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Abstract

In this paper we describe two novel algorithms for tem-
poral planning. The first algorithm, TP, is an adaptation
of the TEMPO algorithm. It compiles each temporal ac-
tion into two classical actions, corresponding to the start
and end of the temporal action, but handles the tem-
poral constraints on actions through a modification of
the Fast Downward planning system. The second algo-
rithm, TPSHE, is a pure compilation from temporal to
classical planning for the case in which required con-
currency only appears in the form of single hard en-
velopes. We describe novel classes of temporal planning
instances for which TPSHE is provably sound and com-
plete. Compiling a temporal instance into a classical one
gives a lot of freedom in terms of the planner or heuris-
tic used to solve the instance. In experiments TPSHE
significantly outperforms all planners from the tempo-
ral track of the International Planning Competition.

Introduction
In this paper we explore the application of classical plan-
ning to temporal planning tasks in which actions do not
necessarily follow each other sequentially, have a dura-
tion and may overlap. Temporal planning can express fea-
tures such as deadlines, conditional effects, conditions dur-
ing the application of actions, or effects occurring at arbi-
trary time points (Fox and Long 2003). Interestingly, the
temporal planners with the best performance do not fully
handle the expressiveness of temporal planning, and typi-
cally implement incomplete approaches effective in domains
where concurrency is not required, i.e. the majority of the
IPC benchmarks (Coles et al. 2012). Examples are SG-
Plan (Chen, Wah, and Hsu 2006), winner at IPC-2008 and
YAHSP (Vidal 2014), winner at IPC-2011 and IPC-2014.

In this work we introduce two novel temporal planners,
TP and TPSHE. TP is based on the TEMPO algorithm (Cush-
ing, Kambhampati, and Weld 2007), which can handle any
form of concurrency as long as events are asynchronous but,
as far as we know, has never been implemented. TP is a hy-
brid: on one hand it compiles every temporal action into two
classical actions that correspond to the start and end of the
action. On the other hand it modifies the Fast Downward
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planning system (Helmert 2006) to keep track of temporal
constraints on actions. TPSHE is a compilation from tem-
poral to classical planning for the class of temporal planning
instances in which required concurrency appears only as sin-
gle hard envelopes (Coles et al. 2009), i.e. single actions that
temporarily add resources needed by other actions. In ex-
periments, we show that even though TPSHE is incomplete,
it significantly outperforms all planners from the temporal
track of the IPC.

An incomplete planner is justified when the language is
too expressive, and theoretical analysis can provide limits
on such restrictions. For example, planning with numeric
fluents is undecidable (Helmert 2002), and planners instead
handle tractable fragments. Here, we identify novel classes
of temporal instances that are provably solvable using differ-
ent compilations. We first describe two classes of temporal
instances that are provably sequential, i.e. any plan for these
instances can be converted into a sequential plan. We then
extend these classes to single hard envelopes.

The paper is organized as follows. We first introduce plan-
ning models and notation. Next, we introduce the two plan-
ners, TP and TPSHE. We then describe two classes of tem-
poral instances that are provably sequential, and extend these
classes to single hard envelopes. Finally, we present results
from experiments, and conclude with a discussion of related
work and possible extensions to our work.

Background
This section introduces the classical planning model, the
temporal planning model, and sequential temporal planning,
a subclass of temporal planning instances that can be solved
straightforwardly using a classical planner.

Classical Planning
Let F be a set of propositional variables or fluents. A state
s ⊆ F is a subset of fluents that are true, while all fluents in
F \ s are implicitly assumed to be false. A subset of fluents
F ′ ⊆ F holds in a state s if and only if F ′ ⊆ s.

A classical planning instance is a tuple P = 〈F,A, I,G〉,
where F is a set of fluents, A a set of actions, I ⊆ F an
initial state, and G ⊆ F a goal condition (usually satis-
fied by multiple states). Each action a ∈ A has precondi-
tion pre(a) ⊆ F , add effect add(a) ⊆ F , and delete effect
del(a) ⊆ F , each a subset of fluents. Action a is applicable
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in state s ⊆ F if and only if pre(a) holds in s, and applying
a in s results in a new state s⊕ a = (s \ del(a)) ∪ add(a).

A plan for P is a sequence of actions Π = 〈a1, . . . , an〉
such that a1 is applicable in I and, for each 2 ≤ i ≤ n, ai is
applicable in I ⊕ a1 ⊕ · · · ⊕ ai−1. The plan Π solves P if G
holds after applying a1, . . . , an, i.e. G ⊆ I ⊕ a1⊕ · · · ⊕ an.

Temporal Planning
A temporal planning instance is a tuple P = 〈F,A, I,G〉,
where F , I , and G are defined as for classical planning.
However, each a ∈ A is a temporal action composed of
• d(a): duration,
• pres(a), preo(a), pree(a): preconditions of a at start, over

all, and at end, respectively,
• adds(a), adde(a): add effects of a at start and at end,
• dels(a), dele(a): delete effects of a at start and at end.
Since preo(a) has to hold for the duration of a, we use con-
text as an abbreviation for “precondition over all”.

A plan for P is not a sequence but rather a set of action-
time pairs Π = {(a1, t1), . . . , (an, tn)}, where ti, 1 ≤ i ≤
n, is the scheduled start time of action ai. Let (a, t) ∈ Π be
an action-time pair of the plan. Although a has continuous
duration, its effects only apply at the start and end. We can
therefore associate two discrete events starta and enda to a,
such that starta has associated time t and enda has associ-
ated time t + d(a). The plan Π induces an event sequence
Πe = 〈e1, . . . , e2n〉 that includes starta and enda for each
(a, t) ∈ Π and is ordered by the associated times of events.
We only consider plans that associate unique times to events,
i.e. actions cannot start and/or end simultaneously.

We can represent the events starta and enda as classical
actions to describe the semantics of a temporal plan Π:

• pre(starta) = pres(a), pre(enda) = pree(a),
• add(starta) = adds(a), add(enda) = adde(a),
• del(starta) = dels(a), del(enda) = dele(a).

Thus, to determine whether Π solves P , we first define sj =
I ⊕ e1⊕ · · · ⊕ ej , 0 ≤ j ≤ 2n. For Π to solve P , each event
ej , 1 ≤ j ≤ 2n, has to be applicable in sj−1, and G has to
hold in the resulting state, i.e. G ⊆ s2n. In addition, Πe has
to respect the contexts of temporal actions. Specifically, for
each (a, t) ∈ Π, let j and k be the indices of starta and enda

in Πe. Event sequence Πe respects the context of a if and
only if preo(a) ⊆ si, j ≤ i < k, i.e. the context has to hold
in each intermediate state between the start and end of a.

Sequential Temporal Planning
A temporal plan Π is sequential if its induced event
sequence is Πe = 〈starta1 , enda1 , . . . , startan , endan〉,
i.e. temporal actions are fully applied in sequence, one by
one. A temporal instance P is sequential if there exists a se-
quential plan Π solving P . P is inherently sequential if all
its solutions can be rescheduled to form a sequential plan.

To solve a sequential temporal instance, we can map each
temporal action a ∈ A to a compressed action (Coles et al.
2009), i.e. a classical action ca that simulates all of a at once.
Formally, the compressed action ca is defined as follows:

• pre(ca) = pres(a) ∪ ((preo(a) ∪ pree(a)) \ adds(a)),
• add(ca) = (adds(a) \ dele(a)) ∪ adde(a),
• del(ca) = (dels(a) \ adde(a)) ∪ dele(a).
The precondition of ca is the union of the precondition at
start of a with the preconditions over all and at end not
achieved by the add effect at start. The effect of ca is the
effect at start of a followed immediately by its effect at end.

An approach to solving a sequential temporal instance P
comprises three steps: 1) compiling P into a classical in-
stance Pc = 〈F,Ac, I, G〉 where Ac = {ca : a ∈ A} is the
set of compressed actions; 2) computing a solution Π′ to Pc

using a classical planner; and 3) scheduling Π′ to reduce the
makespan, e.g., extracting a partial order from the sequen-
tial plan (Veloso, Perez, and Carbonell 1990). Since com-
pression may discard contexts, scheduling has to ensure that
contexts are preserved. Evidently, temporal planners follow-
ing this approach are incomplete: they cannot solve, nor in-
deed represent, temporal instances that are not sequential.

The TP Planner
In this section we describe the TP planner, which partially
compiles temporal instances into classical instances, adapt-
ing the TEMPO algorithm (Cushing, Kambhampati, and
Weld 2007). TP can be applied to any temporal instance, but
is not always complete; we discuss the limitations regarding
completeness at the end of this section.

The TEMPO Algorithm
TEMPO is based on lifted temporal states, i.e. tuples N =
〈s,A, τe, T 〉, where s is a state on fluents,A is a set of active
temporal actions (that started but not yet ended), τe is a time
variable associated with the latest event (i.e. τe = τa or τe =
τa + d(a), depending on whether the latest event was starta
or enda, where time variable τa models the start time of a),
and T is a set of temporal constraints on time variables.

To plan, TEMPO uses two successor rules: Fattening, for
starting an action, and Advancing Time, for ending it. When
action a starts in lifted temporal stateN , Fattening generates
a successorN ′ = 〈s⊕ starta,A∪ {a}, τa, T ∪ {τe < τa}〉.
The rule updates the state as a result of applying starta to the
current state, adds a to the set of active actions and forces a
to start after the latest event e. Fattening is applicable in N
if the preconditions at start and over all of a hold in s and
starta does not delete the context of another active action.

When a ends inN , Advancing Time generates a successor
N ′ = 〈s⊕enda,A\{a}, τa +d(a), T ∪{τe < τa +d(a)}〉.
The rule applies enda, removes a from the set of active ac-
tions and forces a to end after e. Advancing Time is applica-
ble in N if a ∈ A, the precondition at end of a holds in s,
and enda does not delete the context of another active action.

TEMPO plans by starting and ending actions, updating the
lifted temporal state accordingly. When TEMPO finds a se-
quential plan, it uses the temporal constraints to schedule
the start time of each temporal action a, i.e. assign a value
to τa. However, it might not be possible to schedule actions
in a way that satisfies the temporal constraints. In theory, we
would then backtrack and try different event sequences. Our
approach is to schedule actions online during planning.
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Compiling Temporal Actions
We simulate the Fattening and Advancing Time rules of
TEMPO using classical actions starta and enda, respectively,
compiled from the temporal action a.

Coles et al. (2009) identified three key challenges associ-
ated with compiling temporal actions into classical actions:

1. Ensure that temporal actions end before reaching the goal.
2. Ensure that contexts are not violated.
3. Ensure that temporal constraints are preserved.
Our compilation addresses the first two challenges by defin-
ing extra preconditions and effects of starta and enda. A
potential bottleneck is the large branching factor that results
from being able to start and/or end temporal actions arbi-
trarily. We therefore introduce a bound K on the number of
active actions, i.e. the size of the set A. The third challenge
is addressed by modifying the Fast Downward planning sys-
tem, as explained in the next section.

Let P = 〈F,A, I,G〉 be a temporal instance and define
Fo = {f ∈ F : ∃a ∈ A s.t. f ∈ preo(a)} as the subset of
fluents that appear as contexts. We compile P into a classical
instance PK = 〈FK , AK , IK , GK〉, where the set of fluents
FK extends F with the following new fluents:
• For each a ∈ A, fluents freea and activea indicating that
a is free (did not start) or active (started but did not end).
• For each f ∈ Fo and 0 ≤ l ≤ K, a fluent countlf indicat-

ing that l active actions have f as context.
As a result, the number of fluents of the classical instance
PK is given by |FK | = |F |+ 2|A|+ (K + 1)|Fo|.

The initial state and goal condition of PK are defined as
IK = I ∪ {count0

f : f ∈ Fo} ∪ {freea : a ∈ A} and
GK = G ∪ {freea : a ∈ A}. Initially, no active actions
require contexts, and temporal actions are free both initially
and in the goal. The new action set AK contains starta and
enda for each temporal action a ∈ A, with starta defined as

pre(starta) = pres(a) ∪ (preo(a) \ adds(a)) ∪ {freea}
∪ {count0

f : f ∈ Fo ∩ dels(a)},
add(starta) = adds(a) ∪ {activea},
del(starta) = dels(a) ∪ {freea}.

Likewise, enda is defined as
pre(enda) = pree(a) ∪ {activea}

∪ {count0
f : f ∈ Fo ∩ dele(a)},

add(enda) = adde(a) ∪ {freea},
del(enda) = dele(a) ∪ {activea}.

In addition, the action starta includes a conditional effect
{countlf}B {¬countlf , countl+1

f } for each f ∈ preo(a) and
each l, 0 ≤ l < K, effectively incrementing the count for f .
Likewise, enda decrements the count for each f ∈ preo(a).

To start a, all contexts of a not added at start should al-
ready hold. Moreover, a should be free and not delete any
active context at start, i.e. the count of all delete effects at
start should be 0. As a result, a is active and no longer free.
To end a, a should be active and not delete any active context
at end. As a result, a is free and not active.

a[5]

b[4]

c[1]

1. τa + 0.001 ≤ τb,
2. τb + 0.001 ≤ τc,
3. τc + 0.001 ≤ τc + 1,
4. τc + 1 + 0.001 ≤ τa + 5,
5. τa + 5 + 0.001 ≤ τb + 4.

Figure 1: Example event sequence and induced constraints.

Preserving Temporal Constraints
Temporal constraints on time variables can be represented
using simple temporal networks, or STNs (Dechter, Meiri,
and Pearl 1991). An STN is a directed graph with time vari-
ables τi as nodes, and an edge (τi, τj) with label c represents
a constraint τj − τi ≤ c. Dechter, Meiri, and Pearl showed
that scheduling fails if and only if an STN contains nega-
tive cycles. Else the earliest feasible assignment to a time
variable τi is given by the cost of the shortest path from
τi to a reference time variable τ0, assumed to be 0. Floyd-
Warshall’s shortest path algorithm can be used to compute
shortest paths and test for negative cycles (i.e. whether the
cost of a shortest path from a node to itself is negative).

To construct STNs we introduce a slack unit of time u
such that the constraint τa < τb in TEMPO becomes τa+u ≤
τb. As a result, each event introduces slack u, so we should
set u small enough as to not interfere with the duration of
actions. Throughout the paper we use u = mina d(a)/1000.

Figure 1 shows three overlapping actions a, b, and c with
duration 5, 4, and 1, respectively, and the induced constraints
on their associated events (the example is taken from Cush-
ing, Kambhampati, and Weld, 2007). The fifth constraint
subsumes the first, and the third is trivially satisfied. The
corresponding STN contains no negative cycles, and a plan
is given by {(a, 0), (b, 1.001), (c, 1.002)}, where τa is the
reference time variable assumed to be 0 since a starts first.

Instead of attempting to model an STN and simulate
Floyd-Warshall in PDDL, we implement these components
as part of the Fast Downward planning system (Helmert
2006). A search node in Fast Downward contains the current
state and bookkeeping information. We add a list of active
actions and an STN representing the temporal constraints to
the bookkeeping information, such that a search node fully
represents a temporal state. Each time a compiled action is
applied (either starta or enda for some a), the STN is up-
dated with a single (quadratic) sweep of Floyd-Warshall,
pruning search nodes for which the STN contains negative
cycles, i.e. when scheduling fails.

It is easy to show that the resulting planner is sound: if the
planner returns a sequential plan, the temporal actions can
be scheduled in a way that preserves the event order of the
plan. Cushing, Kambhampati, and Weld (2007) showed that
TEMPO is complete for asynchronous events, but our imple-
mentation is incomplete for two other reasons: 1) the bound
K on the number of concurrent active actions; and 2) the
fact that the planner prunes duplicate states. The bookkeep-
ing information stored in search nodes, which is where we
represent part of the temporal state, is ignored when check-
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ing for duplicate states. The first problem could be addressed
by iteratively increasing the bound K. A possible solution
to the second problem is to rerun the search without pruning
duplicate states. In experiments, the planner either always
returned a plan or ran out of memory, never reporting that
a problem was unsolvable. This suggests but does not prove
that pruning duplicate states is not a serious issue in practice.

The TPSHE Planner
In this section we introduce the TPSHE planner which, un-
like TP, fully compiles temporal instances into classical in-
stances. TPSHE can be applied to any temporal instance, and
can solve temporal instances that are not sequential as long
as the following assumptions hold:

1. The only required concurrency is in the form of single
hard envelopes (Coles et al. 2009).

2. Temporal actions are instantiated from temporal action
templates (as in PDDL), each with a fixed duration.

3. One single hard envelope is sufficient to satisfy each con-
text of an associated content action.

We first define single hard envelopes, then introduce the con-
cept of a concurrency graph, and finally describe TPSHE.

Single Hard Envelopes
To define single hard envelopes we first introduce the notion
of a temporary resource, or resource for short. Given a tem-
poral planning instance P , a resource is a fluent f ∈ F such
that f /∈ I and one of the following holds for each a ∈ A:

1. f does not appear in any effect of a, or

2. f ∈ adds(a) ∩ dele(a).

An action a of the second type is a producer of f , adding f
at start and deleting f at end. Consequently, a resource f is
only available during the execution of one of its producers.

Coles et al. (2009) define a single hard envelope as a tem-
poral action a that adds a fluent f at start and deletes it at
end, i.e. f ∈ adds(a) ∩ dele(a). We extend the definition in
two ways. First, we require f to be a resource, i.e. a is a pro-
ducer of f . Second, there has to exist another action b (the
content) with shorter duration than a that has f as context,
i.e. d(b) < d(a) and f ∈ adds(a) ∩ dele(a) ∩ preo(b).

Concurrency Graph
We use the (single hard) envelopes of a temporal instance
to construct a concurrency graph, based on assumption 2
above. The concurrency graph G = (V,E) has the temporal
action templates as nodes, and an edge (n1, n2) ∈ E indi-
cates that each action b instantiated from n2 is the content
of some envelope a instantiated from n1. Figure 2 shows the
resulting concurrency graph of the TMS domain. This graph
indicates, among other things, that fire-kiln1 actions are en-
velopes for bake-ceramic3 and bake-structure actions.

Since contents are completely contained in envelopes, the
edges of G represent a nesting relation among actions. Our
idea is to use a stack to simulate the execution of such nested
actions. When an action starts, we push it onto the stack, and

fire-kiln2

fire-kiln1

bake-ceramic1

bake-ceramic2

bake-ceramic3

bake-structure

treat-ceramic1

treat-ceramic2

treat-ceramic3

make-structure

Figure 2: The concurrency graph of the TMS domain.

when an action ends, we pop it from the stack. We use G to
infer on what levels of the stack each action should appear.

Let L be the depth of G, i.e. the maximum length of any
directed path. L is well-defined since G is acyclic due to the
condition d(b) < d(a) on envelopes. For each action a, let
L(a) ⊆ {0, . . . , L} be the set of levels of a, i.e. lengths of
incoming directed paths to the associated template. In Fig-
ure 2, L = 2, and both fire-kiln1 and make-structure actions
have level 0, while treat-ceramic2 actions have level 2.

Compiling Single Hard Envelopes
Our compilation models single hard envelopes using a stack
of active actions, i.e. that started but not yet ended. Only
envelope actions and their remaining duration are stacked;
all other actions are compiled into compressed actions. This
construction is based on assumption 3 above: only one en-
velope is needed to provide the contexts of each content.

We first precompute all combinations of possible remain-
ing durations of envelopes. Each envelope amay have multi-
ple contents; let {d1, . . . , dk} be the set of durations of con-
tents of a. The set of remaining durations of a is D(a) =
{d(a)−

∑
i widi : ∀i, wi ∈ N ∧

∑
i widi < d(a)}. We de-

fine D(a) = {d(a)} for non-envelopes and D =
⋃

aD(a).
Formally, a temporal instance P = 〈F,A, I,G〉 is com-

piled into a classical instance PSHE = 〈F ′, A′, I ′, G′〉. The
set F ′ includes fluents in F plus the following extra fluents:

• For each envelope a ∈ A and level l ∈ L(a), a fluent
activela indicating that a is active on level l of the stack.

• For each f ∈ Fo and 0 ≤ l ≤ L, a fluent countlf indicat-
ing that l active actions have f as context.

• For each 0 ≤ l ≤ L, a fluent stackl indicating that the
stack contains l active actions.

• For each d ∈ D and 0 ≤ l < L, a fluent reml
d indicating

that the active action on level l has remaining duration d.

• For each duration pair d, e ∈ D such that d − e ∈ D, a
static fluent sub(d, e, d− e) representing subtraction.

The total number of fluents of PSHE is bounded by |F ′| ≤
|F |+ L|A|+ (L+ 1)(|Fo|+ 1) + L|D|+ |D|(|D|−1)

2 .
The initial state represents an empty stack and initializes

counts and subtractions, i.e. I ′ = I ∪ {stack0} ∪ {count0
f :

f ∈ Fo} ∪ {sub(d, e, d − e) : d, e ∈ D s.t. d − e ∈ D}.
The goal condition verifies that goals are achieved and that
no actions are still executing, i.e. G′ = G ∪ {stack0}.
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For each envelope a ∈ A, each level l ∈ L(a) and each
pair of durations d, e ∈ D, A′ contains two classical actions
pushl

a(d, e) and popl
a(d). Action pushl

a(d, e) pushes a onto
level l of the stack and is defined as

pre(pushl
a(d, e)) = pres(a) ∪ (preo(a) \ adds(a))

∪ {stackl, reml−1
d , sub(d, e, d(a))}

∪ {count0
f : f ∈ Fo ∩ dels(a)},

add(pushl
a(d, e)) = adds(a)

∪ {stackl+1, reml−1
e , activela, reml

d(a)},

del(pushl
a(d, e)) = dels(a) ∪ {stackl, reml−1

d }.
If l > 0, d and e are used to subtract d(a) from the remaining
duration of the active action on level l− 1. If l = 0, parame-
ters d and e and associated preconditions and effects can be
removed. The stack size is incremented and a marked as ac-
tive on level l, setting its remaining duration to d(a). As be-
fore, pushl

a(d, e) increments the count for each f ∈ preo(a).
Action popl

a(d) pops a from level l of the stack:

pre(popl
a(d)) = pree(a) ∪ {stackl+1, activela, reml

d}
∪ {count0

f : f ∈ Fo ∩ dele(a)},

add(popl
a(d)) = adde(a) ∪ {stackl},

del(popl
a(d)) = dele(a) ∪ {stackl+1, activela, reml

d}.
Popping a is only possible if a is active on level l and on top
of the stack. As a result, the stack size is decremented, a is
no longer active and has no remaining duration. As before,
popl

a(d, e) decrements the count for each f ∈ preo(a).
For each action a ∈ A that is not an envelope, each level

l ∈ L(a) and each pair of durations d, e ∈ D, the set A′

contains a compressed action cla(d, e) defined as

pre(cla(d, e)) = pre(ca) ∪ {stackl, reml−1
d , sub(d, e, d(a))}

∪ {count0f : f ∈ Fo ∩ del(ca)},

add(cla(d, e)) = add(ca) ∪ {reml−1
e },

del(cla(d, e)) = del(ca) ∪ {reml−1
d }.

Here, ca is the compressed action of temporal action a. As
before, if l > 0, d and e are used to subtract d(a) from the
remaining duration of the active action on level l − 1.

We show that the proposed compilation is sound. Given
a plan for the classical instance PSHE , we first schedule all
actions at level 0 of the stack in sequence. We then schedule
each action a at level 1 or higher either immediately after
its envelope started, or immediately after the previous action
ended (in case another action was applied inside the same
envelope). The resulting plan is valid since the induced event
sequence is the same as in the solution to PSHE (thus reach-
ing the goal G), and the remaining duration of an envelope
cannot fall below 0 due to preconditions of type sub.

Implementation
In this section we describe implementation issues and opti-
mizations for TPSHE. Although stack levels and durations
could be represented using numeric fluents, planners that

support numeric fluents performed poorly on PSHE in test-
ing. Instead, we represent stack levels as objects, associate
each duration d ∈ D with a unique time object and replace
durations with time objects in fluents sub(d, e, d − e) and
reml

d and actions pushl
a(d, e), popl

a(d) and cla(d, e).
In some domains, the parameters d and e of actions

pushl
a(d, e), popl

a(d) and cla(d, e), l > 0, cause a signifi-
cant blowup in the number of actions. To reduce the number
of actions, we split all such actions into two parts. The sec-
ond part of the action is only responsible for updating the
remaining duration of active actions, while the first part is
responsible for all other effects. The key property is that the
first part no longer needs duration parameters. To control the
sequential application of each new pair of actions generated
this way, we introduce an intermediate fluent that is an add
effect of the first and a precondition and delete effect of the
second. In some domains, the number of actions is reduced
by more than an order of magnitude due to this optimization.

Finally, a context of an envelope is only threatened if one
of its contents deletes the context. We can thus traverse the
concurrency graph to test whether a context f is threatened.
If not, there is no need to maintain a count for f , nor the
associated preconditions and effects.

Separable Temporal Instances
In this section we introduce two novel classes, SEPs and
SEPe, of temporal planning instances that are provably (in-
herently) sequential. Intuitively, the idea is to identify con-
ditions under which it is always possible to transform a par-
allel plan into a sequential plan by repeatedly separating a
temporal action from the remaining actions.

Our definitions of SEPs and SEPe are based on separabil-
ity and mutual exclusion, which we define in turn.
Definition 1 Let P be a temporal instance. Action a ∈ A is
separable at start from b ∈ A if all the following holds:

1. pree(a) ∩ adds(b) = ∅,
2. dele(a) ∩ pres(b) = ∅,
3. dele(a) ∩ adds(b) = ∅ and adde(a) ∩ dels(b) = ∅,
4. If d(b) < d(a),

(a) pree(a) ∩ adde(b) = ∅,
(b) dele(a) ∩ (preo(b) ∪ pree(b)) = ∅,
(c) dele(a) ∩ adde(b) = ∅ and adde(a) ∩ dele(b) = ∅.

Intuitively, if a and b appear in parallel with a starting first,
Conditions 1–4 ensure that we can reschedule enda before
startb and endb such that the partial event sequence on a and
b becomes 〈starta, enda, startb, endb〉.
Definition 2 Let P be a temporal instance. Action a is sep-
arable at end from b if all the following holds:

5. pres(a) ∩ dele(b) = ∅,
6. adds(a) ∩ pree(b) = ∅,
7. dels(a) ∩ adde(b) = ∅ and adds(a) ∩ dele(b) = ∅,
8. If d(b) < d(a),

(a) pres(a) ∩ dels(b) = ∅,
(b) adds(a) ∩ (pres(b) ∪ preo(b)) = ∅,
(c) dels(a) ∩ adds(b) = ∅ and adds(a) ∩ dels(b) = ∅.
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Intuitively, if a ends last, Conditions 5–8 ensure that we can
reschedule starta after startb and endb to achieve the partial
event sequence 〈startb, endb, starta, enda〉.
Definition 3 Let P be a temporal instance. Two temporal
actions a and b are mutually exclusive if they cannot overlap
in a plan Π for P . For each copy (a, ta) ∈ Π of a, each copy
(b, tb) ∈ Π of b satisfies tb + d(b) < ta or ta + d(a) < tb,
i.e. b has to end before a starts or start after a ends.

One way to detect mutually exclusive temporal actions is
to identify mutex invariants. In classical planning, a mutex
invariant is a subset of fluents C ⊆ F such that at most one
is true at any moment, i.e. |I ∩ C| = 1 and each action that
adds a fluent in C deletes another. We modify the definition
for temporal planning as follows. A subsetC ⊆ F is a mutex
invariant if and only if |I ∩ C| = 1 and for each a ∈ A it
holds that adds(a) ∩ C = dele(a) ∩ C = ∅ and either

1. dels(a) ∩ C = adde(a) ∩ C = ∅, or
2. |pres(a) ∩ dels(a) ∩ C| = 1 and |adde(a) ∩ C| = 1.
While an action of the first type has no effect on fluents inC,
an action of the second type is a modifier of C, requiring a
fluent in C as precondition at start, deleting the same fluent
at start, and adding a fluent in C at end. Note that during the
execution of a modifier, no fluent in C is true, thus prevent-
ing other modifiers of C from starting. Hence all modifiers
ofC are mutually exclusive. We envision that there are other
ways to detect mutually exclusive temporal actions.

We are now ready to define the class SEPs, and show that
temporal instances in this class are (inherently) sequential.
Definition 4 A temporal instance P belongs to the class
SEPs if and only if, for each pair (a, b) ∈ A, either a and b
are mutually exclusive or a is separable at start from b.

Lemma 5 Each instance P ∈ SEPs is inherently sequential.

Proof Let Π be an arbitrary plan solving P and let Πe =
〈e1, . . . , e2n〉 be the induced event sequence. Let a be the
temporal action that starts first, i.e. e1 = starta, and let i
be the index of enda. We first show that the event sequence
〈e1, ei, e2, . . . , ei−1, ei+1, . . . , e2n〉 solves P . We can thus
reschedule enda immediately after starta. We then show that
repeatedly applying this process results in a sequential plan.

Consider another action b ∈ A. If a and b are mutually
exclusive, events e2, . . . , ei−1 cannot involve b, else a and
b would overlap in Π, leading to a contradiction. Else the
definition of SEPs implies that a is separable at start from b.
In this case, startb could be among e2, . . . , ei−1, as well as
endb if d(b) < d(a). If d(b) ≥ d(a) there is not enough time
to start and end b during the execution of a.

We now show that the sequence 〈e1, ei, e2, . . . , ei−1〉 is
applicable in I and results in the same state as 〈e1, . . . , ei〉.
• Let f be a precondition at end of a. Due to Conditions 1

and 4.a of Definition 1, e2, . . . , ei−1 cannot add f . Since
f holds in I ⊕ e1 ⊕ · · · ⊕ ei−1, f also holds in I ⊕ e1.
• Let f be a precondition of ej , 2 ≤ j < i. Due to Condi-

tions 2 and 4.b of Definition 1, a cannot delete f at end.
Since f holds in I ⊕ e1 ⊕ · · · ⊕ ej−1, f also holds in
I ⊕ e1 ⊕ ei ⊕ e2 · · · ⊕ ej−1. If ej = endb for some b,
Condition 4.b also ensures that no context of b is deleted.

• Conditions 3 and 4.c ensure that no effect at end of a is
“undone” by an event among e2, . . . , ei−1. Likewise, no
effect of e2, . . . , ei−1 is undone by ei. Thus it holds that
I ⊕ e1 ⊕ ei ⊕ e2 ⊕ · · · ⊕ ei−1 = I ⊕ e1 ⊕ · · · ⊕ ei.

It is easy to reschedule the actions in Π to form a new plan Π′

whose event sequence is 〈e1, ei, e2, . . . , ei−1, ei+1, . . . , en〉:
simply add d(a) to the start time of each action except a.

Once we have separated action a we can repeat the proce-
dure for the remaining actions. Definition 1 guarantees that
we can always separate the action starting first among the re-
maining actions. Applying this process repeatedly will even-
tually result in a sequential plan solving P . �

The definition of the class SEPe is analogous:

Definition 6 A temporal instance P belongs to the class
SEPe if and only if, for each pair (a, b) ∈ A, either a and b
are mutually exclusive or a is separable at end from b.

Lemma 7 Each instance P ∈ SEPe is inherently sequential.

Proof sketch Analogous to the proof of Lemma 5, but in-
stead of separating out the action a starting first from a given
parallel plan, we separate out the action a ending last. �

Cushing, Kambhampati, and Weld (2007) defined a fam-
ily Lpre

eff of temporal planning languages by restricting the
preconditions and effects of actions to the types in pre and
eff (e.g. Ls

e only admits actions with preconditions at start
and effects at end). The authors defined a topology of tem-
poral planning languages and showed that Ls, L

s
s, L

o
s, L

s,o
s

and Le, L
e
e, L

o
e, L

o,e
e are temporally simple, i.e. all instances

expressed in these languages are inherently sequential.
We show that temporal planning instances expressed in

Ls, L
s
s, L

o
s, L

s,o
s belong to the class SEPs and that those ex-

pressed in Le, L
e
e, L

o
e, L

o,e
e belong to the class SEPe. Condi-

tions 1–3 of Definition 1 and Conditions 5–7 of Definition 2
hold for any planning instance expressed in these languages
because they relate at start components with at end compo-
nents. In addition, in the case ofLs, L

s
s, L

o
s, L

s,o
s , Conditions

4.a–4.c of Definition 1 also hold since they refer to at end
components. Likewise, in the case of Le, L

e
e, L

o
e, L

o,e
e , Con-

ditions 8.a–8.c of Definition 2 refer to at start components.
Our definitions of SEPs and SEPe provide additional in-

sight, enabling us to detect (inherently) sequential tempo-
ral instances despite the fact that they are represented in
temporally expressive languages. In particular, any instance
belonging to the most expressive temporal language Ls,o,e

s,e
is identified as (inherently) sequential if either the SEPs or
SEPe conditions hold for each pair of actions.

Extension to Single Hard Envelopes
In this section we define two classes SHE1

s and SHE1
e of

temporal instances, similar to the classes SEPs and SEPe.
We show that the TPSHE planner is complete for instances
in SHE1

s and SHE1
e. Note that our definition of a single hard

envelope violates Conditions 4.b and 8.b of Definitions 1 and
2. Hence, as expected, temporal instances with envelopes be-
long to neither SEPs nor SEPe.

Unlike the class SEPs, the class SHE1
s admits single hard

envelopes. Given a content b ∈ A, let env(b) ⊆ preo(b) be
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the subset of contexts of b provided by envelopes. To define
SHE1

s we first modify Condition 4.b of Definition 1:

4(b) dele(a) ∩ ((preo(b) \ env(b)) ∪ pree(b)) = ∅.
Hence for a to be separable at start from b, a is allowed
to delete contexts in env(b) at end. This is possible since
we will ensure that b remains inside another envelope that
provides the contexts in env(b).

The superscript 1 in SHE1
s indicates that a single envelope

is sufficient to provide the contexts in env(b) (cf. assumption
3 for TPSHE). Formally, SHE1

s is defined as follows:

Definition 8 A temporal instance P belongs to the class
SHE1

s if and only if a single envelope is sufficient to pro-
vide the contexts in env(b) of each content b ∈ A and one of
the following holds for each pair (a, b) ∈ A:

1. Actions a and b are mutually exclusive,
2. Action a is not a content of any envelope and is separable

at start from b,
3. Action a is a content of some envelope and can be

rescheduled before b, i.e. we can always order starta and
enda before startb, even if starta occurs after endb.

For space reasons we do not formalize Condition 3, which
is stronger than separability at start. For a to be separable at
start from b, we only require the end of a to be rescheduled
before b. On the contrary, Condition 3 requires the start of
a to be rescheduled before b, even if a starts after b ends.
In other words, if the partial event sequence on a and b is
〈startb, endb, starta, enda〉, we can reschedule a and b such
that the event sequence becomes 〈starta, enda, startb, endb〉,
without affecting the applicability of these and other events.

Lemma 9 TPSHE is complete for instances in SHE1
s.

Proof sketch Given an instance P ∈ SHE1
s, let Π be an ar-

bitrary plan solving P . For Π to solve P , each content has to
be completely contained inside at least one of its envelopes.
Assign each content to one such envelope, such that each
envelope has an associated set of contents.

Similarly to the proof of Lemma 7 we can separate the
temporal action starting first from the remaining actions.
However, if the action starting first is an envelope, we sep-
arate it together with all its contents. In doing so, we might
have to reschedule a content action before other events,
which is safe due to Condition 3 of Definition 8.

Consequently, each plan for P has a sequential form in
which concurrency is only in the form of contents nested
inside envelopes. This is precisely the kind of solution that
TPSHE models. In particular, if such a solution exists, it will
also be a solution to the compiled instance PSHE . �

For space reasons we omit the definition of SHE1
e. Note

that although TPSHE is not provably complete for instances
outside SHE1

s and SHE1
e, we can always apply the com-

pilation: if there are no single hard envelopes, all temporal
actions are simply compiled into compressed actions.

Results
We performed an evaluation in all 10 domains of the tempo-
ral track of IPC-2014: seven with sequential instances, and

three (MATCHCELLAR, TMS, TURN&OPEN) that involve
single hard envelopes. Moreover, we added the DriverLog
Shift (DLS) domain (Coles et al. 2009) that includes single
hard envelopes, a domain based on Allen’s interval algebra
(AIA) (Allen 1983) that models relations between intervals,
and a domain based on the example in Figure 1 (EXAMPLE).

To classify a temporal instance P , we ran Fast Down-
ward’s translator on the compressed instance Pc to identify
(classical) mutex invariants. We used these to identify tem-
poral mutex invariants for the original temporal instance P ,
and marked all modifiers of a mutex invariant as mutually
exclusive. We then checked membership in the separable
classes. As it turns out, instances of DRIVERLOG, FLOOR-
TILE, and PARKING provably belong to the class SEPs, and
instances of MATCHCELLAR belong to SHE1

s. Instances of
other domains do not fall into any of the proposed classes.

We ran the TP planner with three bounds on the number
of active actions: K = 1, K = 2 and K = 3. The TP-
SHE planner used the LAMA-2011 setting of Fast Down-
ward to solve the compiled instance. We compared our plan-
ners with the following planners from IPC-2014 (Chrpa,
Vallati, and McCluskey 2014): ITSAT, the best performer
in domains that required concurrency, the temporal version
of Fast-Downward (TDF), and YAHSP3-MT, the best per-
former in sequential domains (and overall winner). We also
included POPF2, the runner-up at IPC-2011. Table 1 shows,
for each planner, the IPC quality score and the coverage,
i.e. the number of instances solved per domain. Experiments
were run on a cluster of Linux AMD Opteron processors at
2.4 GHz, with a cutoff of 1h or 4.2GB of RAM memory.

The TPSHE planner solved at least one instance in all but
one domain, and obtained the highest IPC score and cover-
age. We remark that we were unable to reproduce the results
of YAHSP3-MT from IPC-2014, where it solved more in-
stances in DRIVERLOG, FLOORTILE and STORAGE. Even
so, the coverage of TPSHE on domains from IPC-2014 was
155, compared to 97 of YAHSP3-MT, the winner.

The only domains with required concurrency not in the
form of single hard envelopes are AIA and EXAMPLE.
Specifically, three instances of AIA require events to occur
in parallel; these were not solved by any planner. As pre-
viously mentioned, TP and TPSHE can only handle asyn-
chronous events. As expected, TP(1) and TPSHE could not
solve any instance in EXAMPLE, but TP(2) and TP(3) solved
all of them. The additional machinery of TP made it compa-
rably slow in many other domains, however.

Regarding quality, TPSHE generates comparably long
plans in many domains, especially TMS and DLS where IT-
SAT is able to exploit parallelism to generate much shorter
plans. This is due to two issues: 1) TPSHE completely ig-
nores duration when solving an instance, and 2) our stack-
based compilation does not enable actions to execute in par-
allel inside an envelope. In the future we plan to address the
first issue by assigning costs to actions that depend on the
duration. ITSAT also generates very long plans in some do-
mains, however, notably PARKING and AIA.
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TP(1) TP(2) TP(3) TPSHE ITSAT POPF2 TFD YAHSP3-MT
DRIVERLOG[20] 1.18/4 0.98/3 0.96/3 18.26/20 1/1 - - 1.68/4
FLOORTILE[20] - - - 4.92/5 19.47/20 - - 1.69/2
MAPANALYSER[20] - - - 13.84/20 - - 15.85/17 15.24/20
MATCHCELLAR[20] - - - 15.79/20 19/19 - 20/20 -
PARKING[20] 5.43/20 5.43/20 5.43/20 9.35/20 1.29/6 1/1 13.01/20 19.14/20
RTAM[20] - - - 12.21/15 - - - 17.57/20
SATELLITE[20] 6.35/17 5.44/14 4.54/12 16.64/18 - 1/1 14.35/17 13.70/20
STORAGE[20] 5.26/9 - - 9/9 - - - -
TMS[20] - - - 0.06/9 18/18 - - -
TURN&OPEN[20] - - - 14.03/19 6.57/7 3.72/4 13.16/18 -
DLS[20] - 2.51/7 2.51/7 2.77/13 20/20 - 1/1 -
AIA[9] 2.09/3 3.26/6 3.26/6 2.22/3 0.74/6 - 6/6 2.22/3
EXAMPLE[20] - 17.28/20 18.60/20 - - - 2.86/3 -
TOTAL 20.31/53 34.90/70 35.30/68 119.09/171 86.07/97 5.72/6 86.23/102 71.24/89

Table 1: IPC quality score / coverage per domain for each planner. Total number of instances of each domain within brackets.

Related work
Several authors have proposed compiling temporal planning
actions into multiple classical actions. An early approach,
LPGP (Long and Fox 2003), turned out to be unsound and
incomplete since it failed to address the three challenges
identified by Coles et al. (2009), outlined above. Cooper,
Maris, and Régnier (2013) provided theoretical justification
for splitting durative actions into classical actions.

Certainly, the planners most similar to ours are CRIKEY
and CRIKEYSHE (Coles et al. 2009), as well as their succes-
sors, POPF (Coles et al. 2010) and OPTIC (Benton, Coles,
and Coles 2012). CRIKEY maintains a set of envelopes and
associates an STN with each envelope. Each envelope (and
its associated STN) are potentially updated each time a new
action is chosen. Our approach has two main advantages
over CRIKEY. First, compiling as much as possible of the
temporal instance into classical planning enables the appli-
cation of well-studied heuristics. Second, maintaining a sin-
gle STN (as opposed to multiple STNs) and letting the plan-
ner handle interactions automatically appears simpler.

Just like our compilation, CRIKEYSHE only handles re-
quired concurrency in the form of single hard envelopes. Un-
like our compilation, however, CRIKEYSHE is based on the
same machinery as CRIKEY, using STNs to detect unsatis-
fiable temporal constraints. In contrast, our compilation per-
forms this test directly in the encoding, using the precondi-
tion {reml−1

d , sub(d, e, d(a))} to test whether the remaining
duration d of an envelope a′ is sufficiently large to accom-
modate an action a with duration d(a) inside a′. Compiling
the entire temporal instance into classical planning makes it
possible to use any planner to solve the instance.

Rintanen (2007) proposed another compilation from tem-
poral to classical planning that explicitly represents time
units as objects. The compilation includes classical actions
that start temporal actions, and keeps track of time elapsed
in order to determine when temporal actions should end. The
compilation only handles integer durations, potentially mak-
ing the planner incomplete when events have to be scheduled
fractions of time units apart. As far as we know, the compila-

tion has never been implemented as part of an actual planner.

Conclusion
This work makes several contributions to temporal planning.
First, we propose a planner, TP, that adapts the TEMPO al-
gorithm (Cushing, Kambhampati, and Weld 2007) by par-
tially compiling temporal actions into classical planning. We
also introduce a novel compilation from temporal planning
with single hard envelopes to classical planning, thereby de-
vising a planner, TPSHE, competitive with state-of-the-art
temporal planners. Another contribution is identifying novel
classes of temporal instances that are provably sequential.

Although we cannot safely claim that TP subsumes TP-
SHE, TP can handle forms of required concurrency that TP-
SHE cannot. As results from the IPC show, however, in-
complete planners can exploit the structure of temporal in-
stances, which often pays off in terms of performance. TP-
SHE can be seen as an extension of purely sequential plan-
ners to handle the specific case of single hard envelopes.

Our vision of a temporal planner is to first classify a tem-
poral instance according to several criteria, and then apply
an appropriate algorithm or compilation. We believe that our
notions of separability and mutual exclusion are first steps
in this direction, and that it should be possible to modify our
criteria to classify more benchmark domains as sequential.

One disadvantage of our planners is that they ignore infor-
mation about duration. In the future we will experiment with
assigning costs proportional to duration to compiled STRIPS
actions, which may reduce the makespan in some cases (but
will likely still not achieve optimal makespan). Another pos-
sible extension is to compile parallel events into classical
planning, which we believe could be done in a manner sim-
ilar to how conditional effects are handled by planners.
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