
A Semantic Notion of Interference for Planning Modulo Theories

Miquel Bofill and Joan Espasa and Mateu Villaret
Departament d’Informàtica, Matemàtica Aplicada i Estadı́stica

Universitat de Girona, Spain
{mbofill,jespasa,villaret}@imae.udg.edu

Abstract

The aim of being able to reason about quantities, time, space
and much more has been the main objective of the many ef-
forts on the integration of propositional planning with exten-
sions to handle different theories. Planning Modulo Theories
(PMT) is an approximation inspired by Satisfiability Mod-
ulo Theories (SMT) that generalizes the integration of arbi-
trary theories with propositional planning. Parallel plans are
crucial to reduce plan lengths and hence the time needed to
reach a feasible plan in many approaches. Parallelization of
actions relies on the notion of (non-)interference, which is
usually determined syntactically at compile time. In this pa-
per we present a general semantic notion of interference be-
tween actions in PMT. Along its generality, this notion can be
efficiently checked at compile time by means of satisfiability
checks.

Introduction

The problem of planning, in its most basic form, consists in
finding a sequence of actions that allows to reach a goal state
from a given initial state. In its classical approach, state vari-
ables are propositional, but in many real world problems we
need to reason about concepts such as time, space, capaci-
ties, etc. that are impractical to represent using only proposi-
tional variables. Many planners have been built to be able to
deal with such problems. These solvers glue together a clas-
sical planner with a specific theory solver that exclusively
handles the non-propositional part. Planning Modulo The-
ories (PMT) (Gregory et al. 2012) is a modular framework
inspired in the architecture of lazy SMT, which is the nat-
ural extension of SAT when propositional formulas need to
be combined with other theories.

The possibility of several actions being planned at the
same time step, i.e., the notion of parallel plans, can be con-
sidered a key idea to reduce plan lengths and hence the time
needed to reach a feasible plan in many approaches. Parallel
plans increase the efficiency not only because they allow to
reduce the time horizon, but also because it is unnecessary to
consider all total orderings of the actions that are performed
in parallel when seeking for a plan.

A problem that arises when considering parallel plans is
that of interference between actions. Is is commonly ac-

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

cepted that it should be possible to serialize every paral-
lel plan while preserving its semantics. Hence, it is usu-
ally required that effects of actions planned at the same time
commute, and that there is no interaction between precondi-
tions and effects of different actions. Existing works on nu-
meric planning use syntactic or limited semantic approaches
to determine interference between actions, in a fairly re-
strictive way (Kautz and Walser 1999; Fox and Long 2003;
Gerevini, Saetti, and Serina 2008). In this work we propose
a general notion of interference between actions, and a new
relaxed semantics for parallel plans, in the context of PMT.
We prove its correctness, motivate its usefulness with some
examples, and show how it can be easily implemented.

Planning Modulo Theories

We follow the concepts and notation defined in (Gregory et
al. 2012) for Planning Modulo Theories (PMT). The key to
extending classical planning into PMT is to support first or-
der sentences modulo theories in the preconditions of ac-
tions.

A state is a valuation over a finite set of variables X , i.e.,
an assignment function, mapping each variable x ∈ X to
a value in its domain, Dx. The expression s[x] denotes the
value state s assigns to variable x, and s[x �→ v] is the state
identical to s except that it assigns the value v to variable
x. A state space for a set of variables X is the set of all
valuations over X . By var(S) we denote the state variables
of a state space S.

A first order sentence over a state space S modulo T is
a first order sentence over the variables of the state space,
constant symbols, function symbols and predicate symbols,
where T is a theory defining the domains of the state space
variables and interpretations for the constants, functions and
predicates.1 A state space modulo T is a state space rang-
ing over the domains defined in T . A term over S modulo
T is, similarly, an expression constructed using the symbols
defined by S and T . A formula φ is T -satisfiable if φ ∧ T
is satisfiable in the first-order sense. By evalsT (φ) we de-
note the value of φ under the assignment s, according to the
interpretation defined by theory T .

A substitution is a partial mapping from variables to

1In some other contexts, such as mathematical logic, a theory is
understood as being just a set of sentences.

Proceedings of the Twenty-Sixth International Conference on 
Automated Planning and Scheduling (ICAPS 2016)

56



terms. It can be represented explicitly as a function by a
set of bindings of variables to terms. That is, if σ = {x1 �→
t1, . . . , xn �→ tn}, then σ(xi) = ti for all i in 1..n, and
σ(x) = x for every other variable.

Substitutions are extended homomorphically to a total
mapping from terms to terms. We use the postfix notation
tσ for the image of a term t under a substitution σ. This is
defined inductively on the structure of terms as follows:

tσ =

{
σ(t) if t is a variable
f(t1σ, . . . , tmσ) if t is of the form f(t1, . . . , tm)

In the second case of this definition, m = 0 is allowed: in
this case, f is a constant symbol and fσ is f . Thus tσ is t
with all variables replaced by terms as specified by σ. The
image of a formula under a substitution is defined similarly.

The composition of two substitutions σ1 and σ2, denoted
by juxtaposition, is defined as the composition of two func-
tions, that is, tσ1σ2 = (tσ1)σ2.

Definition 1 (Action). An action a, for a state space S mod-
ulo T , is a state transition function, comprising:

• A first-order sentence over S modulo T , Prea (the pre-
condition of a).

• A set Eff a (the effects of a), of assignments to a subset of
the state variables in S, each setting a distinct variable to
a value defined by a term over S modulo T .

An action a, for a state space S modulo T , is applicable
(or executable) in a state s ∈ S if T, s |= Prea (that is, the
theory together with the valuation s satisfies the precondi-
tion of a).

We represent actions a as pairs 〈Prea,Eff a〉, with the
effects Eff a often written as a substitution σa = {x1 �→
exp1, . . . , xn �→ expn}, where expi is an expression that
defines the value of variable xi in the resulting state, for each
i in 1..n (e.g. x �→ x+k, for increasing a numeric variable x
by k). We use � and ⊥ to denote the Boolean true and false
values, respectively. Making abuse of notation, we will talk
of a substitution as an assignment.

Following application of a, the state is updated by the
assignments in Eff a to the variables that they affect, leav-
ing all other variables unchanged. We denote the unique
state resulting from applying action a, in a state s in which
is applicable, by appa(s). Formally, the resulting state
s′ is the mapping where, for each variable x ∈ var(S),
s′(x) = evalsT (xσa), where σa is the substitution represent-
ing the effects of a.

For sequences a1; a2; . . . ; an of actions we define
appa1;a2;...;an(s) as appan(· · · appa2(appa1(s)) · · · ).
Definition 2 (Planning modulo Theory). A Planning Mod-
ulo T problem, for a theory T , is a tuple π = 〈S,A, I,G〉
where:

• S is a state space in which all of the variable domains are
defined in T ,

• A is a set of actions for S modulo T ,
• I is a valuation in S (the initial state), and
• G is a first order sentence over S modulo T (the goal).

A (sequential) plan for π is a sequence of actions
a1; . . . ; an such that, for all i in 1..n, ai is applicable in
state si−1 and si is the result of applying ai to si−1, where
s0 = I and T, sn |= G.

As it is usual in SMT, we assume T is a first-order theory
with equality, which means that the equality symbol = is a
predefined predicate, interpreted as the identity on the under-
lying domain. Sometimes we say that a sequence of actions
is a plan starting from an initial state I , without specifying
the goal. In this case we mean that the plan is executable
starting from I .

The ILP-PLAN framework (Kautz and Walser 1999),
based on integer optimization of linear integer programs, is
a particular case of this, taking linear inequalities as pre-
conditions, and limiting effects to increasing, decreasing or
setting the value of a variable. Numeric planning, as defined
in (Helmert 2002) or in (Gerevini, Saetti, and Serina 2008) is
also a particular case, using a very limited fragment of first-
order logic in the preconditions of actions, and taking T as
the theory of rational functions, i.e., fractions between poly-
nomials. The proposal in (Rintanen, Heljanko, and Niemelä
2006) raises preconditions to general Boolean formulae, but
does not consider numeric variables.

A Semantic Notion of Interference

In the following, we consider plans as sequences of sets of
actions. A set of actions planned at the same time is com-
monly called a happening (Fox and Long 2003). Two ac-
tions can be concurrently planned if, roughly, they do not
interfere. It is commonly accepted that two actions are non-
interfering only if the composition of their effects is commu-
tative, and there is no interaction between effects and pre-
conditions. In (Fox and Long 2003; Gerevini, Saetti, and
Serina 2008) the state resulting from executing a happening
is defined as the one obtained after applying the composition
of effects of the actions in the happening.

Example 1. Let a = 〈�, {x �→ x + y + z}〉 and b =
〈�, {x �→ x + 1, y �→ y + 1, z �→ z − 1}〉. These actions
do not interfere, as their preconditions are true (and hence
cannot interact with effects) and their effects commute: exe-
cuting first a and then b, as well as executing first b and then
a, produces the same effect, which is that of an action of the
form 〈�, {x �→ x + y + z + 1, y �→ y + 1, z �→ z − 1}〉,
defining the state transition function of their simultaneous
execution.

Example 2. Let c = 〈�, {x �→ x + y + z}〉 and d =
〈�, {x �→ x + 1, y �→ y + 2, z �→ z − 1}〉. These ac-
tions interfere, since their effects do not commute. Execut-
ing first c and then d is equivalent to executing 〈�, {x �→
x + y + z + 1, y �→ y + 2, z �→ z − 1}, whereas execut-
ing first d and then c is equivalent to executing 〈�, {x �→
x+ y+ z+2, y �→ y+2, z �→ z− 1}. Then they would not
be allowed to be planned in parallel.

Thanks to the commutativity requirement, effects of non-
interfering actions can be composed in any order, allowing
parallel plans to be serialized in any order, while preserv-
ing their semantics. This adheres to the ∀-step semantics

57



of (Rintanen, Heljanko, and Niemelä 2006), but it does not
lift to the ∃-step semantics (introduced in the same work for
the Boolean case), where it is only necessary that actions
can be executed it at least one order, making it possible to
increase the number of parallel actions.

The main contributions of this paper are
• a new relaxed semantics of happening execution, and
• a new notion of interference
that are suitable for both ∀-step and ∃-step semantics (Rin-
tanen, Heljanko, and Niemelä 2006), in the context of PMT.

As we show in the following section, the proposed no-
tion of interference can moreover be fully checked at com-
pile time by means of satisfiability checks. As far as we
know, previous approaches used syntactic or limited se-
mantic approaches (Kautz and Walser 1999; Fox and Long
2003; Gerevini, Saetti, and Serina 2008). Note that non-
interference of actions such those in Example 1 cannot be
easily determined syntactically.

In the rest of this section we introduce the new seman-
tics of happening execution, define the new notion of inter-
ference, and prove that their combination is valid for both
∀-step and ∃-step semantics.
Definition 3 (Commuting Assignments). Two assignments
{x �→ exp1} and {x �→ exp2} commute, for a variable x and
two expressions (terms) exp1 and exp2 over a state space
S modulo T , if T |= (exp2{x �→ exp1} = exp1{x �→
exp2}).
Example 3. If T is the theory of the reals, then {x �→ x+1}
and {x �→ x − 2} commute, since T |= ((x − 2) + 1 =
(x+1)− 2), whereas {x �→ x+1} and {x �→ x ∗ 2} do not
commute, since T |= ((x+ 1) ∗ 2 = (x ∗ 2) + 1).
Definition 4 (Simply Commuting Actions). We will refer to
a set A = {a1, . . . , an} of actions as simply commuting, for
a state space S modulo T , if for every variable x ∈ var(S)
and every pair of assignments {x �→ exp1} and {x �→ exp2}
in the effects of actions in A, {x �→ exp1} and {x �→ exp2}
commute.
Definition 5 (Happening Action). Let A = {a1, . . . , an} be
a set of simply commuting actions. We define the happening
action for A as an action h(A) = 〈Preh(A), σh(A)〉 with

Preh(A) =
∧
a∈A

Prea

and
σh(A) =

⋃
x∈var(S)

{σx,1 ◦ · · · ◦ σx,n}

where σx,i, for i in 1..n, is the mapping of variable x in
the effects of action ai, and ◦ denotes the composition of
functions.

Note that the effects on each variable can be composed in
any order, because of the commutation requirement. There-
fore, h(A) is well-defined.
Definition 6 (Happening Execution). Let A = {a1, . . . , an}
be a set of simply commuting actions. Then, the state result-
ing from the execution of the happening A in state s, denoted

appA(s), is defined as apph(A)(s), where h(A) is the hap-
pening action corresponding to A.

Note that if some action in A is not applicable in state s
then appA(s) is undefined.

Example 4. Let a = 〈�, {x �→ x + 1, y �→ y + 1}〉 and
b = 〈�, {y �→ y + x}〉. Then app{a,b}(s), for a state s,
is apph({a,b})(s), with h({a, b}) = 〈�, {x �→ x + 1, y �→
(y + x) + 1}〉.

We claim that the transition functions for happenings de-
fined in (Fox and Long 2003) and (Gerevini, Saetti, and Se-
rina 2008) are particular cases of Definition 6. A key differ-
ence we want to point out is that, instead of considering the
composition of functions (i.e., the composition of effects of
actions, seen as functions on all variables), we are consid-
ering the function of compositions (i.e., the function defined
by the composition of assignments to each single variable
across all actions). We consider the possibility of compos-
ing the effects on each variable in any order, as a minimal
requirement to be able to serialize plans in some order (see
definitions and proofs below). We believe that in the re-
stricted case of (Fox and Long 2003) and (Gerevini, Saetti,
and Serina 2008), where commutativity of all effects is re-
quired, both concepts coincide, but proving it is beyond the
scope of this paper. Our aim is to show that the proposed se-
mantics for happenings allows us to increase the number of
parallel actions in the context of ∃-step plans, where parallel
semantics and interference notions of existing approaches to
numeric planning are too restrictive.

Definition 7 (Affecting Action). Given two actions a =
〈Prea, σa〉 and b = 〈Preb, σb〉, for a state space S modulo
T , we consider a to affect b if

1. Prea ∧ Preb ∧ ¬(Prebσa) is T -satisfiable, or
2. either a and b are not simply commuting, or Prea∧Preb∧

¬(xσh({a,b}) = xσbσa) is T -satisfiable for some variable
x ∈ var(S), where h({a, b}) denotes the happening ac-
tion for a and b,

that is, a can impede the execution of b, or they are not sim-
ply commuting, or they are simply commuting but executing
first a and then b has a different effect than that of the hap-
pening {a, b}.

Recall that h({a, b}) is defined only for simply commut-
ing actions.

Example 5. Following Example 4, where actions a and
b are simply commuting, we have that a affects b since
yσh({a,b}) = (y+x)+1, while yσbσa = (y+x)σa = (y+
1)+(x+1), and thus Prea∧Preb∧¬(yσh({a,b}) = yσbσa) is
T -satisfiable. On the contrary, b does not affect a, since the
preconditions of both actions are true, xσh({a,b}) = x+1 =
xσbσa, and yσaσb = (y+1)σb = (y+x)+1. This is to say
that the effect of the happening {a, b} is the same as execut-
ing first b and then a, but not first a and then b. In fact, in
this example we have app{a,b}(s) = appb;a(s) = appa;b(s)
for all s.

Definition 8 (Interference). Given two actions a and b, we
consider a and b to interfere if a affects b or b affects a.

58



∀-Step Plans

Lack of interference guarantees that actions in a happening
can be executed sequentially in any total order and that the
final state is independent of the ordering (see Theorem 1).
The notion of ∀-step plan, defined in (Rintanen, Heljanko,
and Niemelä 2006), can be generalized to the setting of PMT
as follows.

Definition 9 (∀-Step Plan). Given a set of actions A and an
initial state I , for a state space S modulo T , a ∀-step plan
for A and I is a sequence P = 〈A0, . . . , Al−1〉 of sets of
actions for some l ≥ 0, such that there is a sequence of
states s0, . . . , sl (the execution of P ) such that

1. s0 = I , and
2. for all i ∈ {0, . . . , l − 1} and every total ordering a1 <

· · · < an of Ai, appa1;...;an(si) is defined and equals
si+1.

Lemma 1. Let A be a set of actions, for a state space S
modulo T , and let s ∈ S be a state such that all actions in A
are applicable in s. Then appa1;...;an(s) is defined for every
ordering a1 < · · · < an of A such that if ai < aj then ai
does not affect aj .

Proof. By induction on the number of actions n in A. If
n = 1 we are trivially done. If n ≥ 2, consider any or-
dering a1 < · · · < an of A such that if ai < aj then
ai does not affect aj . Let a1 = 〈Prea1 , σa1〉. First of
all we show, by contradiction, that appai

(appa1
(s)) is de-

fined for every ai = 〈Preai
, σai

〉 such that a1 < ai. Sup-
pose that T, appa1

(s) |= Preai
, i.e., that ai is not ap-

plicable after applying a1 in state s. This is equivalent
to say that T, s |= Preai

σa1
and, since s is an assign-

ment, to evalsT (Preai
σa1

) = ⊥. Now, by assumption,
we have T, s |= Prea1

and T, s |= Preai
, since all ac-

tions are applicable in state s. Therefore, T, s |= Prea1 ∧
Preai ∧ ¬(Preaiσa1), i.e., Prea1 ∧ Preai ∧ ¬(Preaiσa1)
is T -satisfiable, contradicting that a1 does not affect ai.
Finally, since all actions ai such that a1 < ai are ap-
plicable in state appa1(s), by the induction hypothesis we
have that appa2;...;an

(appa1
(s)) is defined for any ordering

a2 < · · · < an of A \ {a1} such that if ai < aj then ai
does not affect aj , and hence so is appa1;a2;...;an

(s) for the
ordering we have considered.

Lemma 2. Let a and b be two simply commuting actions,
for a state space S modulo T , such that a does not affect b,
and let s ∈ S be a state such that a and b are applicable in s.
Then app{a,b}(s) = appa;b(s).

Proof. Let a = 〈Prea, σa〉 and b = 〈Preb, σb〉. Since a and
b are applicable in s, we have that app{a,b}(s) is defined.
Moreover, since a does not affect b, by Lemma 1 we have
that appa;b(s) is defined.

We conclude by showing that app{a,b}(s)[x] =
appa;b(s)[x] for every variable x. Recall that app{a,b}(s) =
apph({a,b})(s), where h({a, b}) denotes the happening ac-
tion for a and b. Now, by definition of application, we have
apph({a,b})(s)[x] = evalsT (xσh({a,b})) and appa;b(s)[x] =
evalsT (xσbσa), for every variable x. On the other hand,

since a does not affect b, Prea ∧ Preb ∧ ¬(xσh({a,b}) =
xσbσa) is T-unsatisfiable. And, since a and b are both ap-
plicable in state s, we have T, s |= Prea and T, s |= Preb.
Therefore T, s |= Prea ∧ Preb ∧ (xσh({a,b}) = xσbσa),
and thus evalsT (xσh({a,b})) = evalsT (xσbσa), which lets us
conclude.

Lemma 3. Let a and b be two non-interfering actions, for a
state space S modulo T , and let s ∈ S be a state such that a
and b are applicable in s. Then appa;b(s) = appb;a(s).

Proof. Since a and b are non-interfering, then they are sim-
ply commuting, and neither a affects b nor b affects a.
Then, by Lemma 2, we have app{a,b}(s) = appa;b(s), and
app{a,b}(s) = appb;a(s).

Lemma 4. Let A be a set of non-interfering actions, for a
state space S modulo T , and let s ∈ S be a state such that
all actions in A are applicable in s. Then appa1;...;an

(s) is
the same state for every total ordering a1 < · · · < an of A.

Proof. Since actions in A are non-interfering, and appli-
cable in state s, by Lemma 1 we have that appa1;...;an

(s)
is defined for any total ordering a1 < · · · < an
of A. We conclude by showing that any two con-
secutive actions in the sequence a1; . . . ; an can be per-
muted, preserving the final state. Consider any two con-
secutive actions ai and ai+1 in the sequence a1; . . . ; an.
Since appa1;...;an(s) is defined, so is appa1;...;ai(s), and
ai is applicable in state appa1;...;ai−1

(s) (in case that
i = 1, let appa1;...;ai−1

(s) denote the state s). Now,
since actions in A are non-interfering, by Lemma 1 we
have that appa1;...;ai−1;ai+1

(s) is also defined, so ai+1

is also applicable in state appa1;...;ai−1
(s). Finally, by

Lemma 3, it follows that appai;ai+1
(appa1;...;ai−1

(s)) =
appai+1;ai

(appa1;...;ai−1
(s)) which, by definition of ap-

plication, is equivalent to appa1;...;ai−1;ai;ai+1;...;an(s) =
appa1;...;ai−1;ai+1;ai;...;an(s).

Lemma 5. Let A be a set of simply commuting actions, for a
state space S modulo T , such that |A| ≥ 2. Then, for every
action a ∈ A, we have that a and h(A \ {a}) are simply
commuting, and h({a, h(A \ {a})}) = h(A).

Proof. Let A = {a1, a2, . . . , an}, a = a1 and A′ = A \
{a} = {a2, . . . , an}. According to the definition of happen-
ing action, we have σh(A′) = ∪x∈var(S){σx,2 ◦ · · · ◦ σx,n},
where σx,i, for i in 2..n, is the mapping of variable x in
the effects of action ai. Now, since composition of func-
tions is associative, we have that σx,1 ◦ (σx,2 ◦ · · · ◦ σx,n) =
σx,1 ◦ σx,2 ◦ · · · ◦ σx,n for every variable x, being σx,1 the
mapping of variable x in the effects of action a1. And,
since actions in A are simply commuting, we have that
σx,1 ◦ σx,2 ◦ · · · ◦ σx,n = (σx,2 ◦ · · · ◦ σx,n) ◦ σx1

, which
lets us conclude that a and h(A′) are simply commuting.

Now, provided that a and h(A′) are simply commuting,
in order to prove that the happening actions h({a, h(A′)})
and h(A) are equivalent, we need to show that they
have equivalent preconditions and effects. For precondi-
tions, we have Preh({a,h(A′)}) = Prea ∧ Preh(A′) =
∧a∈APrea = Preh(A). For effects, we have σh({a,h(A′)}) =

59



∪x∈var(S){σx,1 ◦ (σx,2 ◦ · · · ◦ σx,n)} which, as seen before,
is equivalent to ∪x∈var(S){σx,1 ◦ σx,2 ◦ · · · ◦ σx,n}.

Lemma 6. Let a, b and c be three simply commuting ac-
tions, for a state space S modulo T . If a affects neither b nor
c, then a does not affect the happening action h({b, c}).
Proof. Let a = 〈Prea, σa〉, b = 〈Preb, σb〉 and c =
〈Prec, σc〉. We need to prove that

1. Prea ∧Preh({b,c}) ∧¬(Preh({b,c})σa) is T -unsatisfiable,
2. a and h({b, c}) are simply commuting, and
3. Prea∧Preh({b,c})∧¬(xσh({a,h({b,c})}) = xσh({b,c})σa)

is T -unsatisfiable for every variable x ∈ var(S).

For condition 1, since Preh({b,c}) = Preb∧Prec, we have
Prea ∧ Preh({b,c}) ∧ ¬(Preh({b,c})σa) = Prea ∧ Preb ∧
Prec ∧ ¬((Preb ∧ Prec)σa) = (Prea ∧ Preb ∧ Prec ∧
¬(Prebσa))∨ (Prea ∧Preb ∧Prec ∧¬(Precσa)). Now as-
sume that Prea ∧Preb ∧Prec ∧¬(Prebσa) is T -satisfiable
(the other case is analogous). Then Prea∧Preb∧¬(Prebσa)
would also be T -satisfiable, contradicting that a does not af-
fect b.

Condition 2 follows directly from Lemma 5.
For condition 3, we proceed by contradiction. Let us

assume that Prea ∧ Preh({b,c}) ∧ ¬(xσh({a,h({b,c})}) =
xσh({b,c})σa) is T -satisfiable for some variable x ∈ var(S).
Then, by definition of happening action, we have Prea ∧
Preb ∧ Prec ∧ ¬(x(σx,b ◦ σx,c ◦ σx,a) = x(σx,b ◦ σx,c)σa)
is T -satisfiable, where σx,a, σx,b and σx,c are the mappings
of variable x in the effects of actions a, b and c, respectively.
So there exists some assignment s such that T, s |= Prea,
T, s |= Preb, T, s |= Prec, and evalsT (xσx,bσx,cσx,a) =
evalsT (xσx,bσx,cσa). This implies the existence of some
variable y different from x such that σa[y] = y. More-
over, since σx,b and σx,c are substitutions replacing only
variable x, y must be a variable in xσx,b or in xσx,c

and, necessarily, evalsT (xσx,bσx,a) = evalsT (xσx,bσa) or
evalsT (xσx,cσx,a) = evalsT (xσx,cσa). But this, together
with T, s |= Prea, T, s |= Preb and T, s |= Prec, con-
tradicts a affecting neither b nor c.

Lemma 7. Let A be a set of actions, and a an action, for
a state space S modulo T , such that the actions in A ∪ {a}
are simply commuting. If a affects none of the actions in A,
then a does not affect the happening action h(A).

Proof. Let A = {a1, . . . , an}. We proceed by induction
on the number of actions n in A. If n = 1 then we are
trivially done, since h(A) = a1 and, by assumption, a does
not affect a1. If n ≥ 2, let A′ = A \ {a1}. Then a neither
affects a1 nor the happening action h(A′) (by the induction
hypothesis). Moreover, since actions in A ∪ {a} are simply
commuting, so are a, a′ and h(A′). Then, by Lemma 6, we
have that a does not affect h({a′, h(A′)}) and, by Lemma 5,
h({a′, h(A′)}) = h(A).

Theorem 1. Let A be a set of non-interfering actions, for a
state space S modulo T , and s ∈ S a state such that appA(s)
is defined. Then appA(s) = appa1;...;an

(s) for any total
ordering a1 < · · · < an of A.

Proof. By induction on the number of actions n in A. If
n = 1 then we are trivially done. If n ≥ 2, then let
A = {a} ∪ A′. Since actions in A are non-interfering, then
they are simply commuting and a affects none of the actions
in A′. Then, by Lemma 7, we have that a does not affect the
happening action h(A′). Now observe that, since appA(s)
is defined and Preh(A) =

∧
a∈A Prea, both a and h(A′)

are applicable in state s. Then, by Lemma 2, we have that
app{a,h(A′)}(s) = appa;h(A′)(s). We conclude by show-
ing that appA(s) = app{a,h(A′)}(s) and appa;h(A′)(s) =
appa1;...;an

(s) for any total ordering a1 < · · · < an of A.
Equality appA(s) = app{a,h(A′)}(s) holds by Lemma 5.

For equality appa;h(A′)(s) = appa1;...;an
(s), observe that

appa;h(A′)(s) = appA′(appa(s)). Since actions in A′

are non-interfering and appA′(appa(s)) is defined, by the
induction hypothesis we have that appA′(appa(s)) =
appa1;...;an−1

(appa(s)) for any total ordering a1 < · · · <
an−1 of A′, i.e., appa;h(A′)(s) = appa;a1;...;an−1

(s) for any
total ordering a1 < · · · < an−1 of A′. Finally, since ac-
tions in A are non-interfering and all of them are applica-
ble in state s, by Lemma 4 we have that appa;h(A′)(s) =
appa1;...;an(s) for any total ordering a1 < · · · < an of A

∃-Step Plans

Here we generalize the notion of ∃-step plan, proposed
in (Dimopoulos, Nebel, and Koehler 1997) and further de-
veloped in (Rintanen, Heljanko, and Niemelä 2006), to
the setting of Planning modulo Theories. Under the ∃-
step semantics, it is not necessary that all actions are non-
interfering as long as they can be executed it at least one or-
der, which makes it possible increase the number of parallel
actions still further.
Definition 10 (∃-Step Plan). Given a set of actions A and an
initial state I , for a state space S modulo T , a ∃-step plan for
A and I is a sequence P = 〈A0, . . . , Al−1〉 of sets of actions
together with a sequence of states s0, . . . , sl (the execution
of P ), for some l ≥ 0, such that

1. s0 = I , and
2. for all i ∈ {0, . . . , l − 1} there is a total ordering a1 <

· · · < an of Ai, such that appa1;...;an(si) is defined and
equals si+1.

Instead of requiring that each group Ai of actions can be
ordered to any total order, as in ∀-step semantics, in ∃-step
semantics it is sufficient that there is one order that maps
state si to si+1. Note that under this semantics the successor
si+1 of si is not uniquely determined solely by Ai, as the
successor depends on the implicit ordering of Ai and, hence,
the definition has to make the execution s0, . . . , sl explicit.
Theorem 2. Let A be a set of simply commuting actions, for
a state space S modulo T , such that, for some total ordering
a1 < · · · < an of A, if ai < aj then ai does not affect aj ,
and let s ∈ S be a state such that appA(s) is defined. Then
appA(s) = appa1;...;an

(s).

Proof. The proof is analogous to the proof of Theorem 1,
but without using Lemma 4. We proceed by induction on

60



the number of actions n in A. If n = 1 then we are trivially
done. If n ≥ 2, then let A′ = {a2, . . . , an}. We have that
actions in A are simply commuting and a1 affects none of
the actions in A′. Then, by Lemma 7, we have that a1 does
not affect the happening action h(A′). Now observe that,
since appA(s) is defined and Preh(A) =

∧
a∈A Prea, both

a1 and h(A′) are applicable in state s. Then, by Lemma 2,
we have that app{a1,h(A′)}(s) = appa1;h(A′)(s). We con-
clude by showing that appA(s) = app{a1,h(A′)}(s) and
appa1;h(A′)(s) = appa1;...;an

(s).
Equality appA(s) = app{a1,h(A′)}(s) holds by Lemma 5.

For equality appa1;h(A′)(s) = appa1;...;an
(s), observe that

appa1;h(A′)(s) = appA′(appa1(s)). Since actions in A′

are simply commuting and appA′(appa1
(s)) is defined, by

the induction hypothesis we have that appA′(appa1
(s)) =

appa2;...;an
(appa1

(s)) according to the given ordering, and
hence appa1;h(A′)(s) = appa1;...;an

(s).

Checking Interference with SMT

We can exactly check the proposed notion of interference,
according to Definitions 3, 4 and 7, by means of checking
the satisfiability of some SMT formulas at compile time.

The following example is taken from the Planes domain,
described in the Empirical Evaluation section. The prob-
lem consists in transporting people between several cities
using planes, with a limited number of seats. The consid-
ered actions are board and fly. Boarding is limited by
seat availability, and a plane can only fly if it is transporting
somebody. If we consider action a as

board person1 plane1 city1 =

〈seats plane1 > onboard plane1∧
at person1 city1 ∧ at plane1 city1,

{at person1 city1 �→ ⊥, in person1 plane1 �→ �,

onboard plane1 �→ onboard plane1 + 1}〉

and action b as

fly plane1 city1 city2 =

〈onboard plane1 > 0 ∧ at plane1 city1,

{at plane1 city1 �→ ⊥, at plane1 city2 �→ �}〉

then most planners, checking interference syntactically,
would determine interference, since a modifies the
onboard plane1 variable and b uses this variable in its
precondition. However, according to Definition 7, it can be
seen that a does not affect b, since:

1. Prea ∧ Preb ∧ ¬(Prebσa) is T -unsatisfiable, be-
cause the precondition of b, onboard plane1 > 0 ∧
at plane1 city1, cannot be falsified by the effects
of a, {at person1 city1 �→ ⊥, in person1 plane1 �→
�, onboard plane1 �→ onboard plane1 + 1},

2. a and b are simply commuting, and

3. Prea ∧ Preb ∧ ¬(xσh({a,b}) = xσbσa) is T -unsatisfiable
for all variables x.

The first check can be modelled in the SMT-LIB lan-
guage (Barrett, Stump, and Tinelli 2010) as follows:

;; declaration of problem variables.
(declare-fun at_person1_city1 () Bool)
(declare-fun at_plane1_city1 () Bool)
(declare-fun seats_plane1 () Int)
(declare-fun onboard_plane1 () Int)

;; preconditions of actions "board" and "fly"
(assert (and (> seats_plane1 onboard_plane1)

at_person1_city1 at_plane1_city1))

(assert (and (> onboard_plane1 0)
at_plane1_city1))

;; negated precondition of fly after board
(assert (not (and (> (+ onboard_plane1 1) 0)

at_plane1_city1)))
(check-sat)

Note that in the negated precondition of fly, we are
replacing each variable by the term which represents its
value after the execution of board, i.e., we replace
onboard plane1 by onboard plane1 + 1. A negative an-
swer should be obtained from the SMT solver.

The check of simply commutativity would consist in
checking for all variables commonly modified by the two ac-
tions, if the effects can be commuted. In the example, there
are no common variables modified by both actions. Hence,
suppose we are checking whether two arbitrary assignments
{x �→ exp1} and {x �→ exp2} commute. According
to Definition 3, this would consist in checking whether
¬(exp2{x �→ exp1} = exp1{x �→ exp2}) is T -satisfiable.
A negative answer would imply T -unsatisfiability of this
negation and, hence, commutativity of the assignments.

The third check can be implemented analogously by
means of satisfibility checks.

Encodings

In this section we propose two different encodings for plan-
ning as SMT, as a particular case of PMT. We generalize
Rintanen’s (Rintanen 2009) encoding for planning as SAT
to include non-Boolean variables, with the idea of using an
off-the-shelf SMT solver to solve the problem.

The given encodings are valid for any theory T under a
quantifier-free first-order logic with equality. In particular,
for numeric planning we could take T as the theory of the in-
tegers (or the reals) and use quantifier free linear integer (or
real) arithmetic formulae. In the SMT-LIB standard (Bar-
rett, Stump, and Tinelli 2010), QF LIA stands for the logic
of Quantifier-Free Boolean formulas, with Linear Integer
Arithmetic constraints, and similarly QF LRA for the case
of reals. These logics have a good compromise between ex-
pressivity and performance, and so are a natural choice for
numeric planning as SMT.

SMT Encoding

Let π = 〈S,A, I,G〉 be planning problem modulo T , for a
theory T under a quantifier-free first-order logic with equal-
ity. For each variable x in var(S) and each time step t, a
new variable xt of the corresponding type is introduced, de-
noting the value of x at step t. Moreover, for each action
a and each time step t, a Boolean variable at is introduced,
denoting whether a is executed at step t.

61



Given a term s, by st we denote same term s, where all
variables x in var(S) have been replaced by xt, and analo-
gously for formulas. For example (x + y)t = xt + yt, and
(p ∧ x > 0)t = pt ∧ xt > 0. For the case of effects, we
define

{x �→ �}t def
= xt+1

{x �→ ⊥}t def
= ¬xt+1

{x �→ s}t def
= (xt+1 = st)

where s is a non-Boolean term belonging to theory T . For
example, for an assignment {x �→ x + k}, where k is a
constant, we have {x �→ x + k}t = (xt+1 = xt + k). For
sets of assignments, i.e., action effects, we define

({x �→ s} ∪ Eff )t
def
= {x �→ s}t ∧ Eff t

∅t def
= �

where s is a term (either Boolean or not) and Eff is a set of
assignments.

The constraints are as follows. For each time step t, exe-
cution of an action implies that its precondition is met:

at → Preta ∀a = 〈Prea,Eff a〉 ∈ A (1)

If the action is executed, each of its effects will hold at the
next time step:

at → Eff t
a ∀a = 〈Prea,Eff a〉 ∈ A (2)

Finally, we need explanatory axioms to express the reason of
a change in state variables. For each variable x in var(S):

xt = xt+1 →
∨

∀a=〈Prea,Eff a〉∈A
such that ∃{x �→s}∈Eff a

at

(3)

That is, a change in the value of x implies the execution of
at least one action that has an assignment to x among its
effects.

The previous constraints are complemented as follows de-
pending on the type of parallelism we wish:

Sequential Plans We can achieve a sequential plan by im-
posing an exactly one constraint on the action variables at
each time step.

∀-step Plans According to Definition 9, in ∀-step plans
we require the possibility of ordering the set of actions
planned at each time step to any total order. Therefore,
for each time step t, we simply add a mutex clause for
every pair of interfering actions ai and aj :

¬(ati ∧ atj) if ai affects aj or aj affects ai (4)

∃-step Plans According to Definition 10, in ∃-step plans
there must only exist a total ordering of parallel actions
resulting in a valid sequential plan. A basic form of guar-
anteeing this is to take an arbitrary total ordering < on the
actions, and forbid the parallel execution of two actions
ai and aj such that ai affects aj only if ai < aj :

¬(ati ∧ atj) if ai affects aj and ai < aj (5)

It is not difficult to see that the encoding presented up to
this point is correct for sequential plans, but it not adheres
to the parallel plan semantics of Definition 6. If two ac-
tions planned at the same time modify a same variable, two
different situations can arise. On the one hand, if the assign-
ments are not equivalent, then the SMT formula encoding
the planning problem will become unsatisfiable. Although
this is right for the Boolean case, it is more subtle for other
theories, where effects can be cumulative. For example, two
assignments {x �→ x + 1} and {x �→ x + 2} would re-
sult into subformulas xt+1 = xt + 1 and xt+1 = xt + 2
which, together, are unsatisfiable. This, in practice, would
rule out many parallel plans. On the other hand, if assign-
ments were equivalent, then all but one would become re-
dundant in the SMT formula. Then, the formula would pos-
sibly be satisfiable but, in this case, solutions would not ad-
here to the semantics given in Definition 6, where effects
of actions planned at the same time are composed. A sim-
ple way of overcoming this problem could be to forbid the
parallel execution of actions modifying a same non-Boolean
variable, but this would rule out the parallelization of actions
with cumulative effects. For this reason, a finer approach is
described in the next section.

Chained SMT Encoding

Here we present an encoding which builds onto the former in
order to add support for cumulative effects in parallel plans.

Let N be the set of non-Boolean variables from var(S).
For each action a = 〈Prea,Eff a〉 and each variable n ∈ N ,
let Eff a,n be the assignment {n �→ exp} ∈ Eff a, or the
empty set if there is no such assignment. For each n ∈ N ,
let An = {a | a ∈ A ∧ Eff a,n = ∅}, i.e., the set of actions
that modify variable n.

Constraints (2) are split and rewritten as follows, in order
to take into account a possible “chain of assignments” on
each variable n ∈ N . First of all, we remove the effects
on variables n ∈ N such that |An| > 1, i.e., those that are
modified by more than one action.

at → (Eff a \ ∪n∈N,|An|>1{Eff a,n})t
∀a = 〈Prea,Eff a〉 ∈ A (6)

Then, for each variable n ∈ N such that |An| > 1, and
for each time step t, the following constraints are introduced,
using additional variables ζtn,0, . . . , ζ

t
n,|An| of the type of n,

and considering an enumeration a1, . . . , a|An| of the actions
in An:

nt = ζtn,0 (7)

ati → Eff t
ai,n{nt+1 �→ ζtn,i, n

t �→ ζtn,i−1}
¬ati → ζtn,i = ζtn,i−1 ∀ai ∈ a1, . . . , a|An| (8)

nt+1 = ζtn,|An| (9)

62



Example 6. Let A = {a1, a2}, with actions a1 = 〈�, {x �→
x + 1, y �→ 0}〉 and a2 = 〈�, {x �→ x + 2}〉. Then Ax =
{a1, a2} and Ay = {a1}. For time step t, we would add
variables ζtx,0, ζtx,1, ζtx,2 and the following constraints:

at1 → yt+1 = 0 at2 → � (tautology)

xt = ζtx,0

at1 → ζtx,1 = ζtx,0 + 1 ¬at1 → ζtx,1 = ζtx,0

at2 → ζtx,2 = ζtx,1 + 2 ¬at2 → ζtx,2 = ζtx,1

xt+1 = ζtx,2

Empirical Evaluation
In this section we evaluate the impact of the proposed no-
tion of interference on the length of parallel plans, using
∃-step semantics. Experiments have been performed using
both syntactic an semantic checks of interference at compile
time. The presented SMT encoding has been used in both
cases. For the case of semantic checks, we have additionally
considered the chained SMT encoding. These executions
are noted as SYN, SEM, and SEM+C, respectively, in Ta-
bles 1 and 2. In syntactic checking we forbid concurrent as-
signment or assignment and inspection to the same numeric
variable. Semantic checks are the ones we have introduced,
by means of calls to a SMT solver.

Experiments have been run on 8GB Intel R© Xeon R© E3-
1220v2 machines at 3.10 GHz, using RanTanPlan (Bofill,
Espasa, and Villaret 2015) with Yices (Dutertre and
De Moura 2006) v2.3.0 as back-end SMT solver, with the
QF LIA logic and a two hours timeout. For the sake of com-
pleteness, we compare the performance of our implementa-
tion with the numeric planner NumReach/SAT (Hoffmann
et al. 2007) using MiniSAT 2.2.0 (column NR1), and Num-
Reach/SMT using Yices v2.3.0 (column NR2).

Five domains are considered: the numeric versions of
ZenoTravel, DriverLog and Depots, the real-life challenging
Petrobras domain, and a crafted domain called Planes.

ZenoTravel and DriverLog are some of the domains in the
literature with a higher numeric interaction between actions.
Domains like Rovers or Settlers have been excluded because
they are too big to show meaningful results with the encod-
ing at hand and the chosen timeout.

The Petrobras domain models a real-life problem of
resource-efficient transportation of goods from ports to
petroleum platforms. It was proposed as a challenge prob-
lem at the International Competition on Knowledge Engi-
neering for Planning and Scheduling (ICKEPS 2012). In-
stances were modelled from (Toropila et al. 2012).

Due to the limited numeric interactions between actions in
the domains found in the literature, we additionally propose
a new domain called Planes which is created from Zeno-
Travel, by adding some plausible numeric constraints, in or-
der to help us demonstrate the benefits from checking inter-
ference between actions semantically.2

Table 1 shows the number of instances solved by each ap-
proach. Checking interference semantically and using the

2Detailed experiments and the Planes domain can be found at
http://ima.udg.edu/Recerca/lap/rantanplan/rantanplan.html

Domain NR1 NR2 SYN SEM SEM+C
Depots 13 13 5 5 5

Petrobras 3 3 5 6 7
Planes 5 8 8 8 8

ZenoTravel 13 14 13 13 15
DriverLog 18 12 14 14 15

Total 52 50 45 46 50

Table 1: Total number of instances of each domain solved
by each approach. For each domain, the approach solving
more instances is marked in bold. In case of draw, the faster
is marked.

Domain NR SYN SEM SEM+C
Depots (5) 54 52 52 51

Petrobras (3) 19 12 12 11
Planes (4) 90 82 62 45

Zenotravel (13) 97 69 69 42
DriverLog (12) 104 85 84 63

Total (37) 364 300 279 212

Table 2: Sum of the number of time steps of the plans
found, restricted to commonly solved instances. First col-
umn shows, in parenthesis, the number of instances solved
by all approaches. NumReach uses the same parallelism ap-
proach when using different background solvers, so only one
column is included. The winning approach is shown in bold.

chained SMT encoding is best in Petrobras, ZenoTravel and
Planes, while NumReach/SAT is best in Depots and Driver-
Log. The big gap in the number of solved instances in De-
pots is twofold: lack of intrinsic parallelism in the domain,
and being the perfect scenario for the reachability approach
of NumReach.

Table 2 shows the sum of the number of time steps of the
plans found, for commonly solved instances. Note that the
domains where our implementation solves more instances
are also the ones that exhibit more gains in parallelism. Note
also the significant reduction in time steps from the syntactic
approach to the semantic approach with the chained SMT
encoding, especially in the Planes domain.

Conclusion

The main contribution of this paper is the formalization of
an elegant solution to the problem of determining interfer-
ence between actions in PMT, which can moreover be im-
plemented as a set of satisfiability checks of SMT formulas.
We have introduced a new relaxed semantics for the parallel
execution of actions, and formalized a semantic notion of in-
terference, that are suitable for both ∀-step and ∃-step plans
in the context of PMT.

We have argued why the presented proposal is better than
purely syntactic ones, and provided empirical evidence of
its usefulness by showing a significant improvement in par-
allelism in some domains. The presented semantic checks
can be done independently of the underlying planning sys-
tem.

63



Acknowledgements

All authors supported by the Spanish Ministry of Economy
and Competitiveness through the projects TIN2012-33042
and TIN2015-66293-R. Joan Espasa also supported by UdG
grant (BR 2013).

References

Barrett, C.; Stump, A.; and Tinelli, C. 2010.
The Satisfiability Modulo Theories Library (SMT-LIB).
www.SMT-LIB.org.
Bofill, M.; Espasa, J.; and Villaret, M. 2015. The RANTAN-
PLAN Planner: System Description. In ICAPS-15 Work-
shop on Constraint Satisfaction Techniques for Planning
and Scheduling Problems (COPLAS-15), 1–10.
Dimopoulos, Y.; Nebel, B.; and Koehler, J. 1997. Encoding
Planning Problems in Nonmonotonic Logic Programs. In
Recent Advances in AI Planning, Fourth European Confer-
ence on Planning (ECP’97), volume 1348 of LNCS, 169–
181.
Dutertre, B., and De Moura, L. 2006. The
Yices SMT Solver. Technical report, Computer Sci-
ence Laboratory, SRI International. Available at
http://yices.csl.sri.com.
Fox, M., and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. J. Artif.
Intell. Res.(JAIR) 20:61–124.
Gerevini, A. E.; Saetti, A.; and Serina, I. 2008. An approach
to efficient planning with numerical fluents and multi-
criteria plan quality. Artificial Intelligence 172(8):899–944.
Gregory, P.; Long, D.; Fox, M.; and Beck, J. C. 2012. Plan-
ning Modulo Theories: Extending the Planning Paradigm.
In Twenty-Second International Conference on Automated
Planning and Scheduling (ICAPS 2012), 65–73.
Helmert, M. 2002. Decidability and Undecidability Results
for Planning with Numerical State Variables. In Sixth Inter-
national Conference on Artificial Intelligence, Planning and
Scheduling (AIPS 2002), 303–312.
Hoffmann, J.; Gomes, C. P.; Selman, B.; and Kautz, H. A.
2007. SAT Encodings of State-Space Reachability Problems
in Numeric Domains. In 20th International Joint Confer-
ence on Artificial Intelligence (IJCAI 2007), 1918–1923.
Kautz, H. A., and Walser, J. P. 1999. State-space plan-
ning by integer optimization. In Proceedings of the Sixteenth
National Conference on Artificial Intelligence and Eleventh
Conference on Innovative Applications of Artificial Intelli-
gence (AAAI/IAAI), 526–533.
Rintanen, J.; Heljanko, K.; and Niemelä, I. 2006. Plan-
ning as satisfiability: parallel plans and algorithms for plan
search. Artificial Intelligence 170(12-13):1031–1080.
Rintanen, J. 2009. Planning and SAT. In Handbook of Sat-
isfiability, volume 185 of Frontiers in Artificial Intelligence
and Applications. 483–504.
Toropila, D.; Dvorak, F.; Trunda, O.; Hanes, M.; and Barták,
R. 2012. Three Approaches to Solve the Petrobras Chal-
lenge: Exploiting Planning Techniques for Solving Real-

Life Logistics Problems. In IEEE 24th International Con-
ference on Tools with Artificial Intelligence, (ICTAI 2012),
191–198.

64


