is located in the center and the task collection sites are depicted as squares. Each line is a path for a single agent. Solutions
are for θ ∈ {0, 1, 2, 3, 4}, from left to right.
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Figure 7: The expected value of multi-agent plans generated
by each algorithm on 100 tasks. PRC achieves performance
near Exact Merge, with improvement over SG and SG-Gain.

An example of the solutions generated by SG-Gain and
PRC for a single 100 task instance with varying asset values
are shown in Figure 6. When θ = 0, assets have no value
and the best solution sends one agent to each task. As θ in-
creases, both approaches reduce the number of tasks that are
assigned. Because SG-Gain only bids on positive gains, it
fails to capture clusters where all tasks are far away. This
is because the sequential bidding process is limited to gen-
erating values for one task at a time. Therefore, it does not
bid on an initial task to begin forming the path, as it would
require a negative gain (a loss in value compared to a value
of zero for an empty path).

In Figure 7 we show the expected value on 100 tasks for
PRC and SG-Gain compared to the Exact Merge Algorithm,
(Algorithm 2) which uses the exact gain in expected value in
order to evaluate cluster merges, rather than approximating
the gain. This shows that PRC performs nearly as well as
the exact merge solution, with improvement over SG-Gain.
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Figure 8: The % improvement over SG-Gain for increasing
asset value with 100 tasks. SG quickly degrades in perfor-
mance as the asset value increases, Exact and PRC show
improvement over SG-Gain except when θ = 0.

Alternatively, we compute the percent improvement over
SG-Gain for the same problem instances, as shown in Fig-
ure 8. We use this measure to show performance over a set
problem instances with a variable number of tasks. With re-
spect to CPU time, PRC provides these performance results
at a significant computational savings in almost all cases, as
shown in Figure 9.

In Figure 10 we show that the PRC algorithm scales well
to large problem instances, with the gains in expected value
increasing along with problem size. This increase in gain
is due to there being more tasks outside of the threshold at
which one task is worth completing.

In order to understand why PRC outperforms the greedy
sequential methods, we can look at the properties of the solu-
tions generated by each approach. In Figure 11, the number
of task sites visited by each planner is shown. The Sequen-
tial Greedy algorithm will always collect on all of the tasks,
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Algorithm 2 Exact Merge Algorithm

1: A ← ∅
2: maxGain ← −∞
3: for i← 1...N do
4: A ← A∪ {{xi}}
5: end for
6: while maxGain > 0 AND |A| > 1 do
7: C∗

1 , C∗
2 ← argmax

C1,C2∈A
GAIN(C1, C2)

8: maxGain ← GAIN(C∗
1 , C∗

2 )
9: A ← A \ {{C∗

1}, {C∗
2}}

10: A ← A∪ {C∗
1 ∪ C∗

2}
11: end while
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Figure 9: CPU Time in milliseconds for each algorithm with
respect to asset value for 100 tasks. Note the logarithm scale
used for the vertical axis.

which is detrimental when the asset value, θ, is large. The
SG-Gain variant, which does not bid on tasks that have a
negative utility, suffers from visiting too few tasks, resulting
in the lower performance shown in Figure 7.

Finally, we show how many agents were dispatched by
each algorithm in Figure 12. The sequential greedy ap-
proaches suffer from sending too few agents, missing out on
opportunities for additional value. The SG methods choose
individual tasks with the highest perceived value, which can
discard tasks that may be part of a large cluster far from the
base. On the other hand, PRC recognizes these clusters and
determines their value, motivating sending an agent to col-
lect and gain the associated value.

Conclusions and Future Work

We have introduced a new multi-agent task assignment prob-
lem with collection tasks and the risk of losing agents as
part during execution. We outlined the fundamental aspects
of the problem, provided clear examples of the problem dy-
namics, and implemented a risk-aware hierarchical agglom-
erative clustering algorithm that can outperform sequential
greedy planning methods. Our results show that this algo-
rithm not only provides good performance, but can also scale
to thousands of tasks.

The clearest extension of this work is to allow for agents
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Figure 10: The % improvement over SG-Gain grows as the
problem size increases. Results are shown for PRC on prob-
lems with the 100, 500, 1000, and 2000 tasks.
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Figure 11: The number of sites visited by all agents with
respect to asset value θ, for 100 tasks. Sequential Greedy
(SG) is designed to visit all of the sites under all conditions,
the SG-Gain variant over corrects, visiting too few sites.

to redundantly collect data to increase the expected value.
Our model considers digital goods that can be collected by
more than one agent, which provides opportunities for mul-
tiple collections to increase the probability of success. It’s
worth noting that credit for collection is only given for one
instance of the collected data, and may expose agents to un-
due risk, so excessive redundancy should be avoided.

We use a simplified model of asset value and risk in order
to present the problem clearly, but there would likely be het-
erogeneous assets with different value, and risk that would
vary depending on location. Similarly, the risk of attrition
may be a function of the tasks visited rather than movement
through the environment. Finally, there is potential for the
inclusion of perceiving sources of risk based on the detection
of threats, requiring dynamic re-planning and negotiation.
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