
Temporal Flexibility Revisited:
Maximizing Flexibility by Computing Bipartite Matchings

Simon Mountakis and Tomas Klos and Cees Witteveen
Algorithmics group, Department of Computer and Software Technology,

Delft University of Technology, NL-2628 CD, Delft, The Netherlands

Abstract

We discuss two flexibility metrics for Simple Temporal
Networks (STNs): the so-called naive flexibility metric
based on the difference between earliest and latest start-
ing times of temporal variables, and a recently proposed
concurrent flexibility metric. We establish an interesting
connection between the computation of these flexibility
metrics and properties of the minimal distance matrix
DS of an STN S: the concurrent flexibility metric can
be computed by finding a minimum weight matching of
a weighted bipartite graph completely specified by DS ,
while the naive flexibility metric corresponds to com-
puting a maximum weight matching in the same graph.
From a practical point of view this correspondence of-
fers an advantage: instead of using an O(n5) LP-based
approach, reducing the problem to a matching problem
we derive an O(n3) algorithm for computing the con-
current flexibility metric.

Introduction
Simple Temporal Networks (STNs) (Dechter, Meiri, and
Pearl 1991; Dechter 2003), offer a convenient framework for
modelling temporal aspects of scheduling problems, distin-
guishing between a set T of temporal variables and a set
C of linear difference constraints between them. STNs have
been used quite extensively in a number of different domains
where automated planning and scheduling are key issues,
such as manufacturing, maintenance, unmanned spacecraft
and robotics. One of the attractive properties of STNs is
that various important search and decision problems can be
solved quite efficiently. For example, deciding whether an
STN admits a schedule, finding such a schedule, as well as
finding a complete schedule extending a partial one are all
problems that can be solved in low-polynomial time.

Constructing one single schedule, however, for an STN is
often not sufficient. In quite some applications one has to re-
act immediately to possible disturbances without having the
time to recompute a new schedule. In such a case, instead of
one single schedule, we would like to have a set of sched-
ules available from which we can select in constant time a
suitable alternative. The availability of such a set of alterna-
tive schedules implies that the scheduler could offer some

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

amount of flexibility in scheduling: instead of determining a
fixed value for a temporal variable, a flexible schedule offers
for each temporal variable a set of values to choose from.
Clearly, such a flexibility is determined by properties of the
set C of constraints of an STN. Therefore, one would like to
specify a flexibility metric for STNs based on the properties
of this set C. One of the first proposals (Policella et al. 2004;
Pollack and Tsamardinos 2005) for such a flexibility met-
ric has been based on considering a (non-empty) interval
[est(t), lst(t)] for each temporal variable t ∈ T and defin-
ing the flexibility of an STN S as flex (S) = Σt∈T (lst(t)−
est(t)). Here, est(t) refers to the earliest time t can be ex-
ecuted in any feasible schedule for S and lst(t) to its latest
time. We will discuss this idea in more detail below.

As has been pointed out recently, this so-called naive flex-
ibility metric flex has some serious shortcomings. Its main
disadvantage is that, in general, it is far too optimistic with
respect to the available flexibility in an STN. The reason is
that the flexibility intervals [est(t), lst(t)] assigned to tem-
poral variables t, in general, are not independent: The flex-
ibility of two temporal variables together might be substan-
tially smaller than the sum of their individual flexibilities
(Wilson et al. 2013; 2014). As an alternative, these authors
proposed to assign flexibility intervals to temporal variables
such that these intervals are independent: for every t ∈ T , its
flexibility interval [t−, t+] enables one to make a choice for
a time point in the interval without any consequence for the
validity of the choices for other temporal variables. In their
paper they use a Linear Programming (LP) based approach
to compute this so-called concurrent flexibility metric flex∗

to show that it can be computed in polynomial time. They
do not, however, mention exact upper bounds for the time
complexity of computing this metric.

In this paper, we start by presenting a geometric inter-
pretation of the concurrent and the naive flexibility metric.
Then, by using duality theory, we show that there exists a
nice correspondence between (a slightly modified) minimal
distance matrixDS associated with an STN S and both flex-
ibility metrics. If this matrix DS is conceived as the spec-
ification of weights on the edges of a (complete) weighted
bipartite graph GS , then the value of the concurrent flexibil-
ity metric equals the costs of a minimum matching in GS ,
while the naive flexibility metric corresponds to the costs of
a maximum matching inGS . Using this correspondence, we

Proceedings of the Twenty-Fifth International Conference on Automated Planning and Scheduling

174

are able to deduce an efficient O(n3) algorithm for deter-
mining both the concurrent and naive flexibility of an STN.

Preliminaries
An STN is a pair S = (T,C), where T = {t0, t1, . . . , tn−1}
is a set of temporal variables and C is a finite set of bi-
nary constraints on T , each constraint having the form1

tj − ti ≤ cij , for some real number cij . A solution to S
is a schedule for S, that is, a function σ : T → R, assign-
ing a real value (time-point) to each temporal variable in T
such that all constraints in C are satisfied. If such a schedule
exists, we say that the STN is consistent.2 The time-point
t0 ∈ T , also denoted by z, is used to be able to express ab-
solute time constraints. It represents a fixed reference point
on the timeline, and is assigned the value 0.
Example 1. We consider two STNs S1 = (T1, C1) and S2 =
(T2, C2) where T1 = T2 = {z, t1, t2, t3} and

C1 = {0 ≤ ti − z ≤ 50 | i = 1, 2, 3},
C2 = C1 ∪ {0 ≤ ti − tj ≤ ∞ | 1 ≤ j < i ≤ 3}.

Every assignment σ1(ti) = vi ∈ [0, 50] is a schedule for
S1. On the other hand, a schedule σ2 for S2 has to satisfy
0 ≤ σ2(t1) ≤ σ2(t2) ≤ σ2(t3) ≤ 50.

Using a shortest path interpretation of an STN S = (T,C)
(Dechter 2003), there is an efficient method to find all tight-
est constraints implied by C, by searching for all shortest
paths between the time points in T using e.g. Floyd and War-
shall’s all-pairs shortest paths algorithm (Floyd 1962). The
n × n minimum distance matrix DS contains for every pair
of time-point variables ti and tj the length DS [i, j] of the
shortest path from ti to tj in the distance graph. In particu-
lar, the latest starting time lst(ti) and earliest starting time
est(ti) can be obtained directly from the first row and first
column of DS : lst(ti) = D[0, i] and est(ti) = −D[i, 0].
Given an STN S, this matrix DS can be computed in low-
order polynomial (O(n3)) time (Dechter 2003). Here, n de-
notes the number of temporal variables.

The following proposition is a restatement of Theorem 3.3
in (Dechter, Meiri, and Pearl 1991) and essentially states that
every STN is decomposable via its distance graph DS :
Proposition 1. Let S = (T,C) be an STN and DS its dis-
tance matrix. For i = 1, . . . , n− 1, let est(ti) = −DS [i, 0]
and lst(ti) = DS [0, i]. Then, for every schedule σ for S,
and every t ∈ T , it holds that σ(t) ∈ [est(t), lst(t)]. More-
over, given any t ∈ T and v ∈ [est(t), lst(t)], there exists a
schedule σ for S such that σ(t) = v.3

Finally, we assume that for each t ∈ T there is a finite
interval for scheduling it. In particular this means that for
each STN S = (T,C) we assume that for all t ∈ T , t ≥ z

1If both tj − ti ≤ cij and ti − tj ≤ cji are specified, we will
also use the more compact notation −cji ≤ tj − ti ≤ cij .

2Without loss of generality, in the remainder of the paper, we
assume that an STN to be consistent. Note that consistency of an
STN can be determined in low-order polynomial time (Dechter,
Meiri, and Pearl 1991).

3In fact it can be shown that there exists a simple backtrack-free
polynomial-time algorithm to construct such a schedule σ for S.

holds and there exists a finite constant (horizon) hS such
that for all t ∈ T it holds that t ≤ hS . This avoids the use of
unbounded time intervals such as −∞ ≤ ti − tj ≤ ∞.

The naive and the concurrent flexibility metric
Intuitively, a flexibility metric should indicate our freedom
of choice in choosing values for temporal variables such
that the constraints are satisfied. In the naive flexibility met-
ric one has chosen, for each variable t ∈ T , the inter-
val [est(t), lst(t)] to indicate this freedom of choice.4 The
naive flexibility of an STN S then is defined as flex (S) =∑
t∈T (lst(t)− est(t)). Obviously, since DS is computable

in O(n3) time, flex (S) can be computed in O(n3) time.
As we already mentioned, using flex (S) has a serious

disadvantage, due to dependencies that might exist between
temporal variables. We give a simple example to illustrate
these dependencies and their consequences.
Example 2. Consider the STNs presented in Example 1. For
both STNs it holds that est(ti) = 0 and lst(ti) = 50, for i =
1, 2, 3. Hence, flex (S1) = flex (S2) = 150. Intuitively, how-
ever, due to the ordering constraints between t1, t2 and t3,
the flexibility of S2 should be much lower: giving a flexibility
of f1 to t1 results in a flexibility of f2 = v2−f1 for t2, where
50 ≥ v2 ≥ f1, and a flexibility of 50− v2 for f3. The sum of
these flexibilities equals f1 + (v2 − f1) + (50 − v2) = 50,
one-third of the value of the naive flexibility for S2.

One way to see how these dependencies are neglected in
computing the naive flexibility flex (S) is to give a geometric
interpretation of this metric.

The solution space of a set of linear constraints is a poly-
tope. In (our) case of a consistent STN it is a bounded
polytope. The set of intervals {[est(ti), lst(ti)]}ni=1 can be
thought of as determining the smallest (hyper)cube contain-
ing this polytope. Clearly, if the polytope itself is not a hy-
percube, there are points in the hypercube that do not be-
long to the solution space of the STN. Exactly in these cases
flex (S) will overestimate the amount of flexibility of S.
Example 3. Consider again the STNs S1 and S2 as pre-
sented in Example 1. The polytope generated by C1 is
the large (hyper)cube depicted in Figure 1. This hyper-
cube equals the smallest hypercube containing the polytope,
hence flex (S1) = 50 + 50 + 50 is the real flexibility of
S1. The polytope generated by C2 is the shaded subspace
depicted in Figure 1. The smallest hypercube containing
it, however, equals the hypercube specified for S1. Hence,
flex (S2) = flex (S1) = 150: an overestimation of the flexi-
bility.

A new flexibility metric for STNs (Wilson et al. 2013) has
been introduced to overcome the disadvantages of flex (S).
Instead of determining the smallest outer bounding box (hy-
percube) containing the polyhedron generated by a set of
constraintsC, they determine the largest inner bounding box
contained in this polyhedron (see below for a computation).

4One of the reasons for this choice is that taking any value v ∈
[est(t), lst(t)] for t allows us, by decomposability (Proposition 1),
to extend the partial schedule σ(t) = v to a total schedule σ for an
STN S.

175

5050

50

t1 t2

t3

Figure 1: The polytope P1 generated by S1 is a cube with
edges of size 50; the polytope P2 generated by S2 is the
shaded subspace of P1. The inner bounding box of P2 is the
small green cube in the shaded area. The inner bounding box
of S1 and also the outer bounding box of S1 and S2 equal
P1.

An obvious advantage of such an inner bounding box is that
every point in the box belongs to the polyhedron (i.e. solu-
tion space) containing it.
Example 4. Consider again the STN S2. A largest inner
bounding box contained in the polytope determined by C2 is
the small box contained in the shaded area in Figure 1. All
its points are contained in the solution space of S2.

To construct a flexibility metric based on the largest inner
bounding box we have to make sure that for every constraint
tj − ti ≤ ci,j the flexibility intervals [t−i , t

+
i] and [t−j , t

+
j]

associated with ti and tj are independent, i.e., every value
vi and vj for ti and tj , respectively, chosen in these intervals
has to satisfy the constraint vj − vi ≤ ci,j . This is exactly
the case if tj assumes the maximum value and ti assumes
the minimum value in its interval, i.e., we have to ensure
that t+j − t

−
i ≤ ci,j . Therefore, the value flex∗(S) for the

concurrent flexibility for S can be found by solving the fol-
lowing LP (see (Wilson et al. 2014)):

maximize
∑
ti∈T

(t+i − t
−
i) (LP1)

subject to t−i ≤ t
+
i , ∀ ti ∈ T

t+j − t
−
i ≤ ci,j , ∀ (tj − ti ≤ ci,j) ∈ C

Here, flex∗(S) indicates the maximum flexibility that can
be obtained when all flexibility intervals of temporal vari-
ables are independent from each other and values in these
intervals can be chosen concurrently.
Example 5. LP1 will return flex∗(S1) = 150, but
flex∗(S2) = 50, showing that here the concurrent flexibility
metric corresponds to our intuition.

Concurrent flexibility by minimum matching
In this section we show that computing the maximum con-
current flexibility is identical to computing a perfect min-
imum weight matching of a weighted bipartite graph GS

completely specified by DS . On the other hand, computing
the naive flexibility corresponds to computing a maximum
matching in this graph GS .

To establish these results, first, we specify an LP equiva-
lent to LP1 using the minimum distance matrix DS instead
of the original set C of constraints. Then we show that the
entries of DS can be used to compute a least upper bound
on flex∗(S). Finally, by using duality theory in Linear Pro-
gramming and some adaptations, we show that this least up-
per bound is a maximum matching in a bipartite graph spec-
ified by DS and in fact equals flex∗(S).

Remember that the entries d(i, j) of the minimum dis-
tance matrixDS of an STN S specify the upper bound of the
strongest difference constraint between the temporal vari-
ables tj and ti: tj − ti ≤ d(i, j). Hence, we can replace the
specification LP1 by the following equivalent LP, since both
LP’s specify the same solution space:

maximize
∑
ti∈T

(t+i − t
−
i) (LP2)

subject to t−i ≤ t
+
i , ∀ ti ∈ T

t+j − t
−
i ≤ d(i, j) , ∀ ti 6= tj ∈ T

To remove the condition ∀ ti 6= tj ∈ T , it is sufficient to
realize that t+i − t

−
i = (t+i − t

−
0) + (t+0 − t

−
i) ≤ d(0, i) +

d(i, 0) = lst(ti) − est(ti), since t−0 = t+0 = 0. Hence,
setting d(i, i) = d(0, i) + d(i, 0) for all ti ∈ T , we change
LP2 to the following equivalent LP:

maximize
∑
ti∈T

(t+i − t
−
i) (LP3)

subject to t−i ≤ t
+
i , ∀ ti ∈ T

t+j − t
−
i ≤ d(i, j) , ∀ ti, tj ∈ T

We will denote this modified distance matrix DS , where
d(i, i) = lst(ti)− est(ti), by D∗S .

Now consider the sum
∑n
i=1(t+i − t−i) we want to

maximize. This sum can be rewritten as
∑n
i=1(t+i −

t−i) =
∑n
i=1(t+i − t−π(i)) for an arbitrary permutation π

of (1, 2, . . . , n). Since t+i − t
−
π(i) ≤ d(π(i), i), we can de-

rive an upper bound on this sum for every permutation π:∑n
i=1(t+i − t−π(i)) ≤

∑n
i=1 d(π(i), i). In particular, there

are permutations π∗ such that for all permutations π it holds
that

∑n
i=1 d(π∗(i), i) ≤

∑n
i=1 d(π(i), i). Such a (smallest)

permutation π∗ specifies a least upper bound on flex∗(S) =
max

∑n
i=1(t+i − t

−
i).

There is an efficient way to compute such a smallest per-
mutation π∗ by obtaining a minimum weighted matching be-
tween T+ = {t+1 , t

+
2 , . . . , t

+
n } and T− = {t−1 , t

−
2 , . . . , t

−
n }:

Consider the weighted complete graph GS = (V,E,w)
where V = T+ ∪ T−, the edges {t+i , t

−
j } ∈ E for i, j =

1, . . . n, and for every edge {t+i , t
−
j } its weight wi,j = dj,i.

Note that GS is completely specified by D∗S . By Hall’s the-
orem, this graph has a minimum weighted perfect match-
ing, that is a set M ⊆ E of n edges covering T+ and T−
such that the sum of these edges is minimum. Clearly, such
a minimum weighted matching determines a permutation π∗

176

such that
∑n
i=1 d(π∗(i), i) is minimum. Since it holds that∑

ti∈T (t+i −t
−
i) ≤

∑n
i=1 d(π∗(i), i), the cost c(M) of such

a minimum matching provides an upper bound for flex∗(S).
Actually, by applying simple LP-duality theory, we can

do better and show that there exists an exact correspondence
between a minimum matching inD∗S and the maximum con-
current flexibility flex∗(S):
Proposition 2. Let S = (T,C) be a consistent STN having
a minimum distance matrix DS . Then the concurrent flex-
ibility flex∗(S) of S equals the cost c(M) of a minimum
matching M of the complete weighted graph GS specified
by D∗S .

Proof. The most elegant way to prove this result is making
use of duality in linear programming. The dual of LP3 is the
following LP:

minimize
∑

1≤i,j≤n

d(i, j) yj,i (LP4)

subject to
n∑
j=1

yi,j = 1 + y0,i , i ∈ {1, 2, . . . n}

n∑
i=1

yi,j = 1 + y0,j , j ∈ {1, 2, . . . n}

yi,j ≥ 0 , i, j ∈ {0, 1, . . . , n}

Since the original LP (LP3) has an optimal solution, by
strong duality, the objective values of optimal solutions of
both LP’s coincide. The constraint matrix associated with
both LP’s is total unimodular, hence, LP4 has integral opti-
mal solutions. This dual LP4 can be interpreted as follows:
Let GS be a complete bipartite graph having two sets of
nodes A = {1, . . . , n} and B = {1, . . . n}, representing the
rows and columns ofD∗S . LetD∗S specify the weights d(j, i)
of the edges e = (i, j) of GS . Then, in case y0,i = 0 for
all i = 1, 2, . . . n), it is not difficult to see that a minimizer
for LP4 specifies a minimum weight matchingM inGS . By
strong duality, the cost c(M) of M corresponds to flex∗(S).

Therefore, the only part left to prove is to show that the
assumption y0,i = 0 for all i = 1, 2, . . . n does not affect the
value of the solutions to LP4:

Claim Whenever LP4 has an optimal integral solution, there
also exists an integral solution of LP4 with at most the same
cost such that y0,i = 0, for all i = 1, 2, . . . , n.

Proof of the Claim Suppose there exists an integral solution
y
¯
∗ = (y∗i,j) for LP4 where y∗0,i > 0 for some 1 ≤ i ≤
n. Then there exist j, k ∈ {1, . . . , n}, j 6= i and k 6= i,
such that y∗i,j = 1 and y∗k,i = 1.5 This condition violates
the matching conditions. But then, since d(j, k) ≤ d(j, i) +
d(i, k), there exists a solution y = (yi,j) such that c(y) ≤
c(y∗) where yi,j = yk,i = 0 and yk,j = 1, and y0,i =
y∗0,i− 2 + y∗k,j . Hence, there exists a solution y with at most
the same cost as y∗ such that 0 ≤ y0,i < y∗0,i. Iterating

5Wlog. we may assume y∗i,j ∈ {0, 1}, 1 ≤ i, j ≤ n: If y∗i,j > 1
then there exists a solution y′ with c(y′) ≤ c(y∗) s.t. y′i,j = 1 and
y′0,i = y∗0,i − (y∗i,j − 1).

this procedure, we conclude that there exists a solution such
that y0,i = 0 as well, with cost not exceeding the cost of
the original solution. This procedure can be repeated until
we have obtained an optimal solution where it holds that
y0,i = 0 for all i, i.e., a perfect minimum weight matching,
thereby proving the claim.

A maximum matching M for D∗S can be determined
immediately: Note that the value of any matching M ′ re-
alised by a permutation π′ satisfies

∑n
i=1 d(i, π′(i)) ≤∑n

i=1 d(i, 0) + d(0, π′(i)) =
∑n
i=1 d(i, 0) + d(0, i) =∑n

i=1 lst(ti)− est(ti) = flex (S). Since d(i, i) = lst(ti)−
est(ti), the matching M = {(i, i) : i = 1, 2, . . . , n} real-
ized by π(i) = i, is a maximum matching for D∗S :
Proposition 3. Let S = (T,C) be a consistent STN having
a minimum distance matrix DS . Then the naive flexibility
flex (S) of S equals the cost c(M) of a maximum matching
M of the weighted graph specified by D∗S .

From O(n5) to O(n3) to compute flexibility
The complexity of computing the concurrent flexibility of an
STN by an LP method depends on the exact method used
for the LP solver. Currently, the best (interior-point based)
LP-solvers have a complexity of O(n3L) (Potra and Wright
2000) where n is the number of unknowns to solve for (the
dimension of the vector x) and L is the input complexity,
i.e., the bit length of the input description. This means that
given an STN S = (T,C), the currently best LP-solvers
could need O(n3m)-time to find the concurrent flexibility
flex∗(S), where n = |T | and m = |C|. Since m = O(n2),
we could expect a worst-case running time O(n5) to com-
pute flex∗(S).

The correspondence (flexibility ≡ matching) obtained in
the previous section allows us to present a better upper
bound of the running time needed to compute the maximum
concurrent flexibility. For, we know that given an STN S
its minimal distance matrix DS can be computed in O(n3)
time. A minimum matching algorithm based on the specifi-
cation of DS also requires O(n2 log n+ n× n2) = O(n3)-
time (Fredman and Tarjan 1987). Hence, the total compu-
tation time for determining a minimum matching is O(n3)-
time. Note that computing the naive flexibility also requires
an O(n3) computation of earliest and latest times for the
temporal variables, both of which can be obtained via DS .

Hence, in conclusion, we obtain the following result:
Proposition 4. The concurrent flexibility as well as the
naive flexibility of an STN S can be computed in O(n3)-
time.

Conclusion
We established a connection between the computation of
two flexibility metrics and properties of the minimal distance
matrix DS of an STN S: computing the concurrent flexi-
bility metric is identical to computing a minimum weight
matching of a weighted bipartite graph completely specified
by the minimum distance matrix DS . On the other hand,
computing the naive flexibility metric corresponds to com-
puting a maximum matching in this graph.

177

References
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49.
Dechter, R. 2003. Constraint Processing. Morgan Kauf-
mann.
Floyd, R. 1962. Algorithm 97: Shortest path. Communica-
tions of the ACM 5(6).
Fredman, M. L., and Tarjan, R. E. 1987. Fibonacci heaps
and their uses in improved network optimization algorithms.
J. ACM 34(3):596–615.
Policella, N.; Smith, S. F.; Cesta, A.; and Oddi, A. 2004.
Generating robust schedules through temporal flexibility. In
Proceedings ICAPS.
Pollack, M. E., and Tsamardinos, I. 2005. Efficiently dis-
patching plans encoded as simple temporal problems. In
Vlahavas, I., and Vrakas, D., eds., Intelligent Techniques for
Planning. Idea Group Publishing. 296–319.
Potra, F. A., and Wright, S. J. 2000. Interior-point meth-
ods. Journal of Computational and Applied Mathematics
124(1–2):281 – 302. Numerical Analysis 2000. Vol. IV: Op-
timization and Nonlinear Equations.
Wilson, M.; Klos, T.; Witteveen, C.; and Huisman, B. 2013.
Flexibility and decoupling in the simple temporal problem.
In Rossi, F., ed., Proceedings International Joint Conference
on Artificial Intelligence (IJCAI), 2422 – 2428. AAAI Press,
Menlo Park, CA.
Wilson, M.; Klos, T.; Witteveen, C.; and Huisman, B. 2014.
Flexibility and decoupling in Simple Temporal Networks.
Artificial Intelligence 214:26–44.

178

